1
|
Kusakabe N, Kamijo TC, Wada N, Chiba H, Shinohara N, Miyazato M. Effects of low-intensity extracorporeal shock wave therapy on lipopolysaccharide cystitis in a rat model of interstitial cystitis/bladder pain syndrome. Int Urol Nephrol 2024; 56:77-86. [PMID: 37668867 DOI: 10.1007/s11255-023-03770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To investigate the effect of low-intensity extracorporeal shock wave therapy (LiESWT) on lipopolysaccharide (LPS)-induced cystitis in an animal model of interstitial cystitis/bladder pain syndrome (IC/BPS). METHODS Sprague-Dawley rats were divided into three groups: control, cystitis (LPS group, intravesical injection of LPS (1 mg) twice), and cystitis with LiESWT (LiESWT group). On the third and fourth days, LiESWT was administered (0.12 mJ/mm2, 300 shots each time) on the lower abdomen toward the bladder. On the seventh day, the rats underwent pain assessment and a metabolic cage study. Subsequently, a continuous cystometrogram (CMG) was performed under urethane anaesthesia. Immunohistochemical studies were also performed, including S-100 staining, an immunohistochemical marker of Schwann cells in the bladder. RESULTS In the LPS group, the pain threshold in the lower abdomen was significantly lower than that in the control group. In the metabolic cage study, the mean voided volume in the LPS group significantly increased. The CMG also revealed a significant decrease in bladder contraction amplitude, compatible with detrusor underactivity in the LPS group. Immunohistochemical studies showed inflammatory changes in the submucosa, increased fibrosis, and decreased S-100 stain-positive areas in the muscle layer of the LPS group. In the LiESWT group, tactile allodynia and bladder function were ameliorated, and S-100 stain-positive areas were increased. CONCLUSION By restoring nerve damage, LiESWT improved lower abdominal pain sensitivity and bladder function in an LPS-induced cystitis rat model. This study suggests that LiESWT may be a new therapeutic modality for IC/BPS.
Collapse
Affiliation(s)
- Naohisa Kusakabe
- Department of System Physiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tadanobu Chuyo Kamijo
- Department of System Physiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Naoki Wada
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroki Chiba
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Minoru Miyazato
- Department of System Physiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
2
|
Huang J, Shibata E, Kato K, Asaeda N, Takeuchi Y. Chronic Exposure to n-Hexane Induces Changes in Nerve-Specific Marker Proteins in the Distal Peripheral Nerve of the Rat. Hum Exp Toxicol 2016; 11:323-7. [PMID: 1358145 DOI: 10.1177/096032719201100504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1 After long-term n-hexane exposure (2000 ppm, 12 h d-1, 6 d week-1, for 24 weeks), the content of neuron-specific enolase (gamma-enolase), creatine kinase-B and beta-S100 protein in the cortex, cerebellum, spinal cord and proximal and distal sciatic nerves of rats was determined by enzyme immunoassay. 2 The amounts of the three proteins decreased significantly in the distal segment of sciatic nerve, whereas they remained unchanged in the brain and proximal sciatic nerve. The quantitative decline in these marker proteins in the distal sciatic nerve could be related to neurophysiological deficits in the peripheral nerves. 3 This study indicates that the biochemical changes observed are consistent with the clinical and pathological findings of n-hexane neuropathy. These nerve-specific marker proteins can be used to assess solvent-related peripheral neurotoxicity.
Collapse
Affiliation(s)
- J Huang
- Department of Hygiene, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
3
|
Abstract
Injury of peripheral nerve in mammals leads to a complex but stereotypical pattern of histological events that comprise a highly reproducible sequence of degenerative reactions (Wallerian degeneration) succeeded by regenerative responses. These reactions are based on a corresponding sequence of cellular and mo lecular interactions that, in turn, reflect the differential expression of specific genes with functions in nerve degeneration and repair. We report on more than 60 genes and their products that show a specific pattern of regulation following peripheral nerve lesion. The group of regulated genes encoding, e.g., transcription factors, growth factors and their receptors, cytokines, neuropeptides, myelin proteins and lipid carriers, and cytoskeletal proteins as well as extracellular matrix and cell adhesion molecules. We describe and compare the distinct time-courses and cellular origin of expression and further discuss established or putative mo lecular interrelationships and functions with respect to the contribution of these genes/gene products to the molecular regeneration program of the PNS. NEUROSCIENTIST 3:112-122, 1997
Collapse
Affiliation(s)
- Clemens Gillen
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| | - Christian Korfhage
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| |
Collapse
|
4
|
Kauhanen S, Salmi A, von Boguslawski K, Asko-Seljavaara S, Leivo I. Satellite cell proliferation, reinnervation, and revascularization in human free microvascular muscle flaps. J Surg Res 2004; 115:191-9. [PMID: 14697283 DOI: 10.1016/s0022-4804(03)00358-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Satellite cell proliferation, reinnervation, and revascularization were studied in human nonreinnervated free microvascular muscle flaps to characterize mechanisms of muscle regeneration after flap surgery. MATERIALS AND METHODS Patient biopsies (n = 19) were taken at operation and five timepoints up to 9 months after operation, and corresponding clinical data were obtained. Immunohistochemistry for Ki-67 was used to detect proliferating satellite cells, CD-31 to identify endothelial cells, and S-100 and PGP 9.5 proteins to detect reinnervation. RESULTS Two weeks after operation, the expression of PGP 9.5 and S-100 had virtually disappeared in all larger nerve fibers and half of smaller nerve fibers. By 6 months, however, a strong expression of PGP 9.5 and S-100 had reappeared in larger nerve fibers in three of four flaps, suggesting that reinnervation had taken place. The number of mitotic satellite cells already peaked at 2 weeks, indicating onset of muscle regeneration. The number of intramuscular capillaries first increased but later decreased to lower than original level. Flaps with more muscle volume showed more reinnervation and satellite cell mitotic activity. In cases of a delay occurring in reconstructive surgery, a low level of reinnervation was seen. CONCLUSION Three patients of four showed spontaneous muscle reinnervation in microvascular free flaps with satellite cell activation followed by restored morphology. Late reconstruction and obesity lead to poor reinnervation, placing emphasis on timing of surgery and patient selection.
Collapse
Affiliation(s)
- Susanna Kauhanen
- Department of Plastic Surgery, Töölö Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
5
|
Wakabayashi K, Narisawa-Saito M, Iwakura Y, Arai T, Ikeda K, Takahashi H, Nawa H. Phenotypic down-regulation of glutamate receptor subunit GluR1 in Alzheimer's disease. Neurobiol Aging 1999; 20:287-95. [PMID: 10588576 DOI: 10.1016/s0197-4580(99)00035-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glutamate receptors play crucial roles in cognition and memory. We have quantitated the protein levels of alpha-amino-isoxazolepropionic acid (AMPA)-type (GluR1) and N-methyl-D-aspartate-type (NMDAR1) glutamate receptors in postmortem brain tissues of patients with Alzheimer's disease and age-matched controls using western blotting. The bolts carrying fully denatured proteins were probed with antibodies specific to their carboxyl terminus of these receptors. In Alzheimer's disease, GluR1 levels were significantly decreased in the entorhinal cortex and dentate gyrus, but not in the motor cortex. In contrast, levels of NMDAR1 were not altered in the dentate gyrus, suggesting that GluR1 expression was specifically diminished in this structure that is known to be preserved histologically in patients. However, the results of immunocytochemical examination confirmed a previous controversial report: GluR1-immunoreactive structures were labeled rather intensely in the molecular layer of the dentate gyrus of Alzheimer's patients. Interestingly, levels of a postsynaptic density protein named SAP97, which recognizes and potentially masks the epitope region of GluR1, was positively correlated with those of GluR1 protein in the control group, but not in the patient group. Thus, the enhanced GluR1-like staining in Alzheimer's disease might be ascribed to the hampered interaction between SAP97 and GluR1 leading to epitope unmasking of GluR1 on tissue sections. These findings indicate that abnormal expressions of the AMPA receptor and its interacting PSD molecule are associated with Alzheimer's disease and implicated in pathophysiology of this disease.
Collapse
Affiliation(s)
- K Wakabayashi
- Brain Disease Research Center, Brain Research Institute, Niigata University, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Iwasaki Y, Shiojima T, Kinoshita M. S100 beta prevents the death of motor neurons in newborn rats after sciatic nerve section. J Neurol Sci 1997; 151:7-12. [PMID: 9335003 DOI: 10.1016/s0022-510x(97)00073-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined whether S100 beta rescues axotomized spinal motor neuron death. Animals that had undergone transection of the sciatic nerve at birth were treated either with S100 beta, or the vehicle. The number of surviving motor neurons and the motor neuron diameter was assessed 14 days later. Treatment with S100 beta rescued motor neuron death and preserved the motor neuron diameter in the lesioned side. These results suggest that S100 beta is a neurotrophic factor for motor neurons in vivo and this agent may have therapeutic potential in damaged motor neuron disorder.
Collapse
Affiliation(s)
- Y Iwasaki
- Fourth Department of Internal Medicine, Toho University Ohashi Hospital, Tokyo, Japan
| | | | | |
Collapse
|
7
|
De León M, Van Eldik LJ, Shooter EM. Differential regulation of S100 beta and mRNAs coding for S100-like proteins (42A and 42C) during development and after lesion of rat sciatic nerve. J Neurosci Res 1991; 29:155-62. [PMID: 1890696 DOI: 10.1002/jnr.490290204] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The changes in the levels of S100 beta (a protein that stimulates neurite extension and neuronal survival) and 42A and 42C (S100-like proteins whose mRNAs are induced in PC12 cells by nerve growth factor) during development and after rat sciatic nerve lesions were analyzed. S100 beta, 42A, and 42C mRNAs showed differential regulation during development. S100 beta mRNA was present both in sciatic nerve and brain, and increased more than 11-fold during the first 3 wk of nerve postnatal development. 42A and 42C mRNAs were essentially restricted to sciatic nerve, with little found in either embryonic or adult brain. The levels of 42C and 42A mRNAs in sciatic nerve increased 4- and 14-fold, respectively, by postnatal day 23 compared to postnatal day 2. 42A, 42C, and S100 beta mRNAs also showed a differential regulation during sciatic nerve degeneration and regeneration. Axotomized and control sciatic nerves were examined by Northern blots at various times after a crush or cut injury. 42A and 42C mRNA levels increased rapidly in the distal segment of axotomized nerve, remained two- to five-fold higher than controls at day 14 after injury but returned to control levels by 40 days. In contrast, S100 beta mRNA showed a three-fold decrease in the axotomized nerve between days 1 and 3 after injury, and slowly returned towards control levels over the next few weeks. The decrease in S100 beta mRNA was reflected by a corresponding decrease in S100 beta protein levels. The induction of 42A and 42C mRNAs and repression of S100 beta mRNA remained if nerve regeneration was prevented.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M De León
- Department of Neurobiology, Stanford University School of Medicine, California
| | | | | |
Collapse
|
8
|
Menéndez JA, Cubas SC. Changes in contralateral protein metabolism following unilateral sciatic nerve section. JOURNAL OF NEUROBIOLOGY 1990; 21:303-12. [PMID: 1689770 DOI: 10.1002/neu.480210206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Changes in nerve biochemistry, anatomy, and function following injuries to the contralateral nerve have been repeatedly reported, though their significance is unknown. The most likely mechanisms for their development are either substances carried by axoplasmic flow or electrically transmitted signals. This study analyzes which mechanism underlies the development of a contralateral change in protein metabolism. The incorporation of labelled amino acids (AA) into proteins of both sciatic nerves was assessed by liquid scintillation after an unilateral section. AA were offered locally for 30 min to the distal stump of the sectioned nerves and at homologous levels of the intact contralateral nerves. At various times, from 1 to 24 h, both sciatic nerves were removed and the proteins extracted with trichloroacetic acid (TCA). An increase in incorporation was found in both nerves 14-24 h after section. No difference existed between sectioned and intact nerves, which is consistent with the contralateral effect. Lidocaine, but not colchicine, when applied previously to the nerves midway between the sectioning site and the spinal cord, inhibited the contralateral increase in AA incorporation. It is concluded that electrical signals, crossing through the spinal cord, are responsible for the development of the contralateral effect. Both the nature of the proteins and the significance of the contralateral effect are matters for speculation.
Collapse
Affiliation(s)
- J A Menéndez
- División Biofísica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | |
Collapse
|
9
|
Sobue G, Yasuda T, Mitsuma T, Pleasure D. Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3',5'-monophosphate. Neurosci Lett 1986; 72:253-7. [PMID: 3029634 DOI: 10.1016/0304-3940(86)90522-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
By using indirect immunofluorescence, galactocerebroside (galC) was detected on the surface of Schwann cells cultured from unmyelinated fibers of 10- to 12-day-old rat cervical sympathetic nerve trunk. By day 4 in vitro, galC-positive cells disappeared from the culture. When the 4-day cultures were treated with 1 mM 8-bromo cyclic AMP or dibutyryl cyclic AMP, galC reappeared in 72 h. The proportion of Schwann cells expressing galC was dependent on the concentration of cyclic AMP derivatives used.
Collapse
|
10
|
Abstract
S-100 is a group of closely related, small, acidic Ca2+-binding proteins (S-100a0, S-100a and S-100b, which are alpha alpha, alpha beta, and beta beta in composition, respectively). S-100 is structurally related to calmodulin and other Ca2+-binding proteins. S-100 is abundant in the brain and is contained in well defined cell types of both neuroectodermal and non-neuroectodermal origin, as well as in their neoplastic counterparts. In the mammalian brain, S-100a and S-100b are confined to glial cells, while S-100a0 is neuronal in localization. Single S-100 isoforms bind Ca2+ with nearly the same affinity. K+ antagonizes the binding of Ca2+ to high affinity sites on S-100. S-100 binds Zn2+ with high affinity. S-100 is found in a soluble and a membrane-bound form and has the ability to interact with artificial and natural membranes. S-100 has no enzymatic activity. S-100 has been involved in several activities including memory processes, regulation of diffusion of monovalent cations across membranes, modulation of the physical state of membranes, regulation of the phosphorylation of several proteins, control of the assembly-disassembly of microtubules. Some of these effects are strictly Ca2+-dependent, while other are not. S-100 is being secreted or released to the extracellular space. In some cases, this event is hormonally regulated. Several S-100 binding proteins are being described.
Collapse
|
11
|
Poduslo JF, Low PA, Nickander KK, Dyck PJ. Mammalian endoneurial fluid: collection and protein analysis from normal and crushed nerves. Brain Res 1985; 332:91-102. [PMID: 3995266 DOI: 10.1016/0006-8993(85)90392-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An elution procedure was developed for the extraction of endoneurial fluid from desheathed, rat sciatic nerves. The endoneurial fluid elutions (EFE) from normal and crushed nerves were evaluated for extracellular proteins by sodium dodecyl sulphate-pore gradient electrophoresis (SDS-PGE) after silver stain and after immune overlay following electrophoretic transfer to nitrocellulose using antisera to albumin (ALB), neuron specific enolase (NSE), and the major myelin glycoprotein (P0). After removal of the epineurium/perineurium, the EFE protein accounted for 3.6% (34-37 micrograms) of the total endoneurial protein which did not change with intra-arterial perfusion. The endoneurium was further fractionated to obtain an aqueous supernatant (S-I), an SDS-solubilized supernatant (S-II), and an SDS-insoluble fraction. SDS-PGE analysis revealed that the EFE has a distinctive protein composition relative to the other endoneurial fractions. A predominant band with Mr of 64,600; 4 major bands with Mr of 86,200, 61,000, 54,500 and 46,900; and several other minor bands were observed. The predominant band at 64,600 co-migrates with ALB and was demonstrated by immune overlay to be ALB, which was also the major protein in the S-I fraction. The uniqueness of the EFE was established by the absence of NSE, an enzyme marker for the cytoplasmic fraction of axons which was found to be present only in S-I (subunit Mr = 49,600), the absence of P0, and the distinctive protein profiles as determined by silver stain. Crush injury resulted in a progressive increase in the amount of protein found in the EFE as well as the S-I with a corresponding decrease in S-II protein as a function of time after crush (1, 2, 5, 10, 24, 48, 96, 168 h). Dramatic alterations in the protein profile were demonstrated in the EFE from crushed nerves after SDS-PGE indicating substantial changes in the endoneurium as a result of the axonal degeneration, demyelination, and breakdown of the blood-nerve barrier. Alterations in EFE proteins after crush were also observed by lectin overlay experiments after SDS-PGE. Analysis of EFE collected after crush for NSE and P0 were negative. It is concluded that the distinctive pattern of EFE proteins identified from normal nerve will permit their further characterization as a separate endoneurial protein compartment. Such an elution procedure for collection of endoneurial fluid can readily be adapted to human sural nerve biopsies from patients with peripheral neuropathy for characterization of the appearance of new proteins which may be used as markers of disease activity.
Collapse
|