1
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Abstract
Movement disorders can occur as primary (idiopathic) or genetic disease, as a manifestation of an underlying neurodegenerative disorder, or secondary to a wide range of neurological or systemic diseases. Cerebrovascular diseases represent up to 22% of secondary movement disorders, and involuntary movements develop after 1-4% of strokes. Post-stroke movement disorders can manifest in parkinsonism or a wide range of hyperkinetic movement disorders including chorea, ballism, athetosis, dystonia, tremor, myoclonus, stereotypies, and akathisia. Some of these disorders occur immediately after acute stroke, whereas others can develop later, and yet others represent delayed-onset progressive movement disorders. These movement disorders have been encountered in patients with ischaemic and haemorrhagic strokes, subarachnoid haemorrhage, cerebrovascular malformations, and dural arteriovenous fistula affecting the basal ganglia, their connections, or both.
Collapse
Affiliation(s)
- Raja Mehanna
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
3
|
Taha AY, Jeffrey MA, Taha NMY, Bala S, Burnham WM. Acute administration of docosahexaenoic acid increases resistance to pentylenetetrazol-induced seizures in rats. Epilepsy Behav 2010; 17:336-43. [PMID: 20153982 DOI: 10.1016/j.yebeh.2010.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/02/2009] [Accepted: 01/03/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Docosahexaenoic acid (DHA), an omega-3 fatty acid, has been reported to raise seizure thresholds. The purpose of the present study was to test the acute anticonvulsant effects of unesterified DHA in rats, using the maximal pentylenetetrazol (PTZ) seizure model, and also to examine DHA incorporation and distribution into blood serum total lipids and brain phospholipids and unesterified fatty acids. Sedation was measured to monitor for the potential toxicity of DHA. METHODS Male Wistar rats received subcutaneous injections of saline, oleic acid (OA), or DHA. An initial pilot study (Experiment 1) established 400mg/kg as an effective dose of DHA in the maximal PTZ seizure test. A subsequent time-response study, using 400mg/kg (Experiment 2), established 1 hour as an effective postinjection interval for administering DHA subcutaneously. A final study (Experiment 3) comprised two different groups. The first group ("seizure-tested rats") received saline, OA, or DHA (400mg/kg) subcutaneously, and were seizure tested in the maximal PTZ test 1 hour later to confirm the seizure latency measurements at that time. The second group ("assay rats") received identical subcutaneous injections of saline, OA, or DHA (400mg/kg). One hour postinjection, however, they were sacrificed for assay rather than being seizure tested. Assays involved the analysis of serum and brain DHA. Sedation was measured in both Experiment 3 groups during the 1-hour period prior to seizure testing or sacrifice. RESULTS As noted above, 400mg/kg proved to be an effective subcutaneous dose of DHA (Experiment 1), and 1 hour proved to be the most effective injection-test interval (Experiment 2). In Experiment 3, in the seizure-tested animals, subcutaneous administration of 400mg/kg of DHA significantly increased latency to PTZ seizure onset 1 hour postinjection relative to the saline- and OA-injected controls, which did not differ significantly from each other (P>0.05). In the assay animals, no significant effects of treatment on blood serum total lipids or on brain phospholipid or unesterified fatty acid profiles (P>0.05) were observed. There were also no differences in sedation among the three groups (P>0.05). CONCLUSION DHA increases resistance to PTZ-induced seizures without altering measures of sedation and, apparently, without changing DHA concentrations in serum or brain.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
4
|
Solomon IC. Excitation of phrenic and sympathetic output during acute hypoxia: contribution of medullary oxygen detectors. RESPIRATION PHYSIOLOGY 2000; 121:101-17. [PMID: 10963768 DOI: 10.1016/s0034-5687(00)00122-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe brain hypoxia results in respiratory excitation and an increase in sympathetic nerve activity. Respiratory excitation takes the form of gasping which is characterized by an abrupt onset, high amplitude, short duration burst of inspiratory activity. Recent evidence suggests that centrally-mediated hypoxic respiratory and sympathetic excitation may result from direct hypoxic stimulation of discrete hypoxia chemosensitive sites in the medulla. Thus, medullary regions involved in the generation and modulation of respiratory and sympathetic vasomotor output may contain neurons which function as central oxygen detectors, acting as medullary analogs to the peripheral (arterial) chemoreceptors. This review focuses on the medullary sites and mechanisms proposed to mediate hypoxic respiratory and sympathetic excitation in anesthetized, chemodeafferented animals, and provides the evidence suggesting a role for central oxygen detectors in the control of breathing and sympathetic vasomotor output.
Collapse
Affiliation(s)
- I C Solomon
- Department of Physiology and Biophysics, Health Sciences Center, Basic Science Tower, Level 6, Room 140, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
5
|
Solomon IC, Edelman NH, Neubauer JA. Pre-Bötzinger complex functions as a central hypoxia chemosensor for respiration in vivo. J Neurophysiol 2000; 83:2854-68. [PMID: 10805683 DOI: 10.1152/jn.2000.83.5.2854] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, we identified a region located in the pre-Bötzinger complex (pre-BötC; the proposed locus of respiratory rhythm generation) in which activation of ionotropic excitatory amino acid receptors using DL-homocysteic acid (DLH) elicits a variety of excitatory responses in the phrenic neurogram, ranging from tonic firing to a rapid series of high-amplitude, rapid rate of rise, short-duration inspiratory bursts that are indistinguishable from gasps produced by severe systemic hypoxia. Therefore we hypothesized that this unique region is chemosensitive to hypoxia. To test this hypothesis, we examined the response to unilateral microinjection of sodium cyanide (NaCN) into the pre-BötC in chloralose- or chloralose/urethan-anesthetized vagotomized, paralyzed, mechanically ventilated cats. In all experiments, sites in the pre-BötC were functionally identified using DLH (10 mM, 21 nl) as we have previously described. All sites were histologically confirmed to be in the pre-BötC after completion of the experiment. Unilateral microinjection of NaCN (1 mM, 21 nl) into the pre-BötC produced excitation of phrenic nerve discharge in 49 of the 81 sites examined. This augmentation of inspiratory output exhibited one of the following changes in cycle timing and/or pattern: 1) a series of high-amplitude, short-duration bursts in the phrenic neurogram (a discharge similar to a gasp), 2) a tonic excitation of phrenic neurogram output, 3) augmented bursts in the phrenic neurogram (i.e., eupneic breath ending with a gasplike burst), or 4) an increase in frequency of phrenic bursts accompanied by small increases or decreases in the amplitude of integrated phrenic nerve discharge. Our findings identify a locus in the brain stem in which focal hypoxia augments respiratory output. We propose that the respiratory rhythm generator in the pre-BötC has intrinsic hypoxic chemosensitivity that may play a role in hypoxia-induced gasping.
Collapse
Affiliation(s)
- I C Solomon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903-0019, USA
| | | | | |
Collapse
|
6
|
Bazan NG, Rodriguez de Turco EB, Allan G. Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J Neurotrauma 1995; 12:791-814. [PMID: 8594208 DOI: 10.1089/neu.1995.12.791] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Membrane lipid-derived second messengers are generated by phospholipase A2 (PLA2) during synaptic activity. Overstimulation of this enzyme during neurotrauma results in the accumulation of bioactive metabolites such as arachidonic acid, oxygenated derivatives of arachidonic acid, and platelet-activating factor (PAF). Several of these bioactive lipids participate in cell damage, cell death, or repair-regenerative neural plasticity. Neurotransmitters may activate PLA2 directly when linked to receptors coupled to G proteins and/or indirectly as calcium influx or mobilization from intracellular stores is stimulated. The release of arachidonic acid and its subsequent metabolism to prostaglandins are early responses linked to neuronal signal transduction. Free arachidonic acid may interact with membrane proteins, i.e., receptors, ion channels, and enzymes, modifying their activity. It can also be acted upon by prostaglandin synthase isoenzymes (the constitutive prostaglandin synthase PGS-1 or the inducible PGS-2) and by lipoxygenases, with the resulting formation of different prostaglandins and leukotrienes. Glutamatergic synaptic activity and activation of postsynaptic NMDA receptors are examples of neuronal activity, linked to memory and learning processes, which activate PLA2 with the consequent release of arachidonic acid and platelet-activating factor (PAF), another lipid mediator. Both mediators may exert presynaptic and postsynaptic effects contributing to long-lasting changes in glutamate synaptic efficacy or long-term potentiation (LTP), PAF, a potential retrograde messenger in LTP, stimulates glutamate release. The PAF antagonist BN 52021 competes for receptors in presynaptic membranes and blocks this effect. PAF may also be involved in plasticity responses because PAF leads to the expression of early response genes and subsequent gene cascades. The PAF antagonist BN 50730, selective for PAF intracellular binding, blocks PAF-mediated induction of gene expression. A consequence of neural injury induced by ischemia, trauma, or seizures is an increased release of neurotransmitters, that in turn generates an overproduction of second messengers. Glutamate, a key player in excitotoxic neuronal damage, triggers increased permeation of calcium mediated by NMDA receptors and activation of PLA2 in postsynaptic neurons. NMDA receptor antagonists reduce the accumulation of free fatty acids and elicit neuroprotection in ischemic damage. Increased production of free arachidonic acid and PAF converges to exacerbate glutamate-mediated neurotransmission. These neurotoxic actions may be brought about by arachidonic acid-induced potentiation of NMDA receptor activity and decreased glutamate reuptake. On the other hand, PAF stimulates the further release of glutamate at presynaptic endings. The neuroprotective effects of the PAF antagonist BN 52021 in ischemia-reperfusion are due, at least in part, to an inhibition of presynaptic glutamate release. PAF also induces expression of the inducible prostaglandin synthase gene, and PAF antagonists selective for the intracellular sites inhibit this effect. The PAF antagonist also inhibits the enhanced abundance, due to vasogenic cerebral edema and ischemia-reperfusion damage, of inducible prostaglandin synthase mRNA in vivo. Therefore, PAF, an injury-generated mediator, may favor the formation of other cell injury and inflammation mediators by turning on the expression of the gene that encodes prostaglandin synthase.
Collapse
Affiliation(s)
- N G Bazan
- LSU Neuroscience Center, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
7
|
Sun MK, Reis DJ. Central neural mechanisms mediating excitation of sympathetic neurons by hypoxia. Prog Neurobiol 1994; 44:197-219. [PMID: 7831477 DOI: 10.1016/0301-0082(94)90038-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M K Sun
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
8
|
Bazan NG, Allan G, Rodriguez de Turco EB. Role of phospholipase A2 and membrane-derived lipid second messengers in membrane function and transcriptional activation of genes: implications in cerebral ischemia and neuronal excitability. PROGRESS IN BRAIN RESEARCH 1993; 96:247-57. [PMID: 8332745 DOI: 10.1016/s0079-6123(08)63271-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- N G Bazan
- LSU Eye Center, Louisiana State University Medical Center School of Medicine, New Orleans
| | | | | |
Collapse
|
9
|
Kunievsky B, Bazan NG, Yavin E. Generation of arachidonic acid and diacylglycerol second messengers from polyphosphoinositides in ischemic fetal brain. J Neurochem 1992; 59:1812-9. [PMID: 1328530 DOI: 10.1111/j.1471-4159.1992.tb11014.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intracerebral administration of [3H]arachidonic acid ([3H]ArA) into 19-20-day-old rat embryos, resulted in a rapid incorporation of label into brain lipids. One hour after injection, 55.6 +/- 8.2, 18.0 +/- 3.4, and 13.7 +/- 1.3% of the total radioactivity was associated with phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, respectively. Approximately 10% of radioactivity was found acylated in neutral lipids of which free ArA comprised only 1.5 +/- 0.2% of the total radioactivity. Complete restriction of the maternal-fetal circulation for < or = 40 min did not affect the rate of [3H]ArA incorporation (t1/2 = 2 min) into fetal brain lipids, suggesting an effective acylation mechanism that proceeds irrespective of the impaired blood flow. After a short restriction period (5 min), the radioactivity in diacylglycerol was elevated by 50%. After a longer restriction period (20 min), the radioactivity in the free fatty acid and diacylglycerol fractions increased to values of 130 and 87%, respectively. Polyphosphoinositides prelabeled with either [3H]ArA or 32P were rapidly degraded after 5 min of ischemia. After 20 min, the decrease in phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate radioactivity was 47 and 70%, respectively. Double labeling of phospholipids with [14C]palmitic acid and [3H]ArA indicated a preferential loss of [3H]ArA within the polyphosphoinositide species after 20 min, but not after 5 min of ischemia. The specific activity of [14C]palmitate remained unchanged. The current data suggest phospholipase C-mediated diacylglycerol formation at the beginning of the insult followed by a phospholipase A2-mediated ArA liberation at a later time, both enzymes presumably acting preferentially on polyphosphoinositide species.
Collapse
Affiliation(s)
- B Kunievsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
10
|
Yoshida S, Saitoh T, Takeshita M. Effect of phospholipase A2 and free fatty acids on lipid-protein interactions in long- and very-long-chain fatty acyl-CoA elongation enzyme systems of brain microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1004:239-44. [PMID: 2502180 DOI: 10.1016/0005-2760(89)90273-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The elucidation of the mechanism of phospholipase A2-induced inactivation of the condensation enzyme provided evidence concerning the important role of lipid-enzyme interactions in maintaining the condensation activity in swine cerebral microsomes. A quantitative analysis of fatty acid release by phospholipase A2 from the microsomal membrane revealed that only 5 nmol of free fatty acid per mg microsomal protein was released, including oleic acid and arachidonic acid, by treatment with 0.4 unit of phospholipase A2 per mg microsomal protein for 15 s at 23 degrees C. Under these conditions, the condensation activity for endogenous 16:0-CoA and 20:4-CoA decreased to half and that for exogenous 20:0-CoA decreased to 75%. However, the addition of free fatty acids and lysophospholipids or a mixture of them at 5-10 nmol/mg protein did not change the condensation activity for endogenous 16:0-CoA and 20:4-CoA, or for exogenous 20:0-CoA. These results indicated that phospholipase A2 inhibited the condensation activity by acting directly on phospholipids that are indispensable to maintaining the function of the condensation enzyme. The Arrhenius plot for the condensation of endogenous 16:0-CoA showed a break at around 16 degrees C, whereas no break of the plot was observed for the condensation of 20:0-CoA and 20:4-CoA. The activation energy for the condensation of 16:0-CoA and 20:4-CoA was decreased by the addition of free fatty acids such as oleic acid and stearic acid, with disappearance of the Arrhenius break for 16:0-CoA condensation, whereas the activation energy for the condensation of 20:0-CoA was not changed. These results suggest that the type of lipid-protein interaction in the condensation enzyme for 20:0-CoA is different from that for 16:0-CoA and 20:4-CoA.
Collapse
Affiliation(s)
- S Yoshida
- Research Laboratory Center, Medical College of Oita, Japan
| | | | | |
Collapse
|
11
|
Skaper SD, Favaron M, Facci L, Leon A. Phospholipids can influence the interconversion of flat epithelial-like and stellate process-bearing astroglial cells in culture: relationships between molecular structure and biological activity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1989; 45:265-74. [PMID: 2713984 DOI: 10.1016/0165-3806(89)90044-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Secondary cultures of neonatal rat astroglial cells, maintained in a serum-free, chemically defined medium were treated with several agents known to elevate intracellular cyclic AMP levels in these cells. Earlier studies had shown such drugs to induce a process-bearing (stellate) morphology in the astroglial cells, a response that is antagonized or reversed by the presence of exogenously added gangliosides. As a next step in understanding the basis for such an influence on cell morphologics, we have examined in more detail the molecular specificity of this response. In particular, a variety of phospholipids have been used in substitution of GM1 ganglioside. Natural phosphatidic acid (PA), which physicochemically displays lipophilic and hydrophilic bipolarity as does GM1, was fully active in mimicking the effects of GM1. The ED50 for the morphologic effect of PA was 10 microM, similar to that of GM1. Synthetic PAs (oleic, stearic, palmitic, myristic) had no effect up to 50 microM. Relatively long fatty acid chains were thus required for a PA effect. Other phospholipids including phosphatidylserine could not replace PA. Exposure of the cells to phospholipase D to generate endogenous PA from other phospholipids elicited the morphological response as well. These results indicate that the ability of exogenously supplied lipid molecules to modulate astroglial cell behaviors can be assigned, in functional terms, to a class of molecules having the appropriate balance (which includes PA and GM1) between their hydrophobic and hydrophilic domains.
Collapse
Affiliation(s)
- S D Skaper
- Fidia Research Laboratories, Department of CNS Research, Abano Terme, Italy
| | | | | | | |
Collapse
|
12
|
Abstract
Stressors such as tissue slicing, toxic chemicals, and heat shock applied to cultured cells, organ tissues, or whole animals in vivo induce the synthesis of a 71,000-kilodalton stress protein (SP71) that is not normally present in most organ tissues. In the present experiment, an attempt was made to inhibit selectively the synthesis of SP71 in rat brain tissue slices. Of several manipulations to the brain slice incubation medium that were examined, only addition of very high concentrations of certain polyhydroxyl alcohols, i.e., 1.0 M glycerol, selectively inhibited SP71 synthesis. Glycerol also selectively inhibited SP71 synthesis in heat-shocked cerebral microvascular cells in culture but failed to inhibit SP71 synthesis in anesthetized rats in vivo in response to heat shock. The effects of glycerol on SP71 synthesis are discussed in relationship to current hypotheses concerning the function of SP71.
Collapse
|
13
|
Nemoto EM, Lin MR, Ahdab-Barmada M, Moossy J, Winter PM. Detrimental cerebrometabolic effects of hyperoxia in newborn rats. Neurochem Int 1987; 10:355-9. [DOI: 10.1016/0197-0186(87)90110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1986] [Accepted: 10/29/1986] [Indexed: 11/29/2022]
|
14
|
Guidon PT, Hightower LE. The 73 kilodalton heat shock cognate protein purified from rat brain contains nonesterified palmitic and stearic acids. J Cell Physiol 1986; 128:239-45. [PMID: 3733888 DOI: 10.1002/jcp.1041280215] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A protein related to the 71 kilodalton inducible rat heat shock protein was purified to electrophoretic homogeneity in milligram amounts from brain tissue of nonheat-stressed rats. The protein has been designated as a stress cognate protein based on previous studies and data presented herein that this protein cross-reacted with a monoclonal antibody originally raised against the Drosophila 70 kilodalton heat shock protein. The purified protein had an apparent molecular mass of 73 kilodaltons when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and an apparent mass of 150 kilodaltons as determined by nondissociative gel chromatography, suggesting that the purified protein is a homodimer. The purified protein had isoelectric points of 5.0 under nondissociative conditions and 5.6 when exposed to protein denaturants, suggesting loss of bound anionic molecules and/or net exposure of basic residues upon denaturation. Chloroform/methanol extraction of the purified protein and subsequent analyses by thin layer and gas-liquid chromatography resulted in the identification of palmitic and stearic acids noncovalently bound to the protein. Approximately four molecules of fatty acids were bound per dimer with palmitic and stearic acids present in a one-to-one ratio. The purified protein did not bind exogenously added radioactive palmitate, indicating that the fatty acid-binding sites of the cognate protein were fully occupied and that the associated fatty acids were too tightly bound to exchange readily. The possible significance of the fatty acids associated with the 73 kilodalton stress cognate protein is discussed.
Collapse
|
15
|
Morelli de Liberti SA, de los Santos de Schaub EB, Rodriquez de Turco EB. Circannual rhythm of free fatty acids and diacylglycerols in 5-day-old rat cerebrum during pentylenetetrazol-induced convulsions. J Neurochem 1985; 45:1055-61. [PMID: 4031877 DOI: 10.1111/j.1471-4159.1985.tb05523.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Free fatty acids (FFA) and diacylglycerol (DG) content and composition in the cerebrum of 5-day-old rats were studied after pentylenetetrazol (PTZ)-induced convulsions. A threefold increase in brain FFA was observed 30 min after PTZ injection in experiments carried out in spring. In contrast, a 50% decrease in FFA content was observed during summer. These changes were accounted for by saturated and monoenoic fatty acids, whereas arachidonic and docosahexaenoic acids were not affected during the convulsive episode in either season. The effect of PTZ on brain DG was much smaller than it was on FFA, and less sensitive to seasonal influence. However, DG released in the summer was significantly less enriched in arachidonic acid than in the spring. Levels of FFA and DG in untreated animals were found to be subject to a circannual rhythm. Both the levels of FFA and their degree of unsaturation (unsaturated fatty acids/total FFA) were highest in summer and lowest in winter, whereas the opposite was true for DG. Circannual variations in these metabolites may be the manifestation of a programmed biological calendar regulating enzymes of brain lipid metabolism in homeotherms that under natural conditions must adapt to changing environmental temperatures.
Collapse
|