1
|
Kawamura N, Shinoda K, Sato H, Sasaki K, Suzuki M, Yamaki K, Fujimori T, Yamamoto H, Osei-Hyiaman D, Ohashi Y. Plasma metabolome analysis of patients with major depressive disorder. Psychiatry Clin Neurosci 2018; 72:349-361. [PMID: 29356314 DOI: 10.1111/pcn.12638] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
AIM This study sought to characterize the plasma metabolite profiling of patients with major depressive disorder (MDD). METHODS Psychiatric assessments were made with the Structured Clinical Interview for DSM-IV Axis I Disorders. In the exploratory cohort, plasma metabolite profiles of 34 MDD patients and 31 mentally healthy controls were compared using capillary electrophoresis-mass spectrometry. Among the candidate metabolites, we focused on a metabolite showing the largest difference. The absolute concentrations were measured in two cohorts from a psychiatric primary care clinic to characterize the accuracy of the metabolite biomarker. RESULTS Among 23 metabolites significantly lower in the MDD group than in healthy controls, we focused on phosphoethanolamine (PEA) as a candidate. The reduction of PEA levels in MDD was checked in independent clinical sample sets. An ion-chromatography-fluorescence detection method was developed to measure plasma PEA levels. In the preliminary cohort, we examined 34 MDD and 43 non-MDD subjects. The area under the receiver-operator curve (AUC) was 0.92, with sensitivity/specificity greater than 88%, at a cut-off of 1.46 μM. In the checking cohort, with 10 MDD and 13 non-MDD subjects, AUC was 0.89, with sensitivity/specificity of 86% and 100%, respectively, at a cut-off of 1.48 μM. Plasma PEA inversely correlated with MDD severity, depressed mood, loss of interest, and psychomotor retardation. CONCLUSION These results suggest that plasma PEA level could be a candidate biomarker of MDD in the clinical setting. Further studies comparing MDD and mentally healthy controls are needed to confirm the utility of PEA as a biomarker for depression.
Collapse
Affiliation(s)
- Noriyuki Kawamura
- Kawamura Clinic for General Practice, Gyouki-Kai Medical Corporation, Tokyo, Japan
| | | | - Hajime Sato
- Human Metabolome Technologies Inc., Tsuruoka, Japan
| | | | | | - Kumi Yamaki
- Human Metabolome Technologies Inc., Tsuruoka, Japan
| | | | | | | | | |
Collapse
|
2
|
Chakraborty G, Ledeen R. Fatty acid synthesizing enzymes intrinsic to myelin. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:46-52. [PMID: 12670701 DOI: 10.1016/s0169-328x(03)00033-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recent study showing incorporation of acetyl groups from neuronal N-acetylaspartate into myelin lipids suggested the presence of fatty acid synthesizing enzymes in myelin that utilize the acetyl groups liberated by myelin-associated aspartoacylase [J. Neurochem. 78 (2001) 736]. We report here detection of the fatty acid synthase (FAS) complex and acetyl-CoA carboxylase (ACC) in purified myelin. The activity of myelin FAS was approximately half that of cytosolic FAS and, unlike the latter, required detergent for activation. Intrinsic association of FAS with myelin was indicated by failure to remove the activity with NaCl or Na-taurocholate. Myelin-associated ACC was approximately 10% of cytosolic ACC in myelin isolated by gradient centrifugation, and this was reduced by half following osmotic shock; this suggested bimodal distribution of myelin ACC, some being loosely associated within inter-lamellar cytoplasmic spaces and the remainder more firmly associated in a manner that resists NaCl/Na-taurocholate treatments. These results, in combination with earlier findings, provide a possible mechanism for the observed incorporation of neuronal NAA acetyl groups into myelin lipids.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Neurosciences, MSB-H505, New Jersey Medical School, UMDNJ, 185 South Orange Ave., Newark, NJ 07103, USA
| | | |
Collapse
|
3
|
Vance JE, Campenot RB, Vance DE. The synthesis and transport of lipids for axonal growth and nerve regeneration. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:84-96. [PMID: 10856715 DOI: 10.1016/s1388-1981(00)00050-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurons are unique polarized cells in which the growing axon is often located up to a meter or more from the cell body. Consequently, the intracellular movement of membrane lipids and proteins between cell bodies and axons poses a special challenge. The mechanisms of lipid transport within neurons are, for the most part, unknown although lipid transport via vesicles and via cholesterol- and sphingolipid-rich 'rafts' are considered likely mechanisms. Very active anterograde and retrograde transport of lipid-containing vesicles occurs between the cell body and distal axons. However, it is becoming clear that the axon need not obtain all of its membrane constituents from the cell body. For example, the synthesis of phosphatidylcholine, the major membrane phospholipid, occurs in axons, and its synthesis at this location is required for axonal elongation. In contrast, cholesterol synthesis appears to occur only in cell bodies, and cholesterol is efficiently delivered from cell bodies to axons by anterograde transport. Cholesterol that is required for axonal growth can also be exogenously supplied from lipoproteins to axons of cultured neurons. Several studies have suggested a role for apolipoprotein E in lipid delivery for growth and regeneration of axons after a nerve injury. Alternatively, or in addition, apolipoprotein E has been proposed to be a ligand for receptors that mediate signal transduction cascades. Lipids are also transported from axons to myelin, although the importance of this process for myelination is not clear.
Collapse
Affiliation(s)
- J E Vance
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
4
|
Chakraborty G, Drivas A, Ledeen R. The phosphoinositide signaling cycle in myelin requires cooperative interaction with the axon. Neurochem Res 1999; 24:249-54. [PMID: 9972871 DOI: 10.1023/a:1022562021059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies on the origin of myelin phosphoinositides involved in signaling mechanisms indicated axon to myelin transfer of phosphatidylinositol followed by myelin-localized incorporation of axon-derived phosphate groups into phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate. This is in agreement with other studies showing the presence of phosphorylating activity in myelin that converts phosphatidylinositol into the mono-and diphospho derivatives. It was also found that the second messenger, inositol 1,4,5-trisphosphate, is hydrolyzed to inositol 1,4-bisphosphate by a myelin-localized enzyme. The present study was undertaken to determine the locus of the remaining reactions leading to formation of free inositol and completion of the cycle by resynthesis of phosphatidylinositol. The latter reaction was found to occur preferentially in isolated axons, and to a limited extent if at all in myelin. On the other hand, hydrolytic reactions which sequentially convert inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, inositol 1-phosphate, and free inositol were found to occur more prominently in myelin. Thus, restoration of phosphoinositides following signal-induced breakdown of PIP2 in myelin is seen as requiring metabolic interplay between myelin and axon.
Collapse
Affiliation(s)
- G Chakraborty
- Department of Neurosciences, New Jersey Medical School, UMDNJ, Newark 07103, USA
| | | | | |
Collapse
|
5
|
Chakraborty G, Ziemba S, Drivas A, Ledeen RW. Myelin contains neutral sphingomyelinase activity that is stimulated by tumor necrosis factor-alpha. J Neurosci Res 1997; 50:466-76. [PMID: 9364332 DOI: 10.1002/(sici)1097-4547(19971101)50:3<466::aid-jnr13>3.0.co;2-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purified myelin from mouse brain was found to contain two forms of neutral sphingomyelinase, one Mg2+ dependent and the other Mg2+ independent. The former had a pH optimum of 7.5 and Km of 0.35 mM, whereas the corresponding values for the latter were pH 8.0 and Km 3.03 mM. Specific activity of the Mg(2+)-dependent enzyme showed a rostral-caudal gradient, ranging from 75 nmol/mg protein/hr in myelin from cerebral hemispheres to 21 nmol/mg protein/hr in myelin from spinal cord. Relative specific activity was approximately 20% that of brain stem or cerebral hemisphere homogenate. Treatment of myelin with taurocholate or high salt concentration did not significantly reduce activity of the Mg(2+)-dependent enzyme. The activity of that enzyme did not change with time or in the presence or absence of protease inhibitors; by contrast, that of Mg(2+)-independent enzyme decreased sharply in the absence of protease inhibitors but rose in their presence. To test for the effect of tumor necrosis factor-alpha (TNF alpha) on myelin sphingomyelinase, mouse brain myelin was labeled in vivo by intracerebral injection of [3H]acetate into 18-20-day-old mice. After 40 hr, brain stems were removed, minced, and treated with TNF alpha in Krebs-Ringer solution, after which myelin was immediately isolated. Separation and counting of individual lipids revealed TNF alpha treatment to cause increased labeling of myelin ceramide and cholesterol ester with concomitant decrease in myelin sphingomyelin. Western blotting of myelin proteins using antibodies to the two TNF alpha receptors as probes revealed the presence of the p75 receptor. Implications of these findings in relation to possible mechanisms of autoimmune demyelination are discussed.
Collapse
Affiliation(s)
- G Chakraborty
- Department of Neurosciences, New Jersey Medical School, Newark 07103, USA
| | | | | | | |
Collapse
|
6
|
Grabow M, Chakraborty G, Ledeen RW. Characterization of guanylyl cyclase in purified myelin. Neurochem Res 1996; 21:457-62. [PMID: 8734439 DOI: 10.1007/bf02527710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study was undertaken to characterize the enzymatic properties of the particulate guanylyl cyclase previously shown to be present at a high level of activity in purified rat brain myelin. Significant activation was achieved by both Lubrol-PX and Triton X-100, the latter being somewhat more effective. A pH optimum of 7.8 was observed, compared to 7.4 for microsomes. Employing 1.2 mM GTP with 1% Triton X-100, linearity of response was observed up to 60 min and approximately 1.2 mg of myelin protein. Kinetic analysis revealed Km values of 0.258mM and 0.486mM for myelin and microsomes, respectively, similar values being obtained by Lineweaver-Burke analysis or Direct Linear Plot. Vmax values were 20 and 266 pmol/mg protein/min for myelin and microsomes, respectively. Washing of the myelin with 0.5 M NaCl or 0.1% Na taurocholate did not remove a significant amount of guanylyl cyclase activity, indicating the enzyme to be intrinsic to the myelin sheath.
Collapse
Affiliation(s)
- M Grabow
- Department of Neurosciences, New Jersey Medical School, UMDNJ, Newark 07103, USA
| | | | | |
Collapse
|
7
|
Vance JE, Pan D, Campenot RB, Bussière M, Vance DE. Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J Neurochem 1994; 62:329-37. [PMID: 8263532 DOI: 10.1046/j.1471-4159.1994.62010329.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Membrane lipids and proteins required for axonal growth and regeneration are generally believed to be synthesized in the cell bodies of neurons and transported into the axons. However, we have demonstrated recently that, in cultured rat sympathetic neurons, axons themselves have the capacity to synthesize phosphatidylcholine, sphingomyelin, and phosphatidylethanolamine. In these experiments, we employed a compartment model of neuron culture in which pure axons grow in a fluid environment separate from that containing the cell bodies. In the present study, we again used compartmented cultures to confirm and extend the previous results. We have shown that three enzymes of phosphatidylcholine biosynthesis via the CDP-choline pathway are present in axons. We have also shown that the rate-limiting step in the biosynthesis of phosphatidylcholine by this route in neurons, and locally in axons, is catalyzed by the enzyme CTP:phosphocholine cytidylytransferase. The biosynthesis of other membrane lipids, such as phosphatidylserine, phosphatidylethanolamine derived by decarboxylation of phosphatidylserine, phosphatidylinositol, and fatty acids, also occurs in axons. However, the methylation pathway for the conversion of phosphatidylethanolamine into phosphatidylcholine appears to be a quantitatively insignificant route for phosphatidylcholine synthesis in neurons. Moreover, our data provided no evidence for the biosynthesis of another important membrane lipid, cholesterol, in axons.
Collapse
Affiliation(s)
- J E Vance
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
8
|
Abstract
Purified myelin from rat brainstem was found to have an appreciable level of guanylyl cyclase activity, as seen in the formation of 3',5'-cyclic GMP from [3H]GTP at a rate approximately 45% that of whole brainstem. Freshly isolated myelin from pooled rat brainstems was incubated with GTP in an appropriate mixture. This gave rise to 29.9 +/- 3.6 pmol of 3',5'-cyclic GMP/mg of protein/min measured by HPLC and a similar result (26.7 +/- 2.6 pmol/mg/min) with 125I-3',5'-cyclic GMP radioimmunoassay. The latter method applied to the reaction product from whole brainstem gave a value of 56.6 +/- 3.4 pmol/mg/min. In analyzing brainstem products by HPLC we observed in most trials concurrent formation of a second radiolabeled product that comigrated with 2',3'-cyclic GMP but that, on further examination, proved not to be that product. Its identity remains unknown.
Collapse
Affiliation(s)
- G Chakraborty
- Department of Neurosciences, UMDNJ-New Jersey Medical School, Newark 07103
| | | |
Collapse
|
9
|
Abstract
Highly purified rat brain myelin was found to hydrolyze inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, but subsequent hydrolysis of the latter, characteristic of whole brainstem, did not occur. Inositol 1,4,5-trisphosphate 5-phosphatase in myelin was approximately 33% of the level in microsomes and 127% that of the cytosolic fraction from brainstem. The myelin and microsomal enzymes had similar properties, as follows: activation by saponin, requirement for Mg2+ and similar Kact (0.16 and 0.13 mM), Km (8.7 +/- 2.5 and 7.0 +/- 1.0 microM), and pH optima (6.6-6.8). Vmax values were 11.2 +/- 1.0 and 26.3 +/- 2.0 nmol/mg/min for myelin and microsomes, respectively. A possible role for this enzyme in phosphoinositide-mediated signal transduction within myelin and its subcompartments is discussed.
Collapse
Affiliation(s)
- J N Larocca
- Albert Einstein College of Medicine, Department of Neurology, Bronx, New York 10461
| | | |
Collapse
|
10
|
Ledeen RW, Golly F, Haley JE. Axon-myelin transfer of phospholipids and phospholipid precursors. Labeling of myelin phosphoinositides through axonal transport. Mol Neurobiol 1992; 6:179-90. [PMID: 1282330 DOI: 10.1007/bf02780551] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies have provided evidence for axon-to-myelin transfer of intact lipids and lipid precursors for reutilization by myelin enzymes. Several of the lipid constituents of myelin showed significant contralateral/ipsilateral ratios of incorporated radioactivity, indicative of axonal origin, whereas proteins and certain other lipids did not participate in this transfer-reutilization process. The present study will examine the labeling of myelin phosphoinositides by this pathway. Both 32PO4 and [3H]inositol were injected monocularly into 7-9-wk-old rabbits and myelin was isolated 7 or 21 days later from pooled optic tracts and superior colliculi. In total lipids 32P counts of the isolated myelin samples showed significant contralateral/ipsilateral ratios as well as increasing magnitude of contralateral-ipsilateral differences during the time interval. Thin-layer chromatographic isolation of the myelin phosphoinositides revealed significant 32P-labeling of these species, with PIP and PIP2 showing time-related increases. This resembled the labeling pattern of the major phospholipids from rabbit optic system myelin in a previous study and suggested incorporation of axon-derived phosphate by myelin-associated enzymes. The 32P label in PI, on the other hand, remained constant between 7 and 21 days, suggesting transfer of intact lipid. This was supported by the labeling pattern with [3H]inositol, which also showed no increase over time for PI. These results suggest axon-myelin transfer of intact PI followed by myelin-localized incorporation of axon-derived phosphate groups into PIP and PIP2. The general topic of axon-myelin transfer of phospholipids and phospholipid precursors is reviewed.
Collapse
Affiliation(s)
- R W Ledeen
- Albert Einstein College of Medicine, Department of Neurology, Bronx, NY 10461
| | | | | |
Collapse
|
11
|
Abstract
Following a previous report on detection of muscarinic receptors in myelin with the implied presence of G proteins, we now demonstrate by more direct means the presence of such proteins and their quantification. Using [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) as the binding ligand, purified myelin from bovine brain was found to contain approximately half the binding activity of whole white matter (138 +/- 9 vs. 271 +/- 18 pmol/mg of protein). Scatchard analysis of saturation binding data revealed two slopes, a result suggesting at least two binding populations. This binding was inhibited by GTP and its analog but not by 5'-adenylylimidodiphosphate [App(NH)p], GMP, or UTP. Following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) of myelin proteins and blotting on nitrocellulose, [alpha-32P]GTP bound to three bands in the 21-27-kDa range in a manner inhibited by GTP and GTP gamma S but not App(NH)p. ADP-ribosylation of myelin with [32P]NAD+ and cholera toxin labeled a protein of 43 kDa, whereas reaction with pertussis toxin labeled two components of 40 kDa. Cholate extract of myelin subjected to chromatography on a column of phenyl-Sepharose gave at least three major peaks of [35S]GTP gamma S binding activity. SDS-PAGE and immunoblot analyses of peak I indicated the presence of Go alpha, Gi alpha, and Gs alpha. Further fractionation of peak II by diethyl-aminoethyl-Sephacel chromatography gave one [35S]GTP gamma S binding peak with the low-molecular-mass (21-27 kDa) proteins and a second showing two major protein bands of 36 and 40 kDa on SDS-PAGE.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J N Larocca
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10401
| | | | | |
Collapse
|
12
|
Golly F, Larocca JN, Ledeen RW. Phosphoinositide breakdown in isolated myelin is stimulated by GTP analogues and calcium. J Neurosci Res 1990; 27:342-8. [PMID: 1965838 DOI: 10.1002/jnr.490270313] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purified myelin from rat brainstem, prelabeled in vivo by intracerebral injection of [3H]myoinositol, showed enhanced breakdown of phosphoinositides on treatment with 5'-guanylylimidodiphosphate [Gpp-(NH)p] and Ca2+. Concentration variation of the former in the presence of Ca2+ showed a dose-dependent release of inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3), while inositol 1-phosphate (IP) release was erratic. Concentration-dependent release of IP2 and IP3 was also observed with Ca2+ as the variable in the presence of Gpp(NH)p. Carbachol, when present, did not enhance the stimulatory effect of Gpp(NH)p alone. Addition of diphosphoglycerate during incubation enhanced IP3 at the expense of IP2, suggesting the presence of IP3 phosphatase in myelin.
Collapse
Affiliation(s)
- F Golly
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
13
|
Abstract
Highly purified myelin from rat brain stem has been shown to contain phosphatidate phosphohydrolase, an enzyme which converts phosphatidate to diacylglycerol. The high levels relative to cytosol and microsomes (17% and 22%, respectively) tended to preclude contamination by these fractions as the source of activity. Additional evidence came from study of repeated purification, mixing experiments, and washing of the myelin with salt and detergent. We conclude that this enzyme, in addition to being widely distributed in other subcellular fractions, is intrinsic to the myelin membrane. Through its activity it generates a key substrate for the cytidine (Kennedy) pathway which was previously shown to occur in this membrane.
Collapse
Affiliation(s)
- K K Vaswani
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | | |
Collapse
|
14
|
Miller SL, Otvös-Papp E, Prichett W, Meyer RD. Detection and partial biochemical characterization of a novel 57,500 dalton protein in rat brain myelin. J Neurosci Res 1989; 22:262-8. [PMID: 2709444 DOI: 10.1002/jnr.490220305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using a monoclonal antibody (P6C3) derived from mice immunized with partially delipidated rat myelin, we detected a single 57.5 kDa protein species (BT57.5) positioned between alpha- and beta-tubulin on nitrocellulose containing electrophoretically separated rat brain myelin proteins. The kinetics of incorporation of 14C-labeled BT57.5 and myelin basic protein into myelin was similar in rats injected intracranially with [14C]amino acids to radioactively label these proteins. Immunoblotting of the separated proteins of the myelinlike fraction of rat brain with the anti-BT57.5 monoclonal antibody occasionally revealed a faint band corresponding to BT57.5 but consistently showed a more prominent protein band that migrated slightly ahead of BT57.5. When the myelin and myelinlike fraction were isolated from rats injected with [14C] amino acids, labeling of the prominent anti-BT57.5 binding protein in the myelinlike fraction preceded that of BT57.5 in myelin, reaching a peak of labeling and then decreasing before BT57.5 reached its peak level. Thus, the prominent anti-BT57.5 protein in the myelinlike fraction might be a metabolic precursor of BT57.5 in myelin or the myelinlike fraction is simply turning over more rapidly and is distinct from the myelin fraction. BT57.5 was detectable in rat, mouse, guinea pig, bovine, and human CNS myelin but not rabbit and was detectable in the peripheral nervous system only in myelin of rats and humans. Finally, in extensively purified myelin, BT57.5 appeared to copurify with myelin basic protein, suggesting that BT57.5 is a constituent of myelin rather than an artifact arising during brain homogenization procedures.
Collapse
Affiliation(s)
- S L Miller
- Wistar Institute, Philadelphia, PA 19104
| | | | | | | |
Collapse
|
15
|
Vaswani KK, Ledeen RW. Purified rat brain myelin contains measurable acyl-CoA:lysophospholipid acyltransferase(s) but little, if any, glycerol-3-phosphate acyltransferase. J Neurochem 1989; 52:69-74. [PMID: 2908893 DOI: 10.1111/j.1471-4159.1989.tb10899.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous reports from several laboratories have demonstrated the presence of many lipid-metabolizing enzymes in myelin, including all the enzymes needed to convert diacylglycerol to phosphatidylcholine and phosphatidylethanolamine. Axonal transport studies had suggested the presence of additional enzymes which incorporate acyl chains into specific phospholipids of myelin. We report here evidence for one such group of enzymes, the acyl-CoA:lysophospholipid acyltransferases. At the same time, activity of acyl-CoA:sn-glycerol-3-phosphate acyltransferase was negligible in myelin. Oleoyl-CoA and arachidonoyl-CoA were both active substrates for transfer of acyl chains to lysophosphatidylcholine and lysophosphatidylinositol. Activity in myelin varied from 7 to 19% of microsomal activity, values well above the likely level of microsomal contamination as judged by microsomal markers. Additional evidence for a myelin locus came from assays at sequential stages of purification and from mixing experiments. Arachidonoyl-CoA was somewhat more reactive than oleoyl-CoA toward lysophosphatidylcholine; the myelin Km for these two CoA derivatives was 98 microM and 6.6 microM, respectively. Activity with lysophosphatidylinositol as substrate was approximately 40% of that with lysophosphatidylcholine in myelin, whereas activities with lysophosphatidylethanolamine and lysophosphatidylserine were considerably less.
Collapse
Affiliation(s)
- K K Vaswani
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
16
|
Kunishita T, Vaswani KK, Morrow CR, Ledeen RW. Detection of choline kinase in purified rat brain myelin. Neurochem Res 1987; 12:351-5. [PMID: 3037403 DOI: 10.1007/bf00993244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Choline kinase, an enzyme involved in the Kennedy pathway conversion of diacylglycerol to phosphatidylcholine, was detected in highly purified rat brain myelin at a level equal to 20% that of whole brain homogenate. This was an order of magnitude higher than the specific activity of lactate dehydrogenase, marker for cytosol. Choline kinase was also detected in the P1, P2, P3, and cytosolic fractions with highest relative specific activity in the latter. Myelin washed with buffered sodium chloride or taurocholate retained most of its kinase, indicating that adsorption of the soluble enzyme was unlikely. The results of mixing experiments and repeated purification further indicated that the enzyme is intrinsic to myelin. This finding in concert with previous studies supports the concept that myelin has all the enzymes needed to convert diacylglycerol to phosphatidylcholine.
Collapse
|
17
|
Abstract
Long-chain acyl-CoA synthetase (EC 6.2.1.3), an enzyme(s) that activates fatty acids prior to incorporation into phospholipids and other substances, has been detected in highly purified myelin from rat brain stem. The high levels relative to microsomes (11% and 15% for oleate and arachidonate, respectively) tended to preclude contamination by the latter membrane as the source of activity. Additional evidence came from sequential purification and mixing experiments. Km values were not appreciably different for the two substrates with the two membranes, but Vmax values were approximately 2-4-fold greater for arachidonate in both membranes. Triton X-100 increased activity somewhat in myelin but not in microsomes; with arachidonate as substrate it reduced activity in the latter. Heat inactivation studies and pH profiles suggested the presence of two different enzymes, as previously shown for other tissues.
Collapse
|
18
|
Kunishita T, Vaswani KK, Morrow CR, Novak GP, Ledeen RW. Ethanolamine kinase activity in purified myelin of rat brain. J Neurochem 1987; 48:1-7. [PMID: 3025359 DOI: 10.1111/j.1471-4159.1987.tb13119.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly purified rat brain myelin showed a significant level of ethanolamine kinase, amounting to 17% of the specific activity of whole brain homogenate. This kinase level in myelin was an order of magnitude higher than that of lactate dehydrogenase, a marker for cytosol. Subcellular distribution studies revealed that in addition to myelin, this kinase was present in the P1, P2, P3, and cytosolic fractions with highest relative specific activity in the latter. The possibility that myelin activity resulted from adsorption of the soluble enzyme was unlikely since activity was retained in myelin that had been washed with buffered sodium chloride or taurocholate. Mixing experiments and repeated purification further indicated that the enzyme is intrinsic to myelin. Kinetic studies indicated similar Km values for ethanolamine in the microsomal, cytosolic, and myelin fractions but a significantly lower apparent Km for ATP in myelin. This and other differences suggested the possible existence of isozymes. Establishment of the presence of this kinase completes the list of phospholipid synthesizing enzymes needed to synthesize phosphatidylethanolamine from diacylglycerol within the myelin membrane.
Collapse
|
19
|
Abstract
As indicated in the Introduction, the many significant developments in the recent past in our knowledge of the lipids of the nervous system have been collated in this article. That there is a sustained interest in this field is evident from the rather long bibliography which is itself selective. Obviously, it is not possible to summarize a review in which the chemistry, distribution and metabolism of a great variety of lipids have been discussed. However, from the progress of research, some general conclusions may be drawn. The period of discovery of new lipids in the nervous system appears to be over. All the major lipid components have been discovered and a great deal is now known about their structure and metabolism. Analytical data on the lipid composition of the CNS are available for a number of species and such data on the major areas of the brain are also at hand but information on the various subregions is meagre. Such investigations may yet provide clues to the role of lipids in brain function. Compared to CNS, information on PNS is less adequate. Further research on PNS would be worthwhile as it is amenable for experimental manipulation and complex mechanisms such as myelination can be investigated in this tissue. There are reports correlating lipid constituents with the increased complexity in the organization of the nervous system during evolution. This line of investigation may prove useful. The basic aim of research on the lipids of the nervous tissue is to unravel their functional significance. Most of the hydrophobic moieties of the nervous tissue lipids are comprised of very long chain, highly unsaturated and in some cases hydroxylated residues, and recent studies have shown that each lipid class contains characteristic molecular species. Their contribution to the properties of neural membranes such as excitability remains to be elucidated. Similarly, a large proportion of the phospholipid molecules in the myelin membrane are ethanolamine plasmalogens and their importance in this membrane is not known. It is firmly established that phosphatidylinositol and possibly polyphosphoinositides are involved with events at the synapse during impulse propagation, but their precise role in molecular terms is not clear. Gangliosides, with their structural complexity and amphipathic nature, have been implicated in a number of biological events which include cellular recognition and acting as adjuncts at receptor sites. More recently, growth promoting and neuritogenic functions have been ascribed to gangliosides. These interesting properties of gangliosides wIll undoubtedly attract greater attention in the future.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
20
|
|