1
|
Zampese E, Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 2012; 69:1077-104. [PMID: 21968921 PMCID: PMC11114864 DOI: 10.1007/s00018-011-0845-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
2
|
Yoo SH, Hur YS. Enrichment of the inositol 1,4,5-trisphosphate receptor/Ca2+ channels in secretory granules and essential roles of chromogranins. Cell Calcium 2012; 51:342-50. [DOI: 10.1016/j.ceca.2011.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/07/2011] [Accepted: 12/10/2011] [Indexed: 11/26/2022]
|
3
|
Álvarez J. Calcium dynamics in the secretory granules of neuroendocrine cells. Cell Calcium 2012; 51:331-7. [DOI: 10.1016/j.ceca.2011.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/22/2011] [Accepted: 12/04/2011] [Indexed: 01/29/2023]
|
4
|
Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 2011; 439:349-74. [PMID: 21992097 DOI: 10.1042/bj20110949] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.
Collapse
|
5
|
Dionisio N, Albarrán L, López JJ, Berna-Erro A, Salido GM, Bobe R, Rosado JA. Acidic NAADP-releasable Ca(2+) compartments in the megakaryoblastic cell line MEG01. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1483-94. [PMID: 21601596 DOI: 10.1016/j.bbamcr.2011.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/17/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND A novel family of intracellular Ca(2+)-release channels termed two-pore channels (TPCs) has been presented as the receptors of NAADP (nicotinic acid adenine dinucleotide phosphate), the most potent Ca(2+) mobilizing intracellular messenger. TPCs have been shown to be exclusively localized to the endolysosomal system mediating NAADP-evoked Ca(2+) release from the acidic compartments. OBJECTIVES The present study is aimed to investigate NAADP-mediated Ca(2+) release from intracellular stores in the megakaryoblastic cell line MEG01. METHODS Changes in cytosolic and intraluminal free Ca(2+) concentrations were registered by fluorimetry using fura-2 and fura-ff, respectively; TPC expression was detected by PCR. RESULTS Treatment of MEG01 cells with the H(+)/K(+) ionophore nigericin or the V-type H(+)-ATPase selective inhibitor bafilomycin A1 revealed the presence of acidic Ca(2+) stores in these cells, sensitive to the SERCA inhibitor 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). NAADP releases Ca(2+) from acidic lysosomal-like Ca(2+) stores in MEG01 cells probably mediated by the activation of TPC1 and TPC2 as demonstrated by TPC1 and TPC2 expression silencing and overexpression. Ca(2+) efflux from the acidic lysosomal-like Ca(2+) stores or the endoplasmic reticulum (ER) results in ryanodine-sensitive activation of Ca(2+)-induced Ca(2+) release (CICR) from the complementary Ca(2+) compartment. CONCLUSION Our results show for the first time NAADP-evoked Ca(2+) release from acidic compartments through the activation of TPC1 and TPC2, and CICR, in a megakaryoblastic cell line.
Collapse
Affiliation(s)
- Natalia Dionisio
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna-Erro A, Salido GM, Rosado JA. STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 2011; 286:12257-70. [PMID: 21321120 PMCID: PMC3069429 DOI: 10.1074/jbc.m110.190694] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/11/2011] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells accumulate Ca2+ into agonist-sensitive acidic organelles, vesicles that possess a vacuolar proton-ATPase. Acidic Ca2+ stores include secretory granules and lysosome-related organelles. Current evidence clearly indicates that acidic Ca2+ stores participate in cell signaling and function, including the activation of store-operated Ca2+ entry in human platelets upon depletion of the acidic stores, although the mechanism underlying the activation of store-operated Ca2+ entry controlled by the acidic stores remains unclear. STIM1 has been presented as the endoplasmic reticulum Ca2+ sensor, but its role sensing intraluminal Ca2+ concentration in the acidic stores has not been investigated. Here we report that STIM1 and STIM2 are expressed in the lysosome-related organelles and dense granules in human platelets isolated by immunomagnetic sorting. Depletion of the acidic Ca2+ stores using the specific vacuolar proton-ATPase inhibitor, bafilomycin A1, enhanced the association between STIM1 and STIM2 as well as between these proteins and the plasma membrane channel Orai1. Depletion of the acidic Ca2+ stores also induces time-dependent co-immunoprecipitation of STIM1 with the TRPC proteins hTRPC1 and hTRPC6, as well as between Orai1 and both TRPC proteins. In addition, bafilomycin A1 enhanced the association between STIM2 and SERCA3. These findings demonstrate the location of STIM1 and STIM2 in the acidic Ca2+ stores and their association with Ca2+ channels and ATPases upon acidic stores discharge.
Collapse
Affiliation(s)
- Hanene Zbidi
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Isaac Jardin
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | | | - Jose J. Lopez
- Hémostase et Dynamique Cellulaire Vasculaire U770, INSERM, 94276 Le Kremlin-Bicêtre, France
| | - Alejandro Berna-Erro
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Ginés M. Salido
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Juan A. Rosado
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
7
|
Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 2010; 20:277-86. [PMID: 20303271 DOI: 10.1016/j.tcb.2010.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 12/18/2022]
Abstract
Changes in cytosolic calcium concentration are crucial for a variety of cellular processes in all cells. It has long been appreciated that calcium is stored and released from intracellular calcium stores such as the endoplasmic reticulum. However, emerging evidence indicates that calcium is also dynamically regulated by a seemingly disparate collection of acidic organelles. In this paper, we review the defining features of these 'acidic calcium stores' and highlight recent progress in understanding the mechanisms of uptake and release of calcium from these stores. We also examine the nature of calcium buffering within the stores, and summarize the physiological and pathophysiological significance of these ubiquitous organelles in calcium signaling.
Collapse
|
8
|
Moreno A, Lobatón CD, Santodomingo J, Vay L, Hernández-SanMiguel E, Rizzuto R, Montero M, Alvarez J. Calcium dynamics in catecholamine-containing secretory vesicles. Cell Calcium 2005; 37:555-64. [PMID: 15862346 DOI: 10.1016/j.ceca.2005.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 02/17/2005] [Accepted: 02/21/2005] [Indexed: 11/19/2022]
Abstract
We have used an aequorin chimera targeted to the membrane of the secretory granules to monitor the free [Ca(2+)] inside them in neurosecretory PC12 cells. More than 95% of the probe was located in a compartment with an homogeneous [Ca(2+)] around 40 microM. Cell stimulation with either ATP, caffeine or high-K(+) depolarization increased cytosolic [Ca(2+)] and decreased secretory granule [Ca(2+)] ([Ca(2+)](SG)). Inositol-(1,4,5)-trisphosphate, cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate were all ineffective to release Ca(2+) from the granules. Changes in cytosolic [Na(+)] (0-140 mM) or [Ca(2+)] (0-10 microM) did not modify either ([Ca(2+)](SG)). Instead, [Ca(2+)](SG) was highly sensitive to changes in the pH gradient between the cytosol and the granules. Both carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and nigericin, as well as cytosolic acidification, reversibly decreased [Ca(2+)](SG), while cytosolic alcalinization reversibly increased [Ca(2+)](SG). These results are consistent with the operation of a H(+)/Ca(2+) antiporter in the vesicular membrane. This antiporter could also mediate the effects of ATP, caffeine and high-K(+) on [Ca(2+)](SG), because all of them induced a transient cytosolic acidification. The FCCP-induced decrease in [Ca(2+)](SG) was reversible in 10-15 min even in the absence of cytosolic Ca(2+) or ATP, suggesting that most of the calcium content of the vesicles is bound to a slowly exchanging Ca(2+) buffer. This large store buffers [Ca(2+)](SG) changes in the long-term but allows highly dynamic free [Ca(2+)](SG) changes to occur in seconds or minutes.
Collapse
Affiliation(s)
- Alfredo Moreno
- Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tang YM, Travis ER, Wightman RM, Schneider AS. Sodium-calcium exchange affects local calcium signal decay and the rate of exocytotic secretion in single chromaffin cells. J Neurochem 2000; 74:702-10. [PMID: 10646522 DOI: 10.1046/j.1471-4159.2000.740702.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of Na+ deprivation on local calcium signal decay and the rate of exocytotic secretion were measured in single bovine chromaffin cells to determine whether Na-Ca exchange influences the local cytosolic Ca2+ signal for neurohormone release. Na+ replacement with N-methylglucamine caused a marked slowing of the decay of the local Ca2+ signal near points of its initiation, as measured by high-resolution fluorescent Ca2+ imaging in the confocal laser scanning microscope. Na+ replacement also resulted in a doubling of the rate and magnitude of exocytotic secretion measured in single cells by high-resolution microamperometry. Release rates provide an independent measure of local active zone Ca2+. Five repetitive stimulations of the same cell in Na+-free, but not in Na+-containing, medium resulted in a progressively increasing rate of catecholamine release, suggesting an increasing level of active zone Ca2+ and a role of Na-Ca exchange activity in Ca2+ clearance between stimulations. As secretory activity and its triggering Ca2+ signals are known to be co-localized in active zones along the plasma membrane, the results suggest that Na-Ca exchange may influence the decay of the local Ca2+ signal for exocytotic secretion. This would be consistent with a contribution to local Ca2+ clearance by a novel mechanism utilizing the insertion of secretory vesicle Na-Ca exchangers into the plasma membrane during exocytosis.
Collapse
Affiliation(s)
- Y M Tang
- Department of Pharmacology and Neuroscience, Albany Medical College, New York 12208, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The Na+/Ca2+ exchanger, an ion transport protein, is expressed in the plasma membrane (PM) of virtually all animal cells. It extrudes Ca2+ in parallel with the PM ATP-driven Ca2+ pump. As a reversible transporter, it also mediates Ca2+ entry in parallel with various ion channels. The energy for net Ca2+ transport by the Na+/Ca2+ exchanger and its direction depend on the Na+, Ca2+, and K+ gradients across the PM, the membrane potential, and the transport stoichiometry. In most cells, three Na+ are exchanged for one Ca2+. In vertebrate photoreceptors, some neurons, and certain other cells, K+ is transported in the same direction as Ca2+, with a coupling ratio of four Na+ to one Ca2+ plus one K+. The exchanger kinetics are affected by nontransported Ca2+, Na+, protons, ATP, and diverse other modulators. Five genes that code for the exchangers have been identified in mammals: three in the Na+/Ca2+ exchanger family (NCX1, NCX2, and NCX3) and two in the Na+/Ca2+ plus K+ family (NCKX1 and NCKX2). Genes homologous to NCX1 have been identified in frog, squid, lobster, and Drosophila. In mammals, alternatively spliced variants of NCX1 have been identified; dominant expression of these variants is cell type specific, which suggests that the variations are involved in targeting and/or functional differences. In cardiac myocytes, and probably other cell types, the exchanger serves a housekeeping role by maintaining a low intracellular Ca2+ concentration; its possible role in cardiac excitation-contraction coupling is controversial. Cellular increases in Na+ concentration lead to increases in Ca2+ concentration mediated by the Na+/Ca2+ exchanger; this is important in the therapeutic action of cardiotonic steroids like digitalis. Similarly, alterations of Na+ and Ca2+ apparently modulate basolateral K+ conductance in some epithelia, signaling in some special sense organs (e.g., photoreceptors and olfactory receptors) and Ca2+-dependent secretion in neurons and in many secretory cells. The juxtaposition of PM and sarco(endo)plasmic reticulum membranes may permit the PM Na+/Ca2+ exchanger to regulate sarco(endo)plasmic reticulum Ca2+ stores and influence cellular Ca2+ signaling.
Collapse
Affiliation(s)
- M P Blaustein
- Departments of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | |
Collapse
|
11
|
Schneider AS, Jan CR. Na-Ca exchange in Ca2+ signaling and neurohormone secretion. Secretory vesicle contributions in adrenal chromaffin cells. Ann N Y Acad Sci 1996; 779:356-65. [PMID: 8659848 DOI: 10.1111/j.1749-6632.1996.tb44807.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- A S Schneider
- Department of Pharmacology and Neuroscience, Albany Medical College, New York 12208, USA
| | | |
Collapse
|
12
|
Sodium-dependent calcium efflux from adrenal chromaffin cells following exocytosis. Possible role of secretory vesicle membranes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50146-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Yoo SH. Inositol 1,3,4,5-tetrakisphosphate-induced Ca2+ sequestration into bovine adrenal-medullary secretory vesicles. Biochem J 1991; 278 ( Pt 2):381-5. [PMID: 1898330 PMCID: PMC1151353 DOI: 10.1042/bj2780381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ins(1,3,4,5)P4 induced a rapid sequestration of Ca2+ into both secretory vesicles and microsomes of bovine adrenal medulla. The Ca(2+)-sequestering role of Ins(1,3,4,5)P4 contrasts with the Ca(2+)-releasing role of Ins(1,4,5)P3 in adrenal-medullary secretory vesicles and microsomes. The Ins(1,3,4,5)P4-induced Ca2+ sequestration into secretory vesicles was not inhibited by heparin (50 micrograms/ml), whereas Ins(1,4,5)P3-induced Ca2+ release was completely inhibited, indicating two different receptors for Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Furthermore, Ins(1,3,4,5)P4 was as effective at 4 degrees C as at 24 degrees C in sequestering Ca2+ into secretory vesicles, implying Ca2+ sequestration through receptor-operated Ca2+ channels or activation of the Ca(2+)-exchange mechanism by Ins(1,3,4,5)P4. The Ca(2+)-sequestering activity of Ins(1,3,4,5)P4 has also been demonstrated with 45Ca2+; 10 microM-Ins(1,3,4,5)P4 induced rapid uptake of 45Ca2+ into secretory vesicles optimized for Ca2+ uptake, whereas 10 microM-Ins(1,4,5)P3 induced 45Ca2+ release from secretory vesicles in similar experiments.
Collapse
Affiliation(s)
- S H Yoo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235
| |
Collapse
|
14
|
Powis DA, O'Brien KJ, Von Grafenstein HR. Calcium export by sodium-calcium exchange in bovine chromaffin cells. Cell Calcium 1991; 12:493-504. [PMID: 1934037 DOI: 10.1016/0143-4160(91)90031-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium efflux from bovine chromaffin cells in tissue culture has been examined after loading them with small amounts of Ca2+ by brief depolarization in media containing 20 mumol/l to 1 mmol/l Ca2+ and 45Ca2+ in trace amounts. In the presence of normal external Na+ and Ca2+ concentrations cells depolarized in media containing up to 200 mumol/l Ca2+ exported nearly 100% of their accumulated Ca2+ loads within 10 min and 20% within the first 5 s. In the absence of external Na+ and Ca2+ the proportion of a small (i.e., depolarization in 20 mumol/l calcium) Ca2+ load exported at any time point in the range to 10 min was approximately two thirds of the total efflux measured in their presence indicating that under these conditions the external Na+/Ca(2+)-dependent and Na+/Ca(2+)-independent mechanisms both contribute significantly to the export of calcium. At higher cellular loads of calcium (i.e., depolarization in 200 mumol/l to 1 mmol/l calcium) the Na+/Ca(2+)-dependent mechanism exported a progressively greater proportion of the accumulated Ca2+. Both sodium and calcium alone promoted a component of Ca2+ efflux; Ca2+ (i.e. calcium-calcium exchange) was as effective as Na+ (i.e. sodium-calcium exchange). The Km for Na+ stimulation of Ca(2+)-efflux (KNa) was approximately 65 mM. Increased external Mg2+ (from 1.2 to 10 mmol/l) increased the apparent KNa to 90 mM.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D A Powis
- Neuroscience Group, Faculty of Medicine, University of Newcastle, New South Wales, Australia
| | | | | |
Collapse
|
15
|
von Grafenstein HR, Powis DA. Calcium is released by exocytosis together with catecholamines from bovine adrenal medullary cells. J Neurochem 1989; 53:428-35. [PMID: 2746230 DOI: 10.1111/j.1471-4159.1989.tb07352.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have tested the hypothesis that exocytosis is a possible export route for calcium from bovine adrenal medullary cells. After prelabelling cells in primary tissue culture with 45Ca, evoked 45Ca export and catecholamine secretion show the same time course, a similar fraction of the total pool of 45Ca and catecholamine is released, and the same concentrations of carbamylcholine or KCl are required for half-maximal triggered release. Increasing the osmolarity of the extracellular medium or treating the cells with botulinum toxin type D inhibits both evoked catecholamine secretion and 45Ca export to the same extent without inhibiting 45Ca influx. Incorporation of 45Ca into chromaffin granules is very slow, however, and incorporated 45Ca is not immediately releasable. 45Ca entering the cell during short-term stimulation is not found in the releasable pool during a second period of triggered secretion. Our data suggest that chromaffin granules are the largest pool of intracellular calcium in bovine adrenal medullary cells and that most of the calcium in chromaffin granules does not rapidly exchange with cytoplasmic Ca, but can be released directly by exocytosis. Exocytosis does not appear to play a major role in exporting Ca that enters the cell during short-term stimulation.
Collapse
|
16
|
Electron probe microanalysis of the subcellular compartments of bovine adrenal chromaffin cells. Comparison of chromaffin granules in situ and in vitro. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57329-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Heym C, Kummer W. Regulatory peptides in paraganglia. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1988; 18:1-95. [PMID: 3051130 DOI: 10.1016/s0079-6336(88)80010-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- C Heym
- Anatomisches Institut der Universität Heidelberg, FRG
| | | |
Collapse
|
18
|
|
19
|
The Secretory Vesicle in Processing and Secretion of Neuropeptides. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0070-2161(08)60064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Winkler H, Apps DK, Fischer-Colbrie R. The molecular function of adrenal chromaffin granules: established facts and unresolved topics. Neuroscience 1986; 18:261-90. [PMID: 2942794 DOI: 10.1016/0306-4522(86)90154-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Abstract
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.
Collapse
|
22
|
Abstract
The proteinaceous components of the secretory vesicle contents isolated from bovine adrenal medulla bind Ca2+ (number of binding sites, 152 +/- 52 nmol Ca2+ per mg protein; dissociation constant, 54 +/- 8 microM (n = 5)). SDS-polyacrylamide gel electrophoresis and 45Ca2+ binding of the proteins following their separation and blotting on nitrocellulose revealed that Ca2+ binds to chromogranins. Moreover, it was shown that the chromogranins, like other known Ca2+-binding proteins, can be specifically stained with a cationic carbocyanine dye. The Ca2+-binding function of the chromogranins described here, in conjunction with recent findings concerning Ca2+ transport across chromaffin vesicle membranes and the widespread distribution findings concerning Ca2+ transport across chromaffin vesicle membranes and the widespread distribution of chromogranins in many different endocrine and nerve cells, points to the general importance of these proteins in the metabolism of Ca2+.
Collapse
|
23
|
Njus D, Kelley PM, Harnadek GJ. Bioenergetics of secretory vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 853:237-65. [PMID: 2887202 DOI: 10.1016/0304-4173(87)90003-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Abstract
Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187. During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the vesicles. Intravesicular Mg2+ is not released from the vesicles by A23187, as determined by atomic emission spectroscopy. In the presence of NH4Cl, which causes the collapse of the secretory vesicle transmembrane proton gradient (delta pH), Ca2+ uptake decreases. Under these conditions A23187-mediated influx of Ca2+ and efflux of H+ cease at Ca2+ concentrations of about 4 microM. Below this concentration Ca2+ is even released from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4Cl we determined an intravesicular pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 microM. From this value and the known pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 microM was calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles determined in the presence of NH4Cl.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
25
|
Gratzl M. Distribution of chromaffin secretory vesicles, acetylcholinesterase, and lysosomal enzymes in sucrose and Percoll gradients. Anal Biochem 1984; 142:148-54. [PMID: 6097139 DOI: 10.1016/0003-2697(84)90529-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Crude chromaffin secretory vesicles, obtained by differential centrifugation, were further purified on isotonic (Percoll) gradients. The chromaffin vesicle fractions recovered from the gradients contain acetylcholinesterase as well as lysosomal enzymes. With the aid of a subsequent sucrose gradient lysosomal enzymes could be removed from chromaffin vesicle fractions, but not acetylcholinesterase. This suggests that lysosomal enzymes do not pass through the chromaffin vesicles during the biogenesis of lysosomes but acetylcholinesterase does.
Collapse
|