1
|
Kroll T, Grözinger M, Matusch A, Elmenhorst D, Novakovic A, Schneider F, Bauer A. Effects of electroconvulsive therapy on cerebral A 1 adenosine receptor availability: a PET study in patients suffering from treatment-resistant major depressive disorder. Front Psychiatry 2023; 14:1228438. [PMID: 37520217 PMCID: PMC10380952 DOI: 10.3389/fpsyt.2023.1228438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Sleep deprivation and electroconvulsive therapy (ECT) effectively ameliorate symptoms in major depressive disorder (MDD). In rodents, both are associated with an enhancement of cerebral adenosine levels, which in turn likely influence adenosinergic receptor expression. The aim of the current study was to investigate cerebral A1 adenosine receptor (A1AR) availability in patients with MDD as a potential mediating factor of antidepressant effects of ECT using [18F]CPFPX and positron emission tomography (PET). Methods Regional A1AR availability was determined before and after a series of ECT applications (mean number ± SD 10.4 ± 1.2) in 14 subjects (4 males, mean age 49.5 ± 11.8 years). Clinical outcome, measured by neuropsychological testing, and ECT parameters were correlated with changes in A1AR availability. Results ECT had a strong antidepressive effect (p < 0.01) while on average cerebral A1AR availability remained unaltered between pre-and post-ECT conditions (F = 0.65, p = 0.42, mean difference ± SD 3.93% ± 22.7%). There was no correlation between changes in clinical outcome parameters and regional A1AR availability, although individual patients showed striking bidirectional alterations of up to 30-40% in A1AR availability after ECT. Solely, for the mean seizure quality index of the applied ECTs a significant association with changes in A1AR availability was found (rs = -0.6, p = 0.02). Discussion In the present study, therapeutically effective ECT treatment did not result in coherent changes of A1AR availability after a series of ECT treatments. These findings do not exclude a potential role for cerebral A1ARs in ECT, but shift attention to rather short-termed and adaptive mechanisms during ECT-related convulsive effects.
Collapse
Affiliation(s)
- Tina Kroll
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Ana Novakovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Frank Schneider
- University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
2
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
4
|
Calker D, Biber K, Domschke K, Serchov T. The role of adenosine receptors in mood and anxiety disorders. J Neurochem 2019; 151:11-27. [DOI: 10.1111/jnc.14841] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Dietrich Calker
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Knut Biber
- Section Medical Physiology, Department of Neuroscience University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Katharina Domschke
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, Medical Center ‐ University Freiburg University of Freiburg Freiburg Germany
| |
Collapse
|
5
|
Nazario LR, da Silva RS, Bonan CD. Targeting Adenosine Signaling in Parkinson's Disease: From Pharmacological to Non-pharmacological Approaches. Front Neurosci 2017; 11:658. [PMID: 29217998 PMCID: PMC5703841 DOI: 10.3389/fnins.2017.00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disease displaying negative impacts on both the health and social ability of patients and considerable economical costs. The classical anti-parkinsonian drugs based in dopaminergic replacement are the standard treatment, but several motor side effects emerge during long-term use. This mini-review presents the rationale to several efforts from pre-clinical and clinical studies using adenosine receptor antagonists as a non-dopaminergic therapy. As several studies have indicated that the monotherapy with adenosine receptor antagonists reaches limited efficacy, the usage as a co-adjuvant appeared to be a promising strategy. The formulation of multi-targeted drugs, using adenosine receptor antagonists and other neurotransmitter systems than the dopaminergic one as targets, have been receiving attention since Parkinson's disease presents a complex biological impact. While pharmacological approaches to cure or ameliorate the conditions of PD are the leading strategy in this area, emerging positive aspects have arisen from non-pharmacological approaches and adenosine function inhibition appears to improve both strategies.
Collapse
Affiliation(s)
- Luiza R Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane S da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Hoirisch-Clapauch S, Mezzasalma MAU, Nardi AE. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy. J Psychopharmacol 2014; 28:99-105. [PMID: 24113086 DOI: 10.1177/0269881113507639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.
Collapse
Affiliation(s)
- Silvia Hoirisch-Clapauch
- 1Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
7
|
Jahanshahi A, Mirnajafi-Zadeh J, Javan M, Mohammad-Zadeh M, Rohani R. The antiepileptogenic effect of electrical stimulation at different low frequencies is accompanied with change in adenosine receptors gene expression in rats. Epilepsia 2009; 50:1768-79. [DOI: 10.1111/j.1528-1167.2009.02088.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Cunha RA, Ferré S, Vaugeois JM, Chen JF. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 2008; 14:1512-24. [PMID: 18537674 DOI: 10.2174/138161208784480090] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interest on targeting adenosine A(2A) receptors in the realm of psychiatric diseases first arose based on their tight physical and functional interaction with dopamine D(2) receptors. However, the role of central A(2A) receptors is now viewed as much broader than just controlling D(2) receptor function. Thus, there is currently a major interest in the ability of A(2A) receptors to control synaptic plasticity at glutamatergic synapses. This is due to a combined ability of A(2A) receptors to facilitate the release of glutamate and the activation of NMDA receptors. Therefore, A(2A) receptors are now conceived as a normalizing device promoting adequate adaptive responses in neuronal circuits, a role similar to that fulfilled, in essence, by dopamine. This makes A(2A) receptors particularly attractive targets to manage psychiatric disorders since adenosine may act as go-between glutamate and dopamine, two of the key players in mood processing. Furthermore, A(2A) receptors also control glia function and brain metabolic adaptation, two other emerging mechanisms to understand abnormal processing of mood, and A(2A) receptors are important players in controlling the demise of neurodegeneration, considered an amplificatory loop in psychiatric disorders. Current data only provide an indirect confirmation of this putative role of A(2A) receptors, based on the effects of caffeine (an antagonist of both A(1) and A(2A) receptors) in psychiatric disorders. However, the introduction of A(2A) receptors antagonists in clinics as anti-parkinsonian agents is hoped to bolster our knowledge on the role of A(2A) receptors in mood disorders in the near future.
Collapse
Affiliation(s)
- Rodrigo A Cunha
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Portugal.
| | | | | | | |
Collapse
|
9
|
Rezvani ME, Mirnajafi-Zadeh J, Fathollahi Y, Palizvan MR. Changes in neuromodulatory effect of adenosine A1 receptors on piriform cortex field potentials in amygdala kindled rats. Eur J Pharmacol 2007; 565:60-7. [PMID: 17359967 DOI: 10.1016/j.ejphar.2007.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 02/02/2007] [Accepted: 02/06/2007] [Indexed: 11/23/2022]
Abstract
Adenosine exerts its anticonvulsants effect through different brain regions including piriform cortex. In this study, the effect of amygdala kindled seizures on adenosine A1 receptor-mediated neuromodulation in piriform cortex pyramidal neurons was tested at 24 h and 1 month after kindling. Animals were kindled by daily electrical stimulation of amygdala. Field potentials were recorded from layer II of piriform cortex pyramidal cells following stimulation of the lateral olfactory tract. Obtained results showed that N6-cyclohexyladenosine (CHA), a selective adenosine A1 receptor agonist (1, 10 and 100 microM; i.c.v.), reduced A1 slope and B1 amplitude of field potentials in both kindled and non-kindled (control) rats. However, its effects on kindled animals were more potent at 24 h, but not 1 month post-kindling. 8 cyclopenthyl-1,3-dimethylxanthine (CPT), a selective adenosine A1 receptor antagonist (50 microM, i.c.v.), had no significant effect on the field potential parameters. However, CPT (50 microM, i.c.v.) pretreatment eliminated effects of CHA (10 microM; i.c.v.) on the field potentials. These results indicate that activation of adenosine A1 receptors has an inhibitory effect on the field potentials of piriform cortex pyramidal neurons and the efficiency of adenosine A1 receptor neuromodulation in piriform cortex is increased at short-term (24 h) but return to normal at long-term (1 month) after kindling implementation.
Collapse
Affiliation(s)
- Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, I.R. Iran
| | | | | | | |
Collapse
|
10
|
Rebola N, Porciúncula LO, Lopes LV, Oliveira CR, Soares-da-Silva P, Cunha RA. Long-term Effect of Convulsive Behavior on the Density of Adenosine A1 and A2A Receptors in the Rat Cerebral Cortex. Epilepsia 2005; 46 Suppl 5:159-65. [PMID: 15987272 DOI: 10.1111/j.1528-1167.2005.01026.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Adenosine is a neuromodulator that has been proposed to act as an anticonvulsant mainly via inhibitory A1 receptors, but recent data show that genetic deletion of facilitatory A 2A receptors might also attenuate convulsions. Since both A1 and A 2A receptors are prone to down- and upregulation in different stressful situations, we investigated if convulsive behavior leads to a long-term change in A1 and A 2A receptor density in the rat cerebral cortex. METHODS Stage 4-5 convulsions (Racine's scale) were induced in adult Wistar rats either through amygdala stimulation (kindling) or by intraperitoneal injection of kainate (10 mg/ml). Rats were killed after 4 weeks to evaluate adenosine A1 and A 2A receptor density in the cerebral cortex using both Western blot and membrane binding assays. RESULTS The binding density of the A1 antagonist, 3H-DPCPX, decreased by 40. +/- 4.4% and by 20.7 +/- 0.5% after kindling or kainate injection. Likewise, A1 receptor immunoreactivity in cortical membranes from kindled or kainate-injected rats decreased by 19.1 +/- 3.3% and 12.7 +/- 5.7%, respectively. In contrast, the binding density of the A 2A receptor antagonist 3H-SCH 58261 increased by 293 +/- 34% and by 159 +/- 32% in cortical membranes from kindled or kainate-injected rats, and A 2A receptor immunoreactivity also increased by 151 +/- 12% and 79.6 +/- 7.0%. CONCLUSIONS This indicates that after convulsive behavior there is a long-term decrease of A1 receptors accompanied by an increased density of A 2A receptors, suggesting that A 2A antagonists rather than A1 agonists may be more promising anticonvulsive drugs.
Collapse
MESH Headings
- Amygdala/physiology
- Animals
- Blotting, Western
- Cerebral Cortex/chemistry
- Down-Regulation/physiology
- Electric Stimulation
- Kainic Acid
- Kindling, Neurologic/physiology
- Male
- Purinergic P1 Receptor Antagonists
- Rats
- Rats, Wistar
- Receptor, Adenosine A1/analysis
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/analysis
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/metabolism
- Seizures/chemically induced
- Seizures/metabolism
- Time
- Up-Regulation/physiology
- Xanthines/metabolism
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Nelson Rebola
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
11
|
Tchekalarova J, Sotiriou E, Georgiev V, Kostopoulos G, Angelatou F. Up-regulation of adenosine A1 receptor binding in pentylenetetrazol kindling in mice: effects of angiotensin IV. Brain Res 2005; 1032:94-103. [PMID: 15680946 DOI: 10.1016/j.brainres.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2004] [Indexed: 11/26/2022]
Abstract
The effects of the hexapeptide angiotensin II (3-8) ANG IV, the selective A(1) receptor agonist cyclohexyladenosine (CHA) and the combination of ANG IV + CHA on pentylenetetrazol (PTZ)-generalized seizures; kindling development and maintenance were studied. By using in vitro quantitative receptor autoradiography, the regulation of adenosine A(1) receptor density at different time points during the kindling procedure and postkindling period was determined. ANG IV and CHA effectively reduced clonic seizures in PTZ-generalized seizure model, in PTZ-kindled mice as well as during kindling development and a week later by rechallenge with PTZ. Furthermore, coadministration of ANG IV and CHA had a strong anticonvulsant effect, both compounds acting synergistically. A significant increase of adenosine A(1) receptor density was detected in somatosensory cortex, hippocampus, amygdala and geniculate nuclei early in the kindling procedure (after the 3rd injection), which persisted at least 1 month after the end of kindling procedure. In addition, a delayed up-regulation of adenosine A(1) receptor binding was observed a week after kindling in the mamillary bodies and a month later in the motor cortex. The pretreatment with ANG IV caused a down-regulation of adenosine A(1) receptor density to the control level in most time points and brain areas. In conclusion, PTZ kindling-induced increase of adenosine A(1) receptor binding at different time points and in specific brain structures might represent an adaptive mechanism for coping with the hyperexcitability typical for this phenomenon. The antiepileptogenic effect of ANG IV could be realized partly through an adenosine-dependent mechanism.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Laboratory of Experimental Psychopharmacology, Institute of Physiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | | | | | | | | |
Collapse
|
12
|
Rebola N, Coelho JE, Costenla AR, Lopes LV, Parada A, Oliveira CR, Soares-da-Silva P, de Mendonça A, Cunha RA. Decrease of adenosine A1 receptor density and of adenosine neuromodulation in the hippocampus of kindled rats. Eur J Neurosci 2003; 18:820-8. [PMID: 12925008 DOI: 10.1046/j.1460-9568.2003.02815.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine is a neuromodulator that has been proposed to be a major endogenous anticonvulsant acting via A1 receptors. We tested if implementation of kindling through stimulation of the amygdala affected A1 receptor-mediated neuromodulation in hippocampal slices taken from rats 4 weeks after the last stage 5 seizure. The A1 receptor agonist, N6-cyclopentyladenosine (CPA) (6-100 nm), inhibited field excitatory postsynaptic potential (fEPSP) slope with an EC50 of 19.1-19.5 nm in control and sham-operated rats, but was less potent in kindled rats (EC50 = 42.7 nm). This might result from a decreased number of A1 receptors in hippocampal nerve terminal membranes, because A1 receptor immunoreactivity decreased by 28 +/- 3% and the binding density of the A1 receptor agonist [3H]R-PIA decreased from 1702 +/- 64 to 962 +/- 78 fmol/mg protein in kindled compared with control rats. The tonic inhibition of hippocampal synaptic transmission by endogenous adenosine was also lower in kindled rats, because A1 receptor blockade with 50 nm 1,3-dipropyl-8-cyclopentyladenosine (DPCPX) enhanced fEPSP slope by 23 +/- 3% and theta-burst-induced long-term potentiation by 94 +/- 4% in control rats but was virtually devoid of effects in kindled rats. The evoked release of adenosine from hippocampal slices or nerve terminals was 56-71% lower in kindled rats probably due to the combined decrease in the capacity of adenosine transporters and decreased release of adenosine 5'-triphosphate (ATP), which was partially compensated by a higher extracellular catabolism of ATP into adenosine in kindled rats. These results indicate that, although adenosine might inhibit the onset of epileptogenesis, once kindling is installed, the efficiency of the adenosine inhibitory system is impaired.
Collapse
Affiliation(s)
- Nelson Rebola
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jang IS, Kang UG, Kim YS, Ahn YM, Park JB, Juhnn YS. Isoform-specific changes of adenylate cyclase mRNA expression in rat brains following chronic electroconvulsive shock. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:1571-81. [PMID: 11642655 DOI: 10.1016/s0278-5846(01)00207-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Electroconvulsive shock (ECS) has been reported to regulate the cAMP signaling system at various levels, suggesting that the cAMP system is involved in the therapeutic mechanism. 2. Chronic ECS has been suggested to change the expressions of adenylate cyclase (AC) genes, which constitute at least 9 families. However, little is known about its effect on the expression of AC. Therefore, to understand how chronic ECS alters the expression of AC genes in the brain, the authors analyzed the expression of 9 AC isoforms at the transcriptional level in rat hippocampus and cerebellum by quantitative RT-PCR following chronic ECS treatment. 3. Chronic ECS treatment was found to induce differential changes in the expression of AC isoforms in an isoform- and brain region-specific manner in the rat hippocampus and cerebellum. 4. Thus, it is concluded that chronic ECS induces differential changes in the expression of AC isoform mRNA in an isoform- and brain region-specific manner in the rat hippocampus and cerebellum. This suggests that the differential expression of AC isoforms might be an important mechanism by which chronic ECS treatment regulates the cAMP signaling system in rat brains.
Collapse
Affiliation(s)
- I S Jang
- Department of Biochemistry, Seoul National University College of Medicine, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Cano-Martínez A, Villalobos-Molina R, Rocha L. Effects of chronic morphine and N(6)-cyclopentyl-adenosine administration on kainic acid-induced status epilepticus. Epilepsy Res 2001; 44:89-96. [PMID: 11325565 DOI: 10.1016/s0920-1211(01)00187-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to investigate if the upregulation of mu or A(1) receptors modifies the expression of the kainic acid (KA)-induced status epilepticus (SE). Male Wistar rats received one of the following treatments: saline solution (SS) (1 ml/kg, i.p. for 7 days); morphine (M) (20 mg/kg, i.p. for 7 days) or N(6)-cyclopentyl-adenosine (CPA) (1 mg/kg, i.p. for 9 days). Twenty-four hours after the last administration rats were sacrificed. Membranes were obtained mu and and A(1) receptor binding experiments were carried out. Furthermore, an injection of SS (1 ml/kg, i.p.) or KA (10 mg/kg, i.p.) was applied in rats pretreated chronically with M, CPA or SS, 48 h after the last administration. Seizure activity, death rate and a postictal explosive motor behavior were evaluated after KA administration. Chronic M administration increased mu receptor number in hippocampus (115%) and cortex (265%), whereas chronic CPA treatment enhanced A(1) receptor number in hippocampus (55%), amygdala (39%) and cortex (51%). The pretreatment with M facilitated the KA-induced SE and reduced the death rate as well as the postictal explosive motor behavior. The pretreatment with CPA delayed the SE presentation, increased the death rate and decreased the postictal explosive motor behavior. These findings suggest that upregulation of mu receptors enhances the KA seizures, whereas upregulation of A(1) receptors depresses these seizures.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Excitatory Amino Acid Agonists
- Kainic Acid
- Male
- Morphine/pharmacology
- Rats
- Rats, Wistar
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/metabolism
- Status Epilepticus/chemically induced
- Status Epilepticus/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- A Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", #1 CP 14080, D.F., Juan Badiano, Mexico
| | | | | |
Collapse
|
15
|
Doriat JF, Koziel V, Humbert AC, Daval JL. Medium- and long-term alterations of brain A1 and A2A adenosine receptor characteristics following repeated seizures in developing rats. Epilepsy Res 1999; 35:219-28. [PMID: 10413317 DOI: 10.1016/s0920-1211(99)00014-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to assess long-lasting consequences of recurrent seizures during development, the effects of repeated seizures in developing rats were investigated on brain adenosine A1 and A2A receptors. The characteristics of A1 and A2A receptors were analyzed by measuring the binding of the selective agonists [3H]CHA (N6-cyclohexyladenosine) and [3H]CGS 21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine), respectively, on cerebral membrane preparations, whereas receptor coupling to G-proteins was examined by using a GTP analogue (Gpp(NH)p; guanylyl-5'-imidodiphosphate). Seizures were induced by bicuculline once a day at two different developmental stages: either from postnatal day 5 to postnatal day 7 (P5-P7) or from P15 to P17. Adenosine receptors were then studied at P15, P25 and P60. P5-P7 seizures led to an increase in A1 receptor density at P60 and to a decrease in their coupling to G-proteins at P15, but they did not affect A2A receptors. P15-P17 seizures decreased the coupling of A1 receptors to G-proteins at P25 and P60, reduced the density of A2A receptors at P25 and increased their affinity at P60. These results depict a persistent sensitivity of both A1 and A2A brain adenosine receptors to repeated seizures, with selective receptor alterations according to the cerebral maturational stage when seizures occur. In respect to the neuromodulatory and anticonvulsant properties of adenosine, such changes might be implicated in long-term functional brain reorganization after early seizures and future susceptibility to convulsive disorders.
Collapse
Affiliation(s)
- J F Doriat
- J.E. 2164 Adaptation Néonatale et Développement, Université Henri Poincaré-Nancy 1, France
| | | | | | | |
Collapse
|
16
|
Jarvis MF, Becker HC. Single and repeated episodes of ethanol withdrawal increase adenosine A1, but not A2A, receptor density in mouse brain. Brain Res 1998; 786:80-8. [PMID: 9554962 DOI: 10.1016/s0006-8993(97)01413-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A history of multiple ethanol withdrawal experiences has been shown to exacerbate the severity of future withdrawal episodes, and this sensitization of the withdrawal response has been hypothesized to represent a 'kindling' phenomenon. Since adenosine functions as an inhibitory modulator of seizure activity and may interact with ethanol to influence neuronal excitability, the present study was conducted to examine the effects of single and repeated episodes of ethanol withdrawal on adenosine A1 and A2A receptors in adult C3H/He mice. Mice were chronically exposed to ethanol vapor in inhalation chambers and tested for withdrawal seizures following multiple withdrawal (MW) experience (four cycles of 16 h ethanol intoxication interrupted by 8 h periods of abstinence), single withdrawal experience following 16 h (SW) or 64 h (CE) continuous ethanol intoxication, or no ethanol exposure (controls). Separate groups of mice from each withdrawal condition were used to generate pooled cortical and striatal tissue for ligand saturation experiments using [3H]cyclohexyladenosine to label A1 receptors and [3H]CGS 21680 to label A2A receptors. Results indicated that withdrawal seizures were significantly more severe in mice with multiple withdrawal experience in comparison to animals that experienced only a single withdrawal episode, even when total amount of ethanol exposure was equated among groups. The density of A1 receptors in cerebral cortex was significantly increased over controls 8 h following final ethanol withdrawal by approximately 35% in SW and CE groups, with the largest increase observed in the MW group (56%). Withdrawal treatment groups did not differ in cortical A1 binding sites immediately upon withdrawal from ethanol, and no significant differences in binding of [3H]CGS 21680 to striatal A2A receptors were observed following ethanol withdrawal. Ethanol exposure and withdrawal did not significantly alter ligand affinity for either adenosine receptor. These results indicate that adenosine A1 receptors are selectively upregulated during ethanol withdrawal and that the degree of upregulation may be enhanced following multiple withdrawal episodes. Further, these observations suggest that the upregulation of brain A1 receptors during ethanol withdrawal may represent a compensatory inhibitory response to increased seizure severity associated with repeated episodes of ethanol withdrawal.
Collapse
Affiliation(s)
- M F Jarvis
- Rhone-Poulenc Rorer Central Research, Collegeville, PA, USA
| | | |
Collapse
|
17
|
Deckert J, Nöthen MM, Albus M, Franzek E, Rietschel M, Ren H, Stiles GL, Knapp M, Weigelt B, Maier W, Beckmann H, Propping P. Adenosine A1 receptor and bipolar affective disorder: systematic screening of the gene and association studies. AMERICAN JOURNAL OF MEDICAL GENETICS 1998; 81:18-23. [PMID: 9514582 DOI: 10.1002/(sici)1096-8628(19980207)81:1<18::aid-ajmg4>3.0.co;2-j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study we sought to identify genetic variation in the adenosine A1 receptor (A1AR) gene on chromosome 1q31-32.1, which through alteration of protein function or level of expression might contribute to the genetic predisposition to bipolar affective disorder. We performed a systematic mutation scan of the whole coding sequence as well as 5' and 3' untranslated regions by means of single-strand conformation analysis. The region upstream to the coding sequence we investigated contains two functional promoters. Screening 42 patients with bipolar affective disorder, we detected 11 DNA sequence variants (48T/A, 267 + 275C/T, 805T/G, 1777C/A, 1827C/T, 1904C/T, 2126G/T, 2294insT, 2776C/T, 2777del36, 2819T/G). Determining the frequency of these variants in 42 anonymous blood donors, we observed a non-significant (P < 0.06) trend towards an underrepresentation of the 2126T variant in patients when compared to controls. On the other hand, the 2777del36 and the 2819G variant were not found among the controls. These findings were followed up in a large independent replication sample. However, we were not able to confirm the initial findings in the second sample. Our data suggest that genetically determined variation of the A1AR and its two promoters do not play a major role in the development of bipolar affective disorder.
Collapse
Affiliation(s)
- J Deckert
- Institute of Human Genetics, University of Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Engelbrecht AH, Russell VA, Mintz M, Lamm MC, Kellaway L, Herberg LJ, Taljaard JJ. Kindled seizures do not affect adenosinergic inhibition of DA or ACh release in rat accumbens or PFC. Pharmacol Biochem Behav 1996; 55:315-21. [PMID: 8951971 DOI: 10.1016/s0091-3057(96)00099-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epileptic seizures are thought to terminate largely as a result of the extracellular accumulation of the purinergic neuromodulator, adenosine, released by discharging neurons. However, the postictal surge in extracellular adenosine and its widespread inhibitory effects are limited in time to only a few minutes and cannot directly account for increased resistance to seizures and the complex behavioural and motivational effects that may persist for hours or days after a seizure. The present study examined whether kindled seizures might alter the sensitivity or efficacy of inhibitory presynaptic adenosine receptors, and thereby induce more enduring changes in downstream transmitter systems. Rats were kindled in the amygdala of the dominant cerebral hemisphere, contralateral to the preferred direction of rotation, and their brains were removed either 2 h or 28 days after completion of kindling. Inhibition of electrically stimulated release of dopamine (DA) and acetylcholine (ACh) by the A1 adenosine-receptor agonist, R-phenylisopropyladenosine (R-PIA) was then measured in the prefrontal cortex (PFC) and nucleus accumbens. R-PIA (1.0 microM) inhibited [1H]DA release from PFC and nucleus accumbens tissue, and [14C]ACh release from nucleus accumbens tissue, but release was unaffected by prior kindling, regardless of the intervening interval. These results do not support suggestions that DA or ACh might mediate the effects of seizure-induced changes in purinergic inhibitory tone so as to cause long-term shifts in seizure threshold and postictal behavior.
Collapse
Affiliation(s)
- A H Engelbrecht
- Department of Chemical Pathology, University of Stellenbosch, Tygerberg Hospital, South Africa
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
We determined postictal refractoriness in Sprague-Dawley rats by comparing lengths of two suprathreshold ECS seizures given 15 s to 24 h apart. A bimodal (immediate and delayed) decrease in seizure duration was found, suggesting ECS alters mechanisms of seizure termination. Since adenosine is implicated in seizure termination, we determined immediate (30 s) and delayed (24 h) postictal ECS refractoriness in Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats which vary in adenosine properties and initial ECS seizure length. At 30 s, the decrease in seizures did not differ between WKY (-44%) and SHR (-36%) rats. At 24 h, SHR rats showed no change while the WKY rats showed a 20% decrease in seizure length (P < 0.01). These two strains also differed in the ability of the adenosine antagonist caffeine (50 mg/kg, i.p.) to prolong ECS seizures (no change for WKY, +13% for SHR, P < 0.001). The results suggest immediate and delayed postictal refractoriness are subject to genetic variation and may depend on central adenosine mechanisms.
Collapse
Affiliation(s)
- A Francis
- Department of Psychiatry and Behavioral Sciences, SUNY Stony Brook 11794-8101, USA.
| | | |
Collapse
|
20
|
Moorman JM, Grahame-Smith DG, Smith SE, Leslie RA. Chronic electroconvulsive shock enhances 5-HT2 receptor-mediated head shakes but not brain C-fos induction. Neuropharmacology 1996; 35:303-13. [PMID: 8783205 DOI: 10.1016/0028-3908(95)00167-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic electroconvulsive shock (ECS), a widely used treatment for intractable depression, increases the density of 5-HT2A receptor binding sites and mRNA in rat frontal cortex. In contrast, this treatment appears to have no significant effect on 5-HT-stimulated phosphatidyl inositol turnover in rat brain. To investigate the effect of chronic ECS on the 5-HT2 receptor family further, we determined its effects on head shakes and c-fos expression in the rat in response to the 5-HT2A/2C receptor agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane]. Chronic ECS (5 electroconvulsive shocks over 10 days, via earclips under halothane anaesthesia) caused a significant enhancement in the number of head shakes counted in a 30 min period after administration of 2 or 8 mg/kg DOI. In contrast, this treatment had no effect on Fos expression, induced by either dose of DOI, in any region of rat forebrain examined. Fos expression was low-to-undetectable in the brains of animals treated with chronic ECS followed by saline and sham ECS animals that had been treated identically, but with no administration of electrocurrent. Thus the lack of any change in PI turnover, following chronic ECS administration, appears to be mirrored by the failure of this treatment to alter 5-HT2 receptor-mediated Fos expression.
Collapse
Affiliation(s)
- J M Moorman
- Oxford University-SmithKline Beecham Centre for Applied Neuropsychobiology, Radcliffe Infirmary, U.K
| | | | | | | |
Collapse
|
21
|
Francis A, Fochtmann L. Reduced proconvulsant activity of caffeine in rats after a series of electroconvulsive seizures. Psychopharmacology (Berl) 1995; 119:99-104. [PMID: 7675957 DOI: 10.1007/bf02246060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A variety of neurotransmitter receptor changes occur after a course of electroconvulsive seizures (ECS) in rats, including an increased density of adenosine A1 sites. Adenosine antagonism has been related to the proconvulsant action of methylxanthines such as caffeine. We determined tonic-clonic seizure duration in rats given ECS with caffeine (0-175 mg/kg, IP) after a course of one or six daily ECS. A single day of ECS did not affect the dose-dependent proconvulsant action of caffeine. After six daily ECS, the proconvulsant action of caffeine was reduced. After nine daily ECS, an A1 antagonist (8-cyclopentyl-1,3-dipropylxanthine) and an A2A antagonist (1-allyl-3,7-dimethyl-8-p-sulfophenylxanthine) showed reduced proconvulsant activity. The results suggest that the reduced proconvulsant action of caffeine after chronic ECS depends on adenosine antagonism.
Collapse
Affiliation(s)
- A Francis
- Department of Psychiatry, SUNY Stony Brook 11794, USA
| | | |
Collapse
|
22
|
Simonato M, Varani K, Muzzolini A, Bianchi C, Beani L, Borea PA. Adenosine A1 receptors in the rat brain in the kindling model of epilepsy. Eur J Pharmacol 1994; 265:121-4. [PMID: 7875226 DOI: 10.1016/0014-2999(94)90421-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adenosine and adenosine analogues have potent anticonvulsant effects on various seizure models, including kindling, an animal model of temporal lobe epilepsy. It is now reported that binding of a specific ligand (cyclohexyladenosine) to adenosine A1 receptors is not changed in the cerebral cortex of kindled rats. However, the affinity of cyclohexyladenosine to adenosine receptors is significantly increased in the hippocampus. In addition, cyclohexyladenosine is slightly more potent to inhibit [3H]D-aspartate outflow from hippocampal synaptosomes taken from kindled than from control rats. Taken together, these data suggest that an increased affinity of adenosine to A1 receptors may play a role in the anticonvulsant effect of adenosine A1 analogues in the kindling model.
Collapse
Affiliation(s)
- M Simonato
- Institute of Pharmacology, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Hattori Y, Moriwaki A, Hayashi Y, Hori Y. Involvement of adenosine-sensitive cyclic AMP-generating systems in cobalt-induced epileptic activity in the rat. J Neurochem 1993; 61:2169-74. [PMID: 8245969 DOI: 10.1111/j.1471-4159.1993.tb07456.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An injection of cobalt chloride solution into the unilateral sensorimotor cortex of rats induced electrographic epileptic activity, which was followed by a peripheral motor disturbance. Brain slices were prepared from the cortical region including the injection site and from the other cortical regions of rats between 8 and 50 days after the injection. In the cortical slices, we examined cyclic AMP accumulations elicited by adenosine and its stable analogue 2-chloroadenosine. Adenosine and 2-chloroadenosine at their maximal dose increased cyclic AMP accumulation six- to 10-fold and 10-15-fold, respectively, and the elicitation was markedly inhibited by the adenosine antagonist 8-phenyltheophylline. The cyclic AMP accumulation was increased in the primary epileptic region of the cortex adjacent to the injection site of cobalt chloride solution, whereas it was unchanged in the other cortical regions. The increase in cyclic AMP accumulation was observed regardless of the presence or absence of the adenosine uptake inhibitor dipyridamole, the phosphodiesterase inhibitor DL-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone, and adenosine deaminase. Such an increased accumulation of cyclic AMP in the primary epileptic cortex was detected as early as 8 days after the injection. The cyclic AMP accumulation continued to increase and reached a peak level 17-19 days after the injection, and it returned to the control levels after 40-50 days, in correspondence with the electrographic and behavioral findings. It is concluded that alterations in adenosine receptor-mediated generation of cyclic AMP in the primary epileptic cortex are closely associated with the central process of cobalt-induced epilepsy.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Hattori
- Department of Physiology, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|
24
|
Hattori Y, Moriwaki A, Hayashi Y, Islam N, Hori Y. Characterization of adenosine receptor-mediated generation of cyclic AMP in slices of rat cerebral cortex with chronic epileptic activity. Neurochem Res 1993; 18:1009-14. [PMID: 8232717 DOI: 10.1007/bf00966761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cyclic AMP accumulations elicited by adenosine analogues 2-chloroadenosine (2-CADO), R-N6-phenylisopropyladenosine (R-PIA), and N6-cyclohexyladenosine (CHA) were investigated in cortical slices of chronic iron-induced epileptic rats. Cyclic AMP accumulation was elicited 9- to 18-fold by 2-CADO and it was elicited 5- to 7-fold by either R-PIA or CHA; 2-CADO was more potent than R-PIA or CHA in eliciting cyclic AMP accumulation. The adenosine analogues elicited cyclic AMP accumulation in a dose-dependent manner, and the elicitation was inhibited by the adenosine antagonist 8-phenyltheophylline. The 2-CADO-elicited accumulation of cyclic AMP was greatly increased in the cortical region on the primary epileptic side, while the R-PIA- or CHA-elicited accumulation did not change in any cortical region. The deviation detected only in the 2-CADO-elicited accumulation of cyclic AMP may be due to the difference in relative potency for adenosine receptors of the adenosine analogues. The results suggest that adenosine receptor-mediated generation of cyclic AMP is altered in the primary region of iron-induced epileptic cortex, in which heterogeneous alterations in different adenosine receptor subtypes may occur in the epileptic process.
Collapse
Affiliation(s)
- Y Hattori
- Department of Physiology, Okayama University Medical School, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
[3H]Forskolin binds to a site in rat and bovine brain probably reflecting the coupling of the alpha subunit of the stimulatory guanine nucleotide binding protein with adenylate cyclase. The purpose of this study was to pharmacologically characterize high-affinity binding of [3H]forskolin in the human caudate nucleus. The dissociation constant (Kd) of [3H]forskolin binding was 102 nM and the Bmax was 628 fmol/mg of protein. Guanylyl-5'-imidodiphosphate significantly increased the number (Bmax) of [3H]forskolin binding sites in the caudate nucleus (EC50 = 3.1 +/- 0.05 microM). [3H]Forskolin binding in the human caudate may provide insights into the coupling of a stimulatory guanine nucleotide binding protein with adenylate cyclase.
Collapse
Affiliation(s)
- C A Stockmeier
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | |
Collapse
|
26
|
|
27
|
Van Calker D, Steber R, Klotz KN, Greil W. Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses. Eur J Pharmacol 1991; 206:285-90. [PMID: 1915589 DOI: 10.1016/0922-4106(91)90111-t] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanism of the therapeutic and prophylactic effects of carbamazepine (CBZ) in affective psychoses is unknown but may in part be related to the potent competitive interaction of CBZ with adenosine-binding sites in the brain. The anticonvulsant and sedative properties of CBZ are reminiscent of the effects evoked by adenosine-agonists and contrast sharply with the opposite actions of adenosine-antagonists like caffeine. However, indirect evidence suggests an antagonist- rather than an agonist-like activity of CBZ at adenosine-receptors. We have used various model systems, in which adenosine receptor subtypes mediate different second messenger-responses, to investigate this-apparent paradox. CBZ was found to antagonize the A1-receptor-mediated inhibition of cyclic AMP accumulation in cultured astroblasts and in GH3-cells. Furthermore, CBZ also inhibits the adenosine-induced increase in the level of cyclic AMP in cultured astroblasts, which is mediated by low-affinity A2b-receptors. In contrast, CBZ does not block the inhibition elicited by adenosine-agonists of the agonist-induced increased formation of inositolphosphates in human neutrophils, which is mediated by high-affinity A2a-receptors. The specific antagonism by CBZ of A1- but not of high-affinity A2a-receptors was further supported by binding experiments using rat brain membranes. These results suggest that the paradox of CBZ's antagonistic effects at adenosine-receptors might be at least partially reconciled by a selective antagonistic action of CBZ at A1 receptors but not at high-affinity A2a-receptors.
Collapse
Affiliation(s)
- D Van Calker
- Psychiatric Hospital, University of Munich, F.R.G
| | | | | | | |
Collapse
|
28
|
Daval J, Werck M. Autoradiographic changes in brain adenosine A1 receptors and their coupling to G proteins following seizures in the developing rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 59:237-47. [PMID: 1914142 DOI: 10.1016/0165-3806(91)90104-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the central nervous system, adenosine has been shown to be a major regulator of neuronal activity in convulsive disorders, mainly via the A1 receptor subtype. In a previous work, we have shown that seizures lead to an age-dependent upregulation of cerebral adenosine A1 sites measured in isolated rat cerebral membranes. However, information concerning regional changes in the receptor density was so far lacking. In the present study, the effects of bicuculline-induced seizures were investigated by quantitative autoradiography of central adenosine A1 receptors in developing rats and in adults. Animals were sacrificed 30 min after an intraperitoneal injection of either saline or a convulsive dose of bicuculline. Adenosine A1 receptors in brain sections were labeled by [3H]N6-cyclohexyladenosine (CHA), a potent receptor agonist. Generalized seizures induced a widespread increase in CHA-specific binding, with a marked enhancement in structures that mediate seizure activity, such as substantia nigra, amygdala, septum and hippocampus. Moreover, the addition of guanylyl-5'-imidodiphosphate, a GTP analogue, to the incubation medium reduced CHA binding by the same order of magnitude whether rats were given saline or bicuculline, suggesting that additional adenosine A1 receptors are also functionally linked to G proteins. The age-related postictal increase in adenosine receptors might contribute to facilitate adenosine anticonvulsant effect, especially in newborns.
Collapse
|
29
|
Daval JL, Nehlig A, Nicolas F. Physiological and pharmacological properties of adenosine: therapeutic implications. Life Sci 1991; 49:1435-53. [PMID: 1943450 DOI: 10.1016/0024-3205(91)90043-b] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adenosine is a nucleoside which has been shown to participate in the regulation of physiological activity in a variety of mammalian tissues, and has been recognized as a homeostatic neuromodulator. It exerts its actions via membrane-bound receptors which have been characterized using biochemical, electrophysiological and radioligand binding techniques. Adenosine has been implicated in the pharmacological actions of several classes of drugs. A number of studies strongly suggest that the nucleoside may regulate cellular activity in many pathological disorders and, in that respect, adenosine derivatives appear as promising candidates for the development of new therapeutic compounds, such as anticonvulsant, anti-ischemic, analgesic and neuroprotective agents.
Collapse
|
30
|
Angelatou F, Pagonopoulou O, Kostopoulos G. Alterations of A1 adenosine receptors in different mouse brain areas after pentylentetrazol-induced seizures, but not in the epileptic mutant mouse 'tottering'. Brain Res 1990; 534:251-6. [PMID: 2073586 DOI: 10.1016/0006-8993(90)90136-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Single and repeated Pentylentetrazol (PTZ)-induced convulsions are associated with significant changes of A1 adenosine receptors (detected using the radioligand [3H]cyclohexyladenosine, [3H]CHA) in 4 different brain areas of the mouse, namely cortex, hippocampus, cerebellum and striatum. In hippocampus and cerebellum, a rapid increase in [3H]CHA binding, by 26% and 30% respectively, was observed 1 h after a single PTZ convulsion. In striatum, on the contrary, a significant decrease by 30% in [3H]CHA binding was seen, whereas in cortex no significant change could be detected. After daily repeated PTZ convulsions, a significant increase of A1 receptors by 26% appeared also in cortex, while the changes of A1 receptors observed in the other brain areas after a single PTZ convulsion were maintained in almost the same range. All the alterations observed were due to changes of the total number of A1 receptors (Bmax) without changes in receptor affinity (Kd). A significant increase in the latency of PTZ seizure (time between the PTZ-injection and the beginning of the seizure) was also observed after repeated PTZ-induced convulsions at the time when the changes in A1 adenosine receptors were noted. Considered together, these results provide further evidence for an A1 receptor-mediated modulation of seizure susceptibility and indicate that specific brain areas may play different roles in this modulation. The binding of [3H]CHA to membranes from different cortical and subcortical areas of the epileptic mutant mouse 'tottering' was not different from that in control animals.
Collapse
Affiliation(s)
- F Angelatou
- Department of Physiology, University of Patras, Medical School, Greece
| | | | | |
Collapse
|
31
|
Affiliation(s)
- M J Durcan
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| | | |
Collapse
|
32
|
Affiliation(s)
- J Deckert
- Universitäts-Nervenklinik, Füchsleinstrasse 15, 8700 Würzburg, West Germany
| | | |
Collapse
|
33
|
Abstract
Electroconvulsive shock (ECS) produces many neurochemical alterations which may be related to its efficacy in the treatment of different psychiatric disorders. This review focuses particularly on experimental findings of CNS receptor changes in animals following chronic ECS and relates them to neurotransmitter and behavioral changes. Also, the pharmacological effect of other antidepressant treatment are compared. Possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- C H Gleiter
- Laboratory of Clinical Studies, DICBR, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD 20892
| | | |
Collapse
|