1
|
Tsopela V, Korakidis E, Lagou D, Kalliampakou KI, Milona RS, Kyriakopoulou E, Mpekoulis G, Gemenetzi I, Stylianaki EA, Sideris CD, Sioli A, Kefallinos D, Sideris DC, Aidinis V, Eliopoulos AG, Kambas K, Vassilacopoulou D, Vassilaki N. L-Dopa decarboxylase modulates autophagy in hepatocytes and is implicated in dengue virus-caused inhibition of autophagy completion. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119602. [PMID: 37778471 DOI: 10.1016/j.bbamcr.2023.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.
Collapse
Affiliation(s)
- Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Evangelos Korakidis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Despoina Lagou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | | | - Raphaela S Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Eirini Kyriakopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Ioanna Gemenetzi
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Elli-Anna Stylianaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | | | - Aggelina Sioli
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dionysis Kefallinos
- School of Electrical Engineering and Computer Science, National Technical University of Athens, 157 73 Athens, Greece
| | - Diamantis C Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, NKUA, 115 27 Athens, Greece; Center of Basic Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
2
|
Kozlova AA, Rubets E, Vareltzoglou MR, Jarzebska N, Ragavan VN, Chen Y, Martens-Lobenhoffer J, Bode-Böger SM, Gainetdinov RR, Rodionov RN, Bernhardt N. Knock-out of the critical nitric oxide synthase regulator DDAH1 in mice impacts amphetamine sensitivity and dopamine metabolism. J Neural Transm (Vienna) 2023; 130:1097-1112. [PMID: 36792833 PMCID: PMC10460711 DOI: 10.1007/s00702-023-02597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.
Collapse
Affiliation(s)
- Alena A Kozlova
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Elena Rubets
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Magdalini R Vareltzoglou
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Vinitha N Ragavan
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | | | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
3
|
Neuropharmacological Alterations by a Rice Contaminant Stenotrophomonas maltophilia: a Detailed Bio-molecular and Mechanistic Landscape. Appl Biochem Biotechnol 2022; 194:1955-1980. [DOI: 10.1007/s12010-022-03810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
|
4
|
Foroughi K, Khaksari M, Shayannia A. Molecular Docking Studies of Methamphetamine and Amphetamine- Related Derivatives as an Inhibitor against Dopamine Receptor. Curr Comput Aided Drug Des 2018; 16:122-133. [PMID: 30514192 DOI: 10.2174/1573409915666181204144411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The catecholamines such as dopamine, norepinephrine, and epinephrine are neurotransmitters that regulate different physiological functions of the central nervous system. Some evidence suggests that the degeneration of dopamine neurons in the substantia nigra contributes to Parkinson's Disease (PD), which is a neurodegenerative disorder and it is responsible for the major symptoms of PD. It is suggested that replenishment of striatal dopamine through the oral administration of the dopamine precursor, levodopa, can compensate for the lack of endogenously produced dopamine. Some studies have shown competitive inhibition of dopamine receptor such as methamphetamine, and other amphetamine-related derivatives, which block dopamine receptor activity to uptake dopamine. METHODS In this study, 3D structures of amphetamine, methamphetamine, cocaine, methylphenidate, cathinone, MDMA, and mephedrone were obtained from the PubChem database, which has reported some evidence about their inhibitory effect with dopamine receptor. Then, these structures were provided for molecular docking analysis by Autodock Vina software. Eventually, the binding energies between docked dopamine receptor and them were calculated and their interactions were prognosticated. RESULTS Our results indicated that all chemicals can interact with dopamine receptor molecule in the active site of dopamine and the minimum binding energies belong to Cocaine and Methylphenidate with -7.9 Kcal/mol and -7.2 Kcal/mol, respectively. CONCLUSION It might be concluded that amphetamine, methamphetamine, cocaine, methylphenidate, cathinone, MDMA, and mephedrone could act as potential inhibitors of DA receptor for dopamine uptake, which could cause degenerative disorders.
Collapse
Affiliation(s)
- Kobra Foroughi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Asghar Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
5
|
The “highs and lows” of the human brain on dopaminergics: Evidence from neuropharmacology. Neurosci Biobehav Rev 2017. [DOI: 10.1016/j.neubiorev.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Brodnik ZD, Double M, España RA, Jaskiw GE. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat. Neuropharmacology 2017; 123:159-174. [PMID: 28571714 DOI: 10.1016/j.neuropharm.2017.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022]
Abstract
We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated.
Collapse
Affiliation(s)
- Zachary D Brodnik
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - Manda Double
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States
| | - Rodrigo A España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - George E Jaskiw
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States; Dept. of Psychiatry, Case Western University Medical Center at W.O. Walker 10524 Euclid Ave, Cleveland, OH 44133, United States.
| |
Collapse
|
7
|
Presynaptic regulation of extracellular dopamine levels in the medial prefrontal cortex and striatum during tyrosine depletion. Psychopharmacology (Berl) 2013; 227:363-71. [PMID: 23371490 DOI: 10.1007/s00213-013-2977-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
RATIONALE Available neurochemical probes that lower brain dopamine (DA) levels in man are limited by their tolerability and efficacy. For instance, the acute lowering of brain tyrosine is well tolerated, but only modestly lowers brain DA levels. Modification of tyrosine depletion to robustly lower DA levels would provide a superior research probe. OBJECTIVES The objective of this study was to determine whether the subthreshold stimulation of presynaptic DA receptors would potentiate tyrosine depletion-induced effects on extracellular DA levels in the medial prefrontal cortex (MPFC) and striatum of the rat. METHODS We administered quinpirole, a predominantly DA type 2 (D2R) receptor agonist, into the MPFC and striatum by reverse dialysis. A tyrosine- and phenylalanine-free neutral amino acid mixture [NAA(-)] IP was used to lower brain tyrosine levels. DA levels in the microdialysate were measured by HPLC with electrochemical detection. RESULTS Quinpirole dose-dependently lowered DA levels in MPFC as well as in the striatum. NAA(-) alone transiently lowered DA levels (80 % baseline) in the striatum, but had no effect in MPFC. The co-administration of NAA(-) and a subthreshold concentration of quinpirole (6.25 nM) lowered DA levels (50 % baseline) in both the MPFC and striatum. This effect was blocked by the mixed D2R/D3R antagonist haloperidol at IP doses that on their own did not affect DA levels (10.0 nmol/kg in the MPFC and 0.10 nmol/kg in the striatum). CONCLUSIONS Pharmacological stimulation of inhibitory D2R receptors during tyrosine depletion markedly lowers the extracellular DA levels in the MPFC and striatum. The data suggest that combining tyrosine depletion with a low dose of a DA agonist should robustly lower brain regional DA levels in man.
Collapse
|
8
|
Jaskiw GE, Kirkbride B, Newbould E, Young D, Durkalski V, Bongiovanni R. Clozapine-induced dopamine release in the medial prefrontal cortex is augmented by a moderate concentration of locally administered tyrosine but attenuated by high tyrosine concentrations or by tyrosine depletion. Psychopharmacology (Berl) 2005; 179:713-24. [PMID: 15682305 DOI: 10.1007/s00213-004-2091-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 10/18/2004] [Indexed: 11/28/2022]
Abstract
RATIONALE Tyrosine availability can affect indices of dopamine (DA) release in activated central DA systems. There are, however, inconsistencies between studies. One possibility is that the relationship between tyrosine availability and DA release is non-linear. OBJECTIVES This study aimed to determine how tyrosine depletion as well as a range of administered tyrosine concentrations affect antipsychotic drug-induced extracellular DA levels in the MPFC or striatum. METHODS A guide cannula was implanted over the medial prefrontal cortex or striatum of adult male rats. After a 24-h recovery period, a microdialysis probe was inserted. Microdialysate collection began on the following day. Some rats received vehicle or a tyrosine- and phenylalanine-free neutral amino acid solution NAA(-) (IP) prior to clozapine (CLZ 10 mg/kg IP). Others received vehicle, CLZ (10 mg/kg IP) or haloperidol (HAL) (1 mg/kg IP) while the probe was perfused with artificial cerebrospinal fluid containing tyrosine 0-200 mug/ml. RESULTS NAA(-) reduced tyrosine levels in MPFC dialysate by 35%. This reduction did not affect basal MPFC DA levels but attenuated the peak of CLZ-induced MPFC DA levels. The NAA(-) effect could be reversed by administration of tyrosine. Infused tyrosine 12.5-200 mug/ml did not affect basal DA levels either in MPFC or striatum. Within the MPFC, tyrosine 50.0 mug/ml significantly increased CLZ-induced DA levels. Within the striatum, tyrosine 25.0 mug/ml significantly increased while 150.0 mug/ml significantly decreased HAL-induced DA levels. CONCLUSIONS Basal extracellular levels of DA in the MPFC and striatum are not affected by wide changes in tyrosine availability. However, modestly increased brain tyrosine levels can augment CLZ-induced MPFC and HAL-induced DA levels. Very high tyrosine concentrations attenuate HAL-induced striatal DA levels. These data may explain inconsistencies in the literature and suggest that tyrosine availability could be exploited to modulate psychotropic drug-induced DA levels in the brain.
Collapse
Affiliation(s)
- George E Jaskiw
- Psychiatry Service, Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Sontag JM, Sanderson P, Klepper M, Aunis D, Takeda K, Bader MF. Modulation of secretion by dopamine involves decreases in calcium and nicotinic currents in bovine chromaffin cells. J Physiol 1990; 427:495-517. [PMID: 2170637 PMCID: PMC1189943 DOI: 10.1113/jphysiol.1990.sp018184] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. Catecholamine secretion from cultured bovine adrenal chromaffin cells was decreased in a dose-dependent manner by the D2 dopamine agonists apomorphine and LY 17 1555. 2. 45Ca2+ uptake was similarly inhibited and whole-cell Ca2+ currents were reduced by apomorphine. 3. These inhibitory effects of D2 agonists depended on the secretagogue used, being much more pronounced for nicotine-evoked responses compared to high K+ stimulation, indicating another possible site of action of apomorphine up-stream of Ca2+ entry. 4. Inhibition by apomorphine of nicotine-evoked responses could not be explained by competitive antagonism against nicotine or DMPP (1,1-dimethyl-4-phenyl-piperazinium iodide). 5. Apomorphine caused reductions of inward whole-cell nicotinic current evoked by ACh and nicotine. 6. Inhibition of nicotine-evoked secretion and 22Na+ influx by apomorphine were not affected by tetrodotoxin, and voltage-dependent, whole-cell Na+ currents were unaltered by apomorphine. 7. No evidence was obtained for increases in K+ conductance by apomorphine. 8. Action potentials recorded in whole-cell current clamp were blocked by apomorphine when they were triggered by nicotinic depolarization but not when they were elicited by direct electrical stimulation. 9. Inclusion of GDP-beta-S in the pipette internal solution did not affect apomorphine-dependent inhibition of nicotinic-evoked responses, while the decrease in whole-cell Ca2+ current induced by apomorphine was completely inhibited in the presence of GDP-beta-S. 10. Increases in cyclic AMP caused by cholera toxin and forskolin did not change the apomorphine-dependent inhibitory effects on nicotine-evoked secretion, indicating that changes in cyclic AMP levels caused by dopamine receptor stimulation are probably not involved.
Collapse
Affiliation(s)
- J M Sontag
- Groupe de Neurobiologie Structurale et Fonctionnelle, Unité INSERM U44, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
10
|
Fukami MH, Haavik J, Flatmark T. Phenylalanine as substrate for tyrosine hydroxylase in bovine adrenal chromaffin cells. Biochem J 1990; 268:525-8. [PMID: 1973034 PMCID: PMC1131466 DOI: 10.1042/bj2680525] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Incubation of bovine chromaffin cells with L-[14C]phenylalanine resulted in label accumulation in catecholamines at about 30% of the rate seen with L-tyrosine as precursor. Studies with purified tyrosine hydroxylase (EC 1.14.16.2) showed that the enzyme catalysed the hydroxylation of L-phenylalanine first to L-p-tyrosine and then to 3,4-dihydroxyphenylalanine (DOPA). No evidence for a significant involvement of an L-m-tyrosine intermediate in DOPA formation was found.
Collapse
Affiliation(s)
- M H Fukami
- Department of Biochemistry, University of Bergen, Norway
| | | | | |
Collapse
|