1
|
Faroni A, Smith R, Procacci P, Castelnovo L, Puccianti E, Reid A, Magnaghi V, Verkhratsky A. Purinergic signaling mediated by P2X7receptors controls myelination in sciatic nerves. J Neurosci Res 2014; 92:1259-69. [DOI: 10.1002/jnr.23417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 12/31/2022]
Affiliation(s)
- A. Faroni
- Blond McIndoe Laboratories; Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
- Faculty of Life Sciences; University of Manchester; Manchester United Kingdom
| | - R.J.P. Smith
- Blond McIndoe Laboratories; Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
- Faculty of Life Sciences; University of Manchester; Manchester United Kingdom
| | - P. Procacci
- Dipartimento di Scienze Biomediche per la Salute; Università degli Studi di Milano; Milan Italy
| | - L.F. Castelnovo
- Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milan Italy
| | - E. Puccianti
- Dipartimento di Scienze Biomediche per la Salute; Università degli Studi di Milano; Milan Italy
| | - A.J. Reid
- Blond McIndoe Laboratories; Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - V. Magnaghi
- Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milan Italy
| | - A. Verkhratsky
- Faculty of Life Sciences; University of Manchester; Manchester United Kingdom
| |
Collapse
|
2
|
ANANI THIERRY, SINDOU PHILIPPE, RICHARD LAURENCE, DIOT MARTINE, VALLAT JEANMICHEL. Ultrastructural Immunocytochemical Abnormalities of Peripheral Myelin Proteins in Hereditary Sensory-Motor Neuropathies: 12 cases. Ann N Y Acad Sci 2006; 883:186-195. [DOI: 10.1111/j.1749-6632.1999.tb08581.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Kamholz J, Awatramani R, Menichella D, Jiang H, Xu W, Shy M. Regulation of Myelin-Specific Gene Expression: Relevance to CMT1. Ann N Y Acad Sci 2006; 883:91-108. [PMID: 29086995 DOI: 10.1111/j.1749-6632.1999.tb08572.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schwann cells, the myelinating cells of the peripheral nervous system, are derived from the neural crest. Once neural crest cells are committed to the Schwann cell fate, they can take on one of two phenotypes to become myelinating or nonmyelinating Schwann cells, a decision that is determined by interactions with axons. The critical step in the differentiation of myelinating Schwann cells is the establishment of a one-to-one relationship with axons, the so-called "promyelinating" stage of Schwann cell development. The transition from the promyelinating to the myelinating stage of development is then accompanied by a number of significant changes in the pattern of gene expression, including the activation of a set of genes encoding myelin structural proteins and lipid biosynthetic enzymes, and the inactivation of a set of genes expressed only in immature or nonmyelinating Schwann cells. These changes are regulated mainly at the transcriptional level and also require continuous interaction between Schwann cells and their axons. Two transcription factors, Krox 20 (EGR2) and Oct 6 (SCIP/Tst1), are necessary for the transition from the promyelinating to the myelinating stage of Schwann cell development. Krox 20, expressed in myelinating but not promyelinating Schwann cells, is absolutely required for this transition, and myelination cannot occur in its absence. Oct 6, expressed mainly in promyelinating Schwann cells and then downregulated before myelination, is necessary for the correct timing of this transition, since myelination is delayed in its absence. Neither Krox 20 nor Oct 6, however, is required for the initial activation of myelin gene expression. Although the mechanisms of Krox 20 and Oct 6 action during myelination are not known, mutation in Krox 20 has been shown to cause CMT1, further implicating this protein in the pathogenesis of this disease. Identifying the molecular mechanisms of Krox 20 and Oct 6 action will thus be important both for understanding myelination and for designing future treatments for CMT1. Point mutations in the genes encoding the myelin proteins PMP22 and P0 cause CMT1A without a gene duplication and CMT1B, respectively. Although the clinical and pathological phenotypes of CMT1A and CMT1B are similar, their molecular pathogenesis is quite different. Point mutations in PMP22 alter the trafficking of the protein, so that it accumulates in the endoplasmic reticulum (ER) and intermediate compartment (IC). Mutant PMP22 also sequesters its normal counterpart in the ER, further reducing the amount of PMP22 available for myelin synthesis at the membrane, and accounting, at least in part, for its severe effect on myelination. Mutant PMP22 probably also activates an ER-to-nucleus signal transduction pathway associated with misfolded proteins, which may account for the decrease of myelin gene expression in Schwann cells in Trembler mutant mice. In contrast, absence of expression of the homotypic adhesion molecule, P0, in mice in which the gene has been inactivated, produces a unique pattern of Schwann cell gene expression, demonstrating that P0 plays a regulatory as well as a structural role in myelination. Whether this role is direct, through a P0-mediated adhesion pathway, or indirect, through adhesion pathways mediated by cadherins or integrins, however, remains to be determined. The molecular mechanisms underlying dysmyelination in CMT1 are thus complex, with pleitropic effects on Schwann cell physiology that are determined both by the type of mutation and the protein mutated. Identifying these molecular mechanisms, however, are important both for understanding myelination and for designing future treatments for CMT1. Although demyelination is the hallmark of CMT1, the clinical signs and symptoms of this disease are probably produced by axonal degeneration, not demyelination. Interestingly, a number of recent studies have demonstrated that Schwann cells from Trembler mice or patients with CMT1A can induce local axonal abnormalities, including decreased axonal transport, and altered neurofilament phosphorylation. These data thus suggest that disability of patients with CMT1 is caused by abnormal Schwann cell-axonal interactions. Efforts both to understand the effects of myelinating Schwann cells on their axons and to prevent axonal degeneration or promote axonal regeneration are thus central for the future development of a rational molecular therapy for CMT1.
Collapse
Affiliation(s)
- John Kamholz
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Raj Awatramani
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Daniela Menichella
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Huiyuan Jiang
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Wenbo Xu
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Michael Shy
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
4
|
MENICHELLA DANIELAMARIA, XU WENBO, JIANG HUIYUAN, SOHI JASLOVELEEN, VALLAT JEANMICHAEL, BARON PIERLUIGI, KAMHOLZ JOHN, SHY MICHAEL. The Absence of Myelin P0Protein Produces a Novel Molecular Phenotype in Schwann Cell. Ann N Y Acad Sci 2006; 883:281-293. [DOI: 10.1111/j.1749-6632.1999.tb08590.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
GARBAY BERTRAND, SALLES JEROME, KNOLL ANJA, BOIRON-SARGUEIL FRANÇOISE, HEAPE ANTHONYM, BONNET JACQUES, CASSAGNE CLAUDE. Trembler as a Mouse Model of CMT1A? Ann N Y Acad Sci 2006; 883:262-272. [DOI: 10.1111/j.1749-6632.1999.tb08588.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Giambonini-Brugnoli G, Buchstaller J, Sommer L, Suter U, Mantei N. Distinct disease mechanisms in peripheral neuropathies due to altered peripheral myelin protein 22 gene dosage or a Pmp22 point mutation. Neurobiol Dis 2005; 18:656-68. [PMID: 15755691 DOI: 10.1016/j.nbd.2004.10.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 10/27/2004] [Accepted: 10/28/2004] [Indexed: 01/25/2023] Open
Abstract
Point mutations affecting PMP22 can cause hereditary demyelinating and dysmyelinating peripheral neuropathies. In addition, duplication and deletion of PMP22 are associated with Charcot-Marie-Tooth disease Type 1A (CMT1A) and Hereditary Neuropathy with Liability to Pressure Palsy (HNPP), respectively. This study was designed to elucidate disease processes caused by misexpression of Pmp22 and, at the same time, to gain further information on the controversial molecular function of PMP22. To this end, we took advantage of the unique resource of a set of various Pmp22 mutant mice to carry out comparative expression profiling of mutant and wild-type sciatic nerves. Tissues derived from Pmp22-/- ("knockout"), Pmp22tg (increased Pmp22 copy number), and Trembler (Tr; point mutation in Pmp22) mutant mice were analyzed at two developmental stages: (i) at postnatal day (P)4, when normal myelination has just started and primary causative defects of the mutations are expected to be apparent, and (ii) at P60, with the goal of obtaining information on secondary disease effects. Interestingly, the three Pmp22 mutants exhibited distinct profiles of gene expression, suggesting different disease mechanisms. Increased expression of genes involved in cell cycle regulation and DNA replication is characteristic and specific for the early stage in Pmp22-/- mice, supporting a primary function of PMP22 in the regulation of Schwann cell proliferation. In the Tr mutant, a distinguishing feature is the high expression of stress response genes. Both Tr and Pmp22tg mice show strongly reduced expression of genes important for cholesterol synthesis at P4, a characteristic that is common to all three mutants at P60. Finally, we have identified a number of candidate genes that may play important roles in the disease process or in myelination per se.
Collapse
Affiliation(s)
- Guya Giambonini-Brugnoli
- Institute for Cell Biology, Department of Biology, ETH-Hönggerberg, Swiss Federal Institute of Technology, Schafmattstrasse 18, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Costaglioli P, Côme C, Knoll-Gellida A, Salles J, Cassagne C, Garbay B. The homeotic protein dlk is expressed during peripheral nerve development. FEBS Lett 2001; 509:413-6. [PMID: 11749965 DOI: 10.1016/s0014-5793(01)03205-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the molecular events controlling myelination of the peripheral nervous system, we compared gene expression of normal mouse sciatic nerves to that of the trembler mouse, whose Schwann cells are blocked in a pre-myelinating phenotype. Using cDNA array, we assessed expression levels of 1176 genes, and we found that delta-like protein (dlk), an epidermal growth factor-like homeotic protein, was expressed in the normal developing nerves, but at a low level in the dysmyelinating mutant trembler. Moreover, dlk expression was down-regulated when myelin protein expression was up-regulated, and no expression was observed in the developing brain. These results suggest that dlk expression is required for Schwann cell acquisition of the myelinating phenotype.
Collapse
Affiliation(s)
- P Costaglioli
- Ecole Supérieure de Technologie des Biomolécules de Bordeaux, Université Victor Segalen Bordeaux 2, France
| | | | | | | | | | | |
Collapse
|
8
|
Menichella DM, Arroyo EJ, Awatramani R, Xu T, Baron P, Vallat JM, Balsamo J, Lilien J, Scarlato G, Kamholz J, Scherer SS, Shy ME. Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells. Mol Cell Neurosci 2001; 18:606-18. [PMID: 11749037 DOI: 10.1006/mcne.2001.1041] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein Zero (P0), the major structural protein in the peripheral nervous system (PNS) myelin, acts as a homotypic adhesion molecule and is thought to mediate compaction of adjacent wraps of myelin membrane. E-Cadherin, a calcium-dependent adhesion molecule, is also expressed in myelinating Schwann cells in the PNS and is involved in forming adherens junctions between adjacent loops of membrane at the paranode. To determine the relationship, if any, between P0-mediated and cadherin-mediated adhesion during myelination, we investigated the expression of E-cadherin and its binding partner, beta-catenin, in sciatic nerve of mice lacking P0 (P0(-/-)). We find that in P0(-/-) peripheral myelin neither E-cadherin nor beta-catenin are localized to paranodes, but are instead found in small puncta throughout the Schwann cell. In addition, only occasional, often rudimentary, adherens junctions are formed. Analysis of E-cadherin and beta-catenin expression during nerve development demonstrates that E-cadherin and beta-catenin are localized to the paranodal region after the onset of myelin compaction. Interestingly, axoglial junction formation is normal in P0(-/-) nerve. Taken together, these data demonstrate that P0 is necessary for the formation of adherens junctions but not axoglial junctions in myelinating Schwann cells.
Collapse
Affiliation(s)
- D M Menichella
- Institute of Neurology, IRCCS Ospedale Maggiore, Centro Dino Ferrari, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shy ME, Balsamo J, Lilien J, Kamholz J. A molecular basis for hereditary motor and sensory neuropathy disorders. Curr Neurol Neurosci Rep 2001; 1:77-88. [PMID: 11898503 DOI: 10.1007/s11910-001-0079-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Charcot-Marie-Tooth disease (CMT), or inherited peripheral neuropathies, is one of the most frequent genetically inherited neurologic disorders, with a prevalence of approximately one in 2500 people. CMT is usually inherited in an autosomal dominant fashion, although X-linked and recessive forms of CMT also exist. Over the past several years, considerable progress has been made toward understanding the genetic causes of many of the most frequent forms of CMT, particularly those caused by mutations in Schwann cell genes inducing the demyelinating forms of CMT, also known as CMT1. Because the genetic cause of these disorders is known, it is now possible to study how mutations in genes encoding myelin proteins cause neuropathy. Identifying these mechanisms will be important both for understanding demyelination and for developing future treatments for CMT.
Collapse
Affiliation(s)
- M E Shy
- Department of Neurology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 421 East Canfield, Elliman Building 3206, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
10
|
Xu W, Manichella D, Jiang H, Vallat JM, Lilien J, Baron P, Scarlato G, Kamholz J, Shy ME. Absence of P0 leads to the dysregulation of myelin gene expression and myelin morphogenesis. J Neurosci Res 2000; 60:714-24. [PMID: 10861783 DOI: 10.1002/1097-4547(20000615)60:6<714::aid-jnr3>3.0.co;2-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
P0, the major peripheral nervous system (PNS) myelin protein, is a member of the immunoglobulin supergene family of membrane proteins and can mediate homotypic adhesion. P0 is an essential structural component of PNS myelin; mice in which P0 expression has been eliminated by homologous recombination (P0-/-) develop a severe dysmyelinating neuropathy with predominantly uncompacted myelin. Although P0 is thought to play a role in myelin compaction by promoting adhesion between adjacent extracellular myelin wraps, as an adhesion molecule it could also have a regulatory function. Consistent with this hypothesis, Schwann cells in adult P0-/- mice display a novel molecular phenotype: PMP22 expression is down-regulated, MAG and PLP expression are up-regulated, and MBP expression is unchanged. As in quaking viable mutant mice (qk(v)), which have uncompacted myelin morphologically similar to that found in P0-/- mice, neither the qKI-6 or qKI-7 proteins are expressed in P0-/- peripheral nerve. In addition to these changes in gene expression in the P0 knockout, PLP/DM-20 accumulates in the endoplasmic reticulum of P0-/- Schwann cells, whereas MAG accumulates in redundant loops of uncompacted myelin, not at nodes of Ranvier or Schmidt-Lantermann incisures. Taken together, these results demonstrate that P0 is involved, either directly or indirectly, in the regulation of both myelin gene expression and myelin morphogenesis.
Collapse
Affiliation(s)
- W Xu
- Department of Neurology and The Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kamholz J, Menichella D, Jani A, Garbern J, Lewis RA, Krajewski KM, Lilien J, Scherer SS, Shy ME. Charcot-Marie-Tooth disease type 1: molecular pathogenesis to gene therapy. Brain 2000; 123 ( Pt 2):222-33. [PMID: 10648431 DOI: 10.1093/brain/123.2.222] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1 (CMT1) is caused by mutations in the peripheral myelin protein, 22 kDa (PMP22) gene, protein zero (P0) gene, early growth response gene 2 (EGR-2) and connexin-32 gene, which are expressed in Schwann cells, the myelinating cells of the peripheral nervous system. Although the clinical and pathological phenotypes of the various forms of CMT1 are similar, including distal muscle weakness and sensory loss, their molecular pathogenesis is likely to be quite distinct. In addition, while demyelination is the hallmark of CMT1, the clinical signs and symptoms of the disease are probably produced by axonal degeneration, not demyelination itself. In this review we discuss the molecular pathogenesis of CMT1, as well as approaches to an effective gene therapy for this disease.
Collapse
Affiliation(s)
- J Kamholz
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Daude N, Ellie E, Reichardt JK, Petry, KG. In vivo and in vitro expression of rat galactose-1-phosphate uridyltransferase (GALT) in the developing central and peripheral nervous system. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0165-3806(96)80011-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Garbay B, Cassagne C. Expression of the ceramide galactosyltransferase gene during myelination of the mouse nervous system. Comparison with the genes encoding myelin basic proteins, choline kinase and CTP:phosphocholine cytidylyltransferase. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 83:119-24. [PMID: 7535200 DOI: 10.1016/0165-3806(94)90185-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present study documents the patterns of mRNA expression for the ceramide galactosyltransferase (CGT), the CTP:phosphocholine cytidylyltransferase (CT), and the choline kinase (CK) during the myelination period of the mouse central nervous system (CNS) and peripheral nervous system (PNS). Using the Northern blot technique with densitometric analyses, we show that the CK gene is not developmentally regulated during the period studied, whereas a peak of expression of the CT gene is observed around day 10. On the other hand, the expression of the CGT gene is similar to that of the MBP gene in the CNS and the PNS. Therefore, the synthesis of the galactosylceramides during the myelination period seems to be controlled at the level of the expression of the CGT gene. These results were compared to those of a neurological mutant, the trembler mouse, whose PNS myelination is deficient. Our results clearly indicate that the deficit in the accumulation of the galactosylceramides documented for this mutant is well correlated to a reduced CGT gene expression.
Collapse
Affiliation(s)
- B Garbay
- Laboratoire de Biogenèse Membranaire, URA-CNRS 1811, IBGC du CNRS, Université de Bordeaux II, France
| | | |
Collapse
|
14
|
Kamholz J, Shy M, Scherer S. Elevated expression of messenger RNA for peripheral myelin protein 22 in biopsied peripheral nerves of patients with Charcot-Marie-Tooth disease type 1A. Ann Neurol 1994; 36:451-2. [PMID: 8080259 DOI: 10.1002/ana.410360326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Snipes GJ, Suter U, Welcher AA, Shooter EM. Characterization of a novel peripheral nervous system myelin protein (PMP-22/SR13). J Biophys Biochem Cytol 1992; 117:225-38. [PMID: 1556154 PMCID: PMC2289391 DOI: 10.1083/jcb.117.1.225] [Citation(s) in RCA: 304] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have recently described a novel cDNA, SR13 (Welcher, A. A., U. Suter, M. De Leon, G. J. Snipes, and E. M. Shooter. 1991. Proc. Natl. Acad. Sci. USA. 88:7195-7199), that is repressed after sciatic nerve crush injury and shows homology to both the growth arrest-specific mRNA, gas3 (Manfioletti, G., M. E. Ruaro, G. Del Sal, L. Philipson, and C. Schneider, 1990. Mol. Cell Biol. 10:2924-2930), and to the myelin protein, PASII (Kitamura, K., M. Suzuki, and K. Uyemura. 1976. Biochim. Biophys. Acta. 455:806-816). In this report, we show that the 22-kD SR13 protein is expressed in the compact portion of essentially all myelinated fibers in the peripheral nervous system. Although SR13 mRNA was found in the central nervous system, no corresponding SR13 protein could be detected by either immunoblot analysis or by immunohistochemistry. Northern and immunoblot analysis of SR13 mRNA and protein expression during development of the peripheral nervous system reveal a pattern similar to other myelin proteins. Furthermore, we demonstrate by in situ mRNA hybridization on tissue sections and on individual nerve fibers that SR13 mRNA is produced predominantly by Schwann cells. We conclude that the SR13 protein is apparently exclusively expressed in the peripheral nervous system where it is a major component of myelin. Thus, we propose the name Peripheral Myelin Protein-22 (PMP-22) for the proteins and cDNA previously designated PASII, SR13, and gas3.
Collapse
Affiliation(s)
- G J Snipes
- Department of Neurobiology, Stanford University School of Medicine, CA 94305
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- A Messing
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706
| |
Collapse
|
17
|
Stahl N, Harry J, Popko B. Quantitative analysis of myelin protein gene expression during development in the rat sciatic nerve. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1990; 8:209-12. [PMID: 1699107 DOI: 10.1016/0169-328x(90)90018-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We determined the temporal profile of expression of the genes encoding the P0 glycoprotein, the myelin-associated glycoprotein (MAG), the myelin basic protein (MBP), the proteolipid protein (PLP), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in the sciatic nerve of rats. The level of expression of the MAG gene occurred maximally in animals 13 days of age, approximately one week earlier than the peak expression of the MBP and P0 genes. The genes encoding PLP and CNP were not expressed developmentally in a manner that correlated with the myelination of the sciatic nerve. Furthermore, using RNA synthesized in vitro, specific for each of the myelin protein genes, we have determined the absolute amounts of messenger RNA for the various myelin proteins in total RNA from sciatic nerves. P0 and MBP RNA were present at very high levels, whereas the amount of MAG, PLP and CNP RNA were much less.
Collapse
Affiliation(s)
- N Stahl
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|