1
|
Wu Z, Sun J, Liao Z, Sun T, Huang L, Qiao J, Ling C, Chen C, Zhang B, Wang H. Activation of PAR1 contributes to ferroptosis of Schwann cells and inhibits regeneration of myelin sheath after sciatic nerve crush injury in rats via Hippo-YAP/ACSL4 pathway. Exp Neurol 2025; 384:115053. [PMID: 39542339 DOI: 10.1016/j.expneurol.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Peripheral nerve injury (PNI) is characterized by high incidence and sequela rate. Recently, there was increasing evidence that has shown ferroptosis may impede functional recovery. Our objective is to explore the novel mechanism that regulates ferroptosis after PNI. METHODS LC-MS/MS proteomics was used to explore the possible differential signals, while PCR array was performed to investigate the differential factors. Besides, we also tried to activate or inhibit the key factors and then observe the level of ferroptosis. Regeneration of myelin sheath was finally examined in vivo via transmission electron microscopy. RESULTS Proteomics analysis suggested coagulation signal was activated after sciatic nerve crush injury, in which high expression of F2 (encoding thrombin) and F2r (encoding PAR1) were observed. Both thrombin and PAR1-targeted activator TRAP6 can induce ferroptosis in RSC96 cells, which can be rescued by Vorapaxar (PAR1 targeted inhibitor) in vitro. Further PCR array revealed that activation of PAR1 induced ferroptosis in RSC96 cells by increasing expression of YAP and ACSL4. Immunofluorescence of sciatic nerve confirmed that the expression of YAP and ACSL4 were simultaneously reduced after PAR1 inhibition, which may contribute to myelin regeneration after injury in SD rats. CONCLUSION Inhibition of PAR1 can relieve ferroptosis after sciatic nerve crush injury in SD rats through Hippo-YAP/ACSL4 pathway, thereby regulating myelin regeneration after injury. In summary, PAR1/Hippo-YAP/ACSL4 pathway may be a promising therapeutic target for promoting functional recovery post-sciatic crush injury.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Jun Sun
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Zhi Liao
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Tao Sun
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Lixin Huang
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Jia Qiao
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Cong Ling
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Chuan Chen
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Baoyu Zhang
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Hui Wang
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
2
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
3
|
Vittal Rao H, Bihaqi SW, Iannucci J, Sen A, Grammas P. Thrombin Signaling Contributes to High Glucose-Induced Injury of Human Brain Microvascular Endothelial Cells. J Alzheimers Dis 2021; 79:211-224. [PMID: 33252072 DOI: 10.3233/jad-200658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes is one of the strongest disease-related risk factors for Alzheimer's disease (AD). In diabetics, hyperglycemia-induced microvascular complications are the major cause of end-organ injury, contributing to morbidity and mortality. Microvascular pathology is also an important and early feature of AD. The cerebral microvasculature may be a point of convergence of both diseases. Several lines of evidence also implicate thrombin in AD as well as in diabetes. OBJECTIVE Our objective was to investigate the role of thrombin in glucose-induced brain microvascular endothelial injury. METHODS Cultured Human brain microvascular endothelial cells (HBMVECs) were treated with 30 mM glucose±100 nM thrombin and±250 nM Dabigatran or inhibitors of PAR1, p38MAPK, MMP2, or MMP9. Cytotoxicity and thrombin activity assays on supernatants and western blotting for protein expression in lysates were performed. RESULTS reatment of HBMVECs with 30 mM glucose increased thrombin activity and expression of inflammatory proteins TNFα, IL-6, and MMPs 2 and 9; this elevation was reduced by the thrombin inhibitor dabigatran. Direct treatment of brain endothelial cells with thrombin upregulated p38MAPK and CREB, and induced TNFα, IL6, MMP2, and MMP9 as well as oxidative stress proteins NOX4 and iNOS. Inhibition of thrombin, thrombin receptor PAR1 or p38MAPK decrease expression of inflammatory and oxidative stress proteins, implying that thrombin may play a central role in glucose-induced endothelial injury. CONCLUSION Since preventing brain endothelial injury would preserve blood-brain barrier integrity, prevent neuroinflammation, and retain intact functioning of the neurovascular unit, inhibiting thrombin, or its downstream signaling effectors, could be a therapeutic strategy for mitigating diabetes-induced dementia.
Collapse
Affiliation(s)
- Haripriya Vittal Rao
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Syed Waseem Bihaqi
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Jaclyn Iannucci
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Paula Grammas
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
4
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
5
|
Pellegatta M, Taveggia C. The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Front Cell Neurosci 2019; 13:93. [PMID: 30949030 PMCID: PMC6436609 DOI: 10.3389/fncel.2019.00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
After damage, axons in the peripheral nervous system (PNS) regenerate and regrow following a process termed Wallerian degeneration, but the regenerative process is often incomplete and usually the system does not reach full recovery. Key steps to the creation of a permissive environment for axonal regrowth are the trans-differentiation of Schwann cells and the remodeling of the extracellular matrix (ECM). In this review article, we will discuss how proteases and secretases promote effective regeneration and remyelination. We will detail how they control neuregulin-1 (NRG-1) activity at the post-translational level, as the concerted action of alpha, beta and gamma secretases cooperates to balance activating and inhibitory signals necessary for physiological myelination and remyelination. In addition, we will discuss the role of other proteases in nerve repair, among which A Disintegrin And Metalloproteinases (ADAMs) and gamma-secretases substrates. Moreover, we will present how matrix metalloproteinases (MMPs) and proteases of the blood coagulation cascade participate in forming newly synthetized myelin and in regulating axonal regeneration. Overall, we will highlight how a deeper comprehension of secretases and proteases mechanism of action in Wallerian degeneration might be useful to develop new therapies with the potential of readily and efficiently improve the regenerative process.
Collapse
Affiliation(s)
- Marta Pellegatta
- Division of Neuroscience and INSPE at IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience and INSPE at IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Bedoui Y, Neal JW, Gasque P. The Neuro-Immune-Regulators (NIREGs) Promote Tissue Resilience; a Vital Component of the Host's Defense Strategy against Neuroinflammation. J Neuroimmune Pharmacol 2018; 13:309-329. [PMID: 29909495 DOI: 10.1007/s11481-018-9793-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023]
Abstract
An effective protective inflammatory response in the brain is crucial for the clearance of pathogens (e.g. microbes, amyloid fibrils, prionSC) and should be closely regulated. However, the CNS seems to have limited tissue resilience to withstand the detrimental effects of uncontrolled inflammation compromising functional recovery and tissue repair. Newly described neuro-immune-regulators (NIREGs) are functionally related proteins regulating the severity and duration of the host inflammatory response. NIREGs such as CD200, CD47 and CX3CL1 are vital for increasing tissue resilience and are constitutively expressed by neurons. The interaction with co-receptors (CD200R, CD172a, CX3CR1) will maintain microglia in the resting phenotype, directing aggressive microglia phenotype and limiting bystander injuries. Neurons can also express many of the complement NIREGs (CD55, CD46, CD59 and factor H). Neurons and glia also express suppressor of cytokine signaling proteins (SOCS) down regulating janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway and to lead to the polarization of microglia towards anti-inflammatory phenotype. Other NIREGs such as serine protease inhibitors (serpins) and thrombomodulin (CD141) inhibit neurotoxic systemic coagulation proteins such as thrombin. The unfolded protein response (UPR) detects misfolded proteins and other stressors to prevent irreversible cell injury. Microglial pattern recognition receptors (PRR) (TREM-2, CR3, FcγR) are important to clear apoptotic cells and cellular debris but in non-phlogystic manner through inhibitory signaling pathways. The TYRO3, Axl, Mer (TAM) tyrosine receptor kinases activated by Gas 6 and PROS1 regulate inflammation by inhibiting Toll like receptors (TLR) /JAK-STAT activation and contribute to NIREG's functions.
Collapse
Affiliation(s)
- Yosra Bedoui
- Université de la Réunion, CRNS 9192, INSERM U1187, IRD249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Saint -Clotilde, La Réunion, France
| | - Jim W Neal
- Infection and Immunity, Cardiff University, Henry Wellcome Building, Cardiff, CF14 4XN, UK.
| | - Philippe Gasque
- Laboratoire de biologie, secteur laboratoire d'immunologie Clinique et expérimentale ZOI, LICE-OI, CHU Felix Guyon Bellepierre, St Denis, La Réunion, France.
| |
Collapse
|
7
|
Yang Y, Xin X, Fu X, Xu D. Expression pattern of human SERPINE2 in a variety of human tumors. Oncol Lett 2018; 15:4523-4530. [PMID: 29556291 DOI: 10.3892/ol.2018.7819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Serine proteinase inhibitor, clade E member 2 (SERPINE2), also known as protease nexin-1 (PN-1), is a member of the serpin family. Despite several reported roles of SERPINE2 in tumor development the histological distribution of SERPINE2 and its expression levels in a large variety of tumors remains unclear. Through expressed sequence tag database analysis, immunohistochemical staining of tissue microarrays and a literature review, it was revealed that SERPINE2 expression varied according to growth stages and tissue types. SERPINE2 is differentially expressed in a number of tumors and their normal tissue counterparts. SERPINE2 is identified most abundantly in adenocarcinomas. SERPINE2 serves diverse roles in a variety of tumors and therefore may serve as a promising biomarker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- Ying Yang
- Department of Haematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiangke Xin
- Department of Haematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing Fu
- Department of Haematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Danmei Xu
- Department of Haematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Haematology, Imperial College London, Hammersmith Hospital, London, W12 0HS, UK
| |
Collapse
|
8
|
Abstract
TRPC channels play important roles in neuronal death/survival in ischemic stroke, vasospasm in hemorrhagic stroke, thrombin-induced astrocyte pathological changes, and also in the initiation of stroke by affecting blood pressure and atherogenesis. TRPCs' unique channel characters and downstream pathways make them possible new targets for stroke therapy. TRPC proteins have different functions in different cell types. Considering TRPCs' extensive distribution in various tissues and cell types, drugs targeting them could induce more complicated effects. More specific agonists/antagonists and antibodies are required for future study of TRPCs as potential targets for stroke therapy.
Collapse
|
9
|
Boudida Y, Gagaoua M, Becila S, Picard B, Boudjellal A, Herrera-Mendez CH, Sentandreu M, Ouali A. Serine Protease Inhibitors as Good Predictors of Meat Tenderness: Which Are They and What Are Their Functions? Crit Rev Food Sci Nutr 2017; 56:957-72. [PMID: 25085261 DOI: 10.1080/10408398.2012.741630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since years, serine proteases and their inhibitors were an enigma to meat scientists. They were indeed considered to be extracellular and to play no role in postmortem muscle proteolysis. In the 1990's, we observed that protease inhibitors levels in muscles are a better predictor of meat tenderness than their target enzymes. From a practical point of view, we therefore choose to look for serine protease inhibitors rather than their target enzymes, i.e. serine proteases and the purpose of this report was to overview the findings obtained. Fractionation of a muscle crude extract by gel filtration revealed three major trypsin inhibitory fractions designed as F1 (Mr:50-70 kDa), F2 (Mr:40-60 kDa) and F3 (Mr:10-15kD) which were analyzed separately. Besides antithrombin III, an heparin dependent thrombin inhibitor, F1 and F2 comprised a large set of closely related trypsin inhibitors encoded by at least 8 genes bovSERPINA3-1 to A3-8 and able to inhibit also strongly initiator and effector caspases. They all belong to the serpin superfamily, known to form covalent complexes with their target enzymes, were located within muscle cells and found in all tissues and fluids examined irrespective of the animal species. Potential biological functions in living and postmortem muscle were proposed for all of them. In contrast to F1 and F2 which have been more extensively investigated only preliminary findings were provided for F3. Taken together, these results tend to ascertain the onset of apoptosis in postmortem muscle. However, the exact mechanisms driving the cell towards apoptosis and how apoptosis, an energy dependent process, can be completed postmortem remain still unclear.
Collapse
Affiliation(s)
- Yasmine Boudida
- a Equipe Maquav, INATAA, Université Frères Mentouri , Constantine , Algeria
| | - Mohammed Gagaoua
- a Equipe Maquav, INATAA, Université Frères Mentouri , Constantine , Algeria
| | - Samira Becila
- a Equipe Maquav, INATAA, Université Frères Mentouri , Constantine , Algeria
| | - Brigitte Picard
- b UMR1213 Herbivores, URH - AMUVI, INRA de Clermont Ferrand Theix, St Genès Champanelle , France
| | | | - Carlos H Herrera-Mendez
- c Agroindustrial Engineering Department, Universidad De Guanajuato, Salvatierra , Guanajuato , Mexico
| | - Miguel Sentandreu
- d Instituto de Agroquímica y Tecnología de Alimentos, CSIC , Burjassot (Valencia ), Spain
| | - Ahmed Ouali
- e UR370, QuaPA, INRA de Clermont Ferrand - Theix, St Genès Champanelle , France
| |
Collapse
|
10
|
Cahill K, Suttmiller R, Oehrle M, Sabelhaus A, Gemene KL. Pulsed Chronopotentiometric Detection of Thrombin Activity Using Reversible Polyion Selective Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kaitlin Cahill
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Rebecca Suttmiller
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Melissa Oehrle
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Andrew Sabelhaus
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Kebede L. Gemene
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| |
Collapse
|
11
|
Gurwitz D. The Alzheimer's disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII: comment. J Thromb Haemost 2016; 14:1488-9. [PMID: 27169378 DOI: 10.1111/jth.13358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Indexed: 12/18/2022]
Affiliation(s)
- D Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
12
|
Rohatgi T, Sedehizade F, Reymann KG, Reiser G. Protease-Activated Receptors in Neuronal Development, Neurodegeneration, and Neuroprotection: Thrombin as Signaling Molecule in the Brain. Neuroscientist 2016; 10:501-12. [PMID: 15534036 DOI: 10.1177/1073858404269955] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protease-activated receptors (PARs) belong to the superfamily of seven transmembrane domain G protein-coupled receptors. Four PAR subtypes are known, PAR-1 to -4. PARs are highly homologous between the species and are expressed in a wide variety of tissues and cell types. Of particular interest is the role which these receptors play in the brain, with regard to neuroprotection or degeneration under pathological conditions. The main agonist of PARs is thrombin, a multifunctional serine protease, known to be present not only in blood plasma but also in the brain. PARs possess an irreversible activation mechanism. Binding of agonist and subsequent cleavage of the extracellular N-terminus of the receptor results in exposure of a so-called tethered ligand domain, which then binds to extracellular loop 2 of the receptor leading to receptor activation. PARs exhibit an extensive expression pattern in both the central and the peripheral nervous system. PARs participate in several mechanisms important for normal cellular functioning and during critical situations involving cellular survival and death. In the last few years, research on Alzheimer’s disease and stroke has linked PARs to the pathophysiology of these neurodegenerative disorders. Actions of thrombin are concentration-dependent, and therefore, depending on cellular function and environment, serve as a double-edged sword. Thrombin can be neuroprotective during stress conditions, whereas under normal conditions high concentrations of thrombin are toxic to cells.
Collapse
Affiliation(s)
- Tanuja Rohatgi
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | | | | | | |
Collapse
|
13
|
Protease Nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase Plasminogen Activator and Matrix Metalloproteinase-9/2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2631-44. [DOI: 10.1016/j.bbamcr.2014.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 01/23/2023]
|
14
|
Change of fate commitment in adult neural progenitor cells subjected to chronic inflammation. J Neurosci 2014; 34:11571-82. [PMID: 25164655 DOI: 10.1523/jneurosci.0231-14.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural progenitor cells (NPCs) have regenerative capabilities that are activated during inflammation. We aimed at elucidating how NPCs, with special focus on the spinal cord-derived NPCs (SC-NPCs), are affected by chronic inflammation modeled by experimental autoimmune encephalomyelitis (EAE). NPCs derived from the subventricular zone (SVZ-NPCs) were also included in the study as a reference from a distant inflammatory site. We also investigated the transcriptional and functional difference between the SC-NPCs and SVZ-NPCs during homeostatic conditions. NPCs were isolated and propagated from the SVZ and cervical, thoracic, and caudal regions of the SC from naive rats and rats subjected to EAE. Using Affymetrix microarray analyses, the global transcriptome was measured in the different NPC populations. These analyses were paralleled by NPC differentiation studies. Assessment of basal transcriptional and functional differences between NPC populations in naive rat revealed a higher neurogenic potential in SVZ-NPCs compared with SC-NPCs. Conversely, during EAE, the neurogenicity of the SC-NPCs was increased while their gliogenicity was decreased. We detected an overall increase of inflammation and neurodegeneration-related genes while the developmentally related profile was decreased. Among the decreased functions, we isolated a gliogenic signature that was confirmed by differentiation assays where the SC-NPCs from EAE generated fewer oligodendrocytes and astrocytes but more neurons than control cultures. In summary, NPCs displayed differences in fate-regulating genes and differentiation potential depending on their rostrocaudal origin. Inflammatory conditions downregulated gliogenicity in SC-NPCs, promoting neurogenicity. These findings give important insight into neuroinflammatory diseases and the mechanisms influencing NPC plasticity during these conditions.
Collapse
|
15
|
Protease activated receptor-1 mediates cytotoxicity during ischemia using in vivo and in vitro models. Neuroscience 2014; 281:229-40. [PMID: 25261684 DOI: 10.1016/j.neuroscience.2014.09.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/31/2014] [Accepted: 09/16/2014] [Indexed: 01/08/2023]
Abstract
Protease activated receptors (PARs) populate neurons and astrocytes in the brain. The serine protease thrombin, which activates PAR-1 during the first hours after stroke, appears to be associated with the cytotoxicity. Thrombin antagonists and PAR-1 inhibitors have been correlated with reduced cell death and behavioral protection after stroke, but no data yet support a mechanistic link between PAR-1 action and benefit. We sought to establish the essential role of PAR-1 in mediating ischemic damage. Using a short hairpin mRNA packaged with green fluorescent protein in a lentivirus vector, we knocked downPAR-1 in the medial caudate nucleus prior to rat middle cerebral artery occlusion (MCAo) and in rat neurons prior to oxygen-glucose deprivation. We also compared aged PAR-1 knockout mice with aged PAR-3, PAR-4 mice and young wild-type mice in a standard MCAo model. Silencing PAR-1 significantly reduced neurological deficits, reduced endothelial barrier leakage, and decreased neuronal degeneration in vivo during MCAo. PAR-1 knock-down in the ischemic medial caudate allowed cells to survive the ischemic injury; infected cells were negative for terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling (TUNEL) and c-Fos injury markers. Primary cultured neurons infected with PAR-1 short hairpin ribonucleic acid (shRNA) showed increased neuroprotection during hypoxic/aglycemic conditions with or without added thrombin. The aged PAR-1 knockout mice showed decreased infarction and vascular disruption compared to aged controls or young wild types. We demonstrated an essential role for PAR-1 during ischemia. Silencing or removing PAR-1 significantly protected neurons and astrocytes. Further development of agents that act at PAR-1 or its downstream pathways could yield powerful stroke therapy.
Collapse
|
16
|
Plasmin Activation of Glial Cells through Protease-Activated Receptor 1. PATHOLOGY RESEARCH INTERNATIONAL 2013; 2013:314709. [PMID: 23431500 PMCID: PMC3568866 DOI: 10.1155/2013/314709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
Abstract
The objective of this study was to determine whether plasmin could induce morphological changes in human glial cells via PAR1. Human glioblastoma A172 cells were cultured in the presence of plasmin or the PAR1 specific activating hexapeptide, SFLLRN. Cells were monitored by flow cytometry to detect proteolytic activation of PAR1 receptor. Morphological changes were recorded by photomicroscopy and apoptosis was measured by annexinV staining. Plasmin cleaved the PAR1 receptor on glial cells at 5 minutes (P = 0.02). After 30 minutes, cellular processes had begun to retract from the basal substratum and by 4 hours glial cells had become detached. Similar results were obtained by generating plasmin de novo from plasminogen. Morphological transformation was blocked by plasmin inhibitors aprotinin or epsilon-aminocaproic acid (P = 0.03). Cell viability was unimpaired during early morphological changes, but by 24 hours following plasmin treatment 22% of glial cells were apoptotic. PAR1 activating peptide SFLLRN (but not inactive isomer FSLLRN) promoted analogous glial cell detachment (P = 0.03), proving the role for PAR1 in this process. This study has identified a plasmin/PAR1 axis of glial cell activation, linked to changes in glial cell morophology. This adds to our understanding of pathophysiological disease mechanisms of plasmin and the plasminogen system in neuroinjury.
Collapse
|
17
|
Scarisbrick IA, Radulovic M, Burda JE, Larson N, Blaber SI, Giannini C, Blaber M, Vandell AG. Kallikrein 6 is a novel molecular trigger of reactive astrogliosis. Biol Chem 2012; 393:355-67. [PMID: 22505518 DOI: 10.1515/hsz-2011-0241] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/20/2012] [Indexed: 01/02/2023]
Abstract
Kallikrein-related peptidase 6 (KLK6) is a trypsin-like serine protease upregulated at sites of central nervous system (CNS) injury, including de novo expression by reactive astrocytes, yet its physiological actions are largely undefined. Taken with recent evidence that KLK6 activates G-protein-coupled protease-activated receptors (PARs), we hypothesized that injury-induced elevations in KLK6 contribute to the development of astrogliosis and that this occurs in a PAR-dependent fashion. Using primary murine astrocytes and the Neu7 astrocyte cell line, we show that KLK6 causes astrocytes to transform from an epitheliod to a stellate morphology and to secrete interleukin 6 (IL-6). By contrast, KLK6 reduced expression of glial fibrillary acidic protein (GFAP). The stellation-promoting activities of KLK6 were shown to be dependent on activation of the thrombin receptor, PAR1, as a PAR1-specific inhibitor, SCH79797, blocked KLK6-induced morphological changes. The ability of KLK6 to promote astrocyte stellation was also shown to be linked to activation of protein kinase C (PKC). These studies indicate that KLK6 is positioned to serve as a molecular trigger of select physiological processes involved in the development of astrogliosis and that this is likely to occur at least in part by activation of the G-protein-coupled receptor, PAR1.
Collapse
Affiliation(s)
- Isobel A Scarisbrick
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Stout RF, Parpura V. Cell culturing of Caenorhabditis elegans glial cells for the assessment of cytosolic Ca²⁺ dynamics. Methods Mol Biol 2012; 814:153-74. [PMID: 22144307 DOI: 10.1007/978-1-61779-452-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell culture has emerged as an important research method for studying various types of primary cells, including neurons and glial cells. This method has been especially instrumental in assessing intracellular Ca(2+) dynamics of neural cells. The invertebrate model organism Caenorhabditis elegans has been extensively used in neurobiology to study wide-spread issues ranging from gene regulation to behavior. We present some of the basic morphological characteristics of the four C. elegans glial cells residing in the cephalic sensilla of the worm, followed by a description of cell culturing methods for these glial cells. We describe the combined genetic and fluorescence microscopy approaches for identification of C. elegans glial cells in culture and assessment of their cytosolic Ca(2+) dynamics.
Collapse
Affiliation(s)
- Randy F Stout
- Department of Neurobiology, University of Alabama, Birmingham, AL, USA
| | | |
Collapse
|
19
|
Keep RF, Xi G, Hua Y, Xiang J. Clot formation, vascular repair and hematoma resolution after ICH, a coordinating role for thrombin? ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:71-5. [PMID: 21725734 DOI: 10.1007/978-3-7091-0693-8_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Following intracerebral hemorrhage (ICH) there is a sequential response involving activation of the coagulation cascade/platelet plug formation, vascular repair, upregulation of endogenous defense mechanisms and clot resolution. How these responses are coordinated and modified by different hematoma sizes has received little attention. This paper reviews evidence that thrombin can modulate and may coordinate the components of the endogenous response. This has potential consequences for treatment of ICH with a number of modalities.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
20
|
Umasuthan N, Whang I, Kim JO, Oh MJ, Jung SJ, Choi CY, Yeo SY, Lee JH, Noh JK, Lee J. Rock bream (Oplegnathus fasciatus) serpin, protease nexin-1: transcriptional analysis and characterization of its antiprotease and anticoagulant activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:785-798. [PMID: 21419793 DOI: 10.1016/j.dci.2011.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
Protease nexin-1 (PN-1) is a serine protease inhibitor (SERPIN) protein with functional roles in growth, development, patho-physiology and injury. Here, we report our work to clone, analyze the expression profile and characterize the properties of the PN-1 gene in rock bream (Rb), Oplegnathus fasciatus. RbPN-1 encodes a peptide of 397 amino acids (AA) with a predicted molecular mass of 44 kDa and a 23 AA signal peptide. RbPN-1 protein was found to harbor a characteristic SERPIN domain comprised of a SERPIN signature and having sequence homology to vertebrate PN-1s. The greatest identity (85%) was observed with PN-1 from the three-spined stickleback fish, Gasterosteus aculeatus. The functional domains, including a heparin binding site and reactive centre loop were conserved between RbPN-1 and other fish PN-1s; in particular, they were found to correspond to components of the human plasminogen activator inhibitor 1, PAI-1. Phylogenetic analysis indicated that RbPN-1 was closer to homologues of green spotted pufferfish and Japanese pufferfish. Recombinant RbPN-1 demonstrated antiprotease activity against trypsin (48%) and thrombin (89%) in a dose-dependent manner, and its antithrombotic activity was potentiated by heparin. The anticoagulant function prolonged clotting time by 3.7-fold, as compared to the control in an activated partial thromboplastin time assay. Quantitative real-time PCR results indicated that RbPN-1 is transcribed in many endogenous tissues at different levels. Lipopolysaccharide (LPS) stimulated a prolonged transcriptional response in hematic cells, and Rb iridovirus up-regulated the RbPN-1 mRNA level in hematic cells to a maximum of 3.4-fold at 12 h post-infection. Interestingly, LPS and Edwardsiella tarda significantly induced the RbPN-1 transcription at the late phase of infection. In vivo studies indicated that injury response caused a temporal suppression in RbPN-1 transcription, in conjunction with that of another SERPIN, rock bream heparin cofactor II, RbHCII. Taken together, our findings suggest that PN-1 functions as an antiprotease and anticoagulant and that SERPINs (PN-1 and HCII) are likely to contribute to immunity and post-injury responses.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Simón D, Martín-Bermejo MJ, Gallego-Hernández MT, Pastrana E, García-Escudero V, García-Gómez A, Lim F, Díaz-Nido J, Avila J, Moreno-Flores MT. Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia 2011; 59:1458-71. [PMID: 21626571 DOI: 10.1002/glia.21189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/27/2011] [Indexed: 01/02/2023]
Abstract
Olfactory ensheathing glia (OEG) cells are known to facilitate repair following axotomy of adult neurons, although the molecular mechanisms involved are not fully understood. We previously identified plasminogen activator inhibitor-1 (PAI-1), proteinase-activated receptor-1 (PAR-1), and thrombomodulin (TM) as candidates to regulate rat OEG-dependent axonal regeneration. In this study, we have validated the involvement of these proteins in promoting axonal regeneration by immortalized human OEGs. We studied the effect of silencing these proteins in OEGs on their capacity to promote the regeneration of severed adult retinal ganglion cells (RGCs) axons. Our results support the role of glial PAI-1 as a downstream effector of PAR-1 in promoting axon regeneration. In contrast, we found that TM inhibits OEG induced-axonal regeneration. We also assessed the signaling pathways downstream of PAR-1 that might modulate PAI-1 expression, observing that specifically inhibiting Gα(i), Rho kinase, or PLC and PKC downregulated the expression of PAI-1 in OEGs, with a concomitant reduction in OEG-dependent axon regeneration in adult RGCs. Our findings support an important role for the thrombin system in regulating adult axonal regeneration by OEGs.
Collapse
Affiliation(s)
- Diana Simón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Machado A, Herrera AJ, Venero JL, Santiago M, de Pablos RM, Villarán RF, Espinosa-Oliva AM, Argüelles S, Sarmiento M, Delgado-Cortés MJ, Mauriño R, Cano J. Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons. ISRN NEUROLOGY 2011; 2011:476158. [PMID: 22389821 PMCID: PMC3263561 DOI: 10.5402/2011/476158] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 12/15/2022]
Abstract
We have developed an animal model of degeneration of the nigrostriatal dopaminergic neurons, the neuronal system involved in Parkinson's disease (PD). The implication of neuroinflammation on this disease was originally established in 1988, when the presence of activated microglia in the substantia nigra (SN) of parkinsonians was reported by McGeer et al. Neuroinflammation could be involved in the progression of the disease or even has more direct implications. We injected 2 μg of the potent proinflammatory compound lipopolysaccharide (LPS) in different areas of the CNS, finding that SN displayed the highest inflammatory response and that dopaminergic (body) neurons showed a special and specific sensitivity to this process with the induction of selective dopaminergic degeneration. Neurodegeneration is induced by inflammation since it is prevented by anti-inflammatory compounds. The special sensitivity of dopaminergic neurons seems to be related to the endogenous dopaminergic content, since it is overcome by dopamine depletion. Compounds that activate microglia or induce inflammation have similar effects to LPS. This model suggest that inflammation is an important component of the degeneration of the nigrostriatal dopaminergic system, probably also in PD. Anti-inflammatory treatments could be useful to prevent or slow down the rate of dopaminergic degeneration in this disease.
Collapse
Affiliation(s)
- A Machado
- - Departmento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Griffiths MR, Gasque P, Neal JW. The regulation of the CNS innate immune response is vital for the restoration of tissue homeostasis (repair) after acute brain injury: a brief review. Int J Inflam 2010; 2010:151097. [PMID: 21152121 PMCID: PMC2989866 DOI: 10.4061/2010/151097] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/06/2010] [Accepted: 04/28/2010] [Indexed: 12/12/2022] Open
Abstract
Neurons and glia respond to acute injury by participating in the CNS innate immune response. This involves the recognition and clearance of "not self " pathogens and "altered self " apoptotic cells. Phagocytic receptors (CD14, CD36, TLR-4) clear "not self" pathogens; neurons and glia express "death signals" to initiate apoptosis in T cells.The complement opsonins C1q, C3, and iC3b facilitate the clearance of apoptotic cells by interacting with CR3 and CR4 receptors. Apoptotic cells are also cleared by the scavenger receptors CD14, Prs-R, TREM expressed by glia. Serpins also expressed by glia counter the neurotoxic effects of thrombin and other systemic proteins that gain entry to the CNS following injury. Complement pathway and T cell activation are both regulated by complement regulatory proteins expressed by glia and neurons. CD200 and CD47 are NIRegs expressed by neurons as "don't eat me" signals and they inhibit microglial activity preventing host cell attack. Neural stem cells regulate T cell activation, increase the Treg population, and suppress proinflammatory cytokine expression. Stem cells also interact with the chemoattractants C3a, C5a, SDF-1, and thrombin to promote stem cell migration into damaged tissue to support tissue homeostasis.
Collapse
Affiliation(s)
- M. R. Griffiths
- Deptartment of Medical Biochemistry, University Hospital of Wales, Cardiff University Medical School, Cardiff CF14 4XN, UK
| | - P. Gasque
- Deptartment of Medical Biochemistry, University Hospital of Wales, Cardiff University Medical School, Cardiff CF14 4XN, UK
- University Labo. Biochimie et Genetique Moleculaire, Facilities de Science et Technologies, Universite de La Reunion, 15 Avenue Rene Cassin Saint Denis, Ile de la Reunion, BP 7151, 97715, France
| | - J. W. Neal
- Deptartment of Histopathology, University Hospital of Wales, Cardiff University Medical School, Cardiff CF14 4XN, UK
| |
Collapse
|
25
|
Arcone R, Chinali A, Pozzi N, Parafati M, Maset F, Pietropaolo C, De Filippis V. Conformational and biochemical characterization of a biologically active rat recombinant Protease Nexin-1 expressed in E. coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:602-14. [PMID: 19167525 DOI: 10.1016/j.bbapap.2008.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/15/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
Protease Nexin-1, a 43-kDa glycoprotein, is a major physiological thrombin inhibitor involved in the modulation of nerve cell plasticity. Recombinant rat Protease Nexin-1 (rPN-1) was efficiently produced in Escherichia coli using a T7 RNA polymerase based expression system and purified by heparin-sepharose affinity chromatography yielding 3 mg of protein per liter of cell culture. The purity and chemical identity of rPN-1 were assessed by SDS-PAGE, Reverse Phase- High Performance Liquid Chromatography, mass spectrometry and two-dimensional-gel electrophoresis. Conformational analysis by circular dichroism and fluorescence spectroscopy revealed the presence of mixed alpha/beta secondary structure and the prevailing localization of Trp-residues in rather polar environments. Fluorescence titration of rPN-1 with heparin indicated that rPN-1 binds heparin with high affinity. Furthermore, the formation of a SDS-stable 1:1 thrombin-rPN-1 complex, monitored by SDS-PAGE, confirmed the native-like structure of rPN-1. Finally, the cellular effects of rPN-1, such as its ability to promote neurite outgrowth in neuroblastoma cells, were found to be very similar to those elicited by natural PN-1. Altogether, our results demonstrate that glycosylation does not alter neither structure nor function of PN-1 and that E. coli is a suitable expression system for obtaining milligram quantities of pure and fully active rPN-1 for structural and functional studies.
Collapse
Affiliation(s)
- Rosaria Arcone
- Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro "Magna Graecia", Edificio delle Bioscienze, Campus Universitario "Salvatore Venuta", Viale Europa, Germaneto, Catanzaro 88100, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
3CB2, a marker of radial glia, expression after experimental intracerebral hemorrhage: Role of thrombin. Brain Res 2008; 1226:156-62. [DOI: 10.1016/j.brainres.2008.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/24/2008] [Indexed: 11/30/2022]
|
27
|
Wu H, Zhao R, Qi J, Cong Y, Wang D, Liu T, Gu Y, Ban X, Huang Q. The expression and the role of protease nexin-1 on brain edema after intracerebral hemorrhage. J Neurol Sci 2008; 270:172-83. [PMID: 18442833 DOI: 10.1016/j.jns.2008.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 02/17/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Brain edema is one of the most frequent and serious complications of intracerebral hemorrhage (ICH), but how the ICH cause brain edema is unknown. Our studies were designed to investigate the regulation and distribution of protease nexin-1 (PN-1), thrombin and aquaporin-4 (AQP-4) in brain edema after ICH in rat and human brain in vivo. Our result showed that the severity of cerebral edema resulted from an acute stage of ICH. The PN-1-thrombin system modulated cerebral edema after ICH. Thrombin and AQP-4 increased to aggregate cerebral edema after ICH. In order to control the deleterious effect of thrombin's overexpression, PN-1 appeared quickly and abundantly to inhibit thrombin and lessen the cerebral edema. PN-1 was distributed in neurons and glial cells of cerebral cortex, hippocampus, thalamencephalon, basal ganglia, cerebellum and circum-encephalocoele in rat and human brain. The expression of AQP-4 is different between human and rat. Thus, we demonstrated that the animal experimental approach was, however, not sufficient by itself and needed to be corroborated by observations on human brains.
Collapse
Affiliation(s)
- He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang S, Song S, Hua Y, Nakamura T, Keep RF, Xi G. Effects of thrombin on neurogenesis after intracerebral hemorrhage. Stroke 2008; 39:2079-84. [PMID: 18436875 DOI: 10.1161/strokeaha.107.508911] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Neurogenesis in intracerebral hemorrhage (ICH) has not been investigated. Thrombin formation causes acute brain injury after ICH, but thrombin also can stimulate cell proliferation. The present study examined whether neurogenesis takes place in ICH and the role of thrombin in ICH-related neurogenesis. METHODS This study was divided into four parts. (1) Rats received either an ICH or a needle insertion (sham). The rats were killed for doublecortin (DCX) Western blot analysis and immunohistochemistry. (2) Rats had an ICH or a sham operation, and then received intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU) at day-7 and day-9 later. Brains were perfused to identify BrdU-positive cells. (3) Rats had an intracaudate injection of thrombin (1 U) and brains were sampled for Western blots. (4) Rats had an ICH with or without a thrombin inhibitor, hirudin. The brains were sampled for DCX quantitation. RESULTS DCX levels in the ipsilateral basal ganglia started to increase as early as 7 days after ICH, peaked at 14 days, and then gradually decreased at 1 month. Immunohistochemistry also demonstrated that DCX immunoreactivity was increased in the ipsilateral subventricular zone and basal ganglia at 2 weeks after ICH. Some DCX-positive cells were BrdU-positive. One unit thrombin, which does not cause marked brain injury, was injected into the caudate. Thrombin increased DCX levels in the ipsilateral basal ganglia and hirudin blocked ICH-induced upregulation of DCX. CONCLUSIONS Our results demonstrated that neurogenesis occurs in the brain after ICH and that thrombin may play a role in ICH-induced neurogenesis.
Collapse
Affiliation(s)
- Shuxu Yang
- Department of Neurosurgery, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hua Y, Tang L, Keep RF, Hoff JT, Heth J, Xi G, Muraszko KM. Thrombin enhances glioma growth. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 102:363-366. [PMID: 19388346 DOI: 10.1007/978-3-211-85578-2_69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Our previous studies have demonstrated that argatroban, a specific thrombin inhibitor, reduces brain edema and neurological deficits in rat glioma models. The present study investigated whether or not thrombin enhances glioma growth in vivo and in vitro. METHODS There were two parts in this study. In the first part, rat C6 glioma cells were treated with or without thrombin. These cells were then injected into the right caudate of adult male Fischer 344 rats. Rats underwent behavioral testing prior to sacrifice 12 days later for tumor mass measurement. In the second part, C6 cells were incubated in serum-free medium for 24 hours and then treated with thrombin with or without argatroban, a thrombin inhibitor. DNA synthesis was examined using a 5-bromo-2'-deoxyuridine (BrdU) ELISA kit. Cell proliferation was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. FINDINGS Treatment of C6 cells with thrombin prior to intracerebral implantation resulted in a larger tumor mass and worse neurological deficits at dayl2. In vitro, thrombin increased DNA synthesis in C6 glioma cells, and this effect was blocked by argatroban. MTT assay showed that thrombin significantly increased glioma cell proliferation in vitro. CONCLUSIONS In summary, thrombin enhances C6 glioma growth in vivo and cell proliferation in vitro suggesting that thrombin may be a target of glioma therapy.
Collapse
Affiliation(s)
- Ya Hua
- Department of Neurosurgery, University of Michigan, Room 5018, BSRB, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Cannon JR, Hua Y, Richardson RJ, Xi G, Keep RF, Schallert T. The effect of thrombin on a 6-hydroxydopamine model of Parkinson's disease depends on timing. Behav Brain Res 2007; 183:161-8. [PMID: 17629581 PMCID: PMC2692235 DOI: 10.1016/j.bbr.2007.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/02/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Recent results in animal models suggest that thrombin may modulate brain injury in Parkinson's disease (PD). High doses of thrombin ( approximately 20U) can damage dopaminergic neurons, while we have found that low dose thrombin (1U), given several days before a brain insult (thrombin preconditioning), is protective in models of PD and stroke. However, the effects of such low levels of thrombin at the time of, or after, exposure to the dopamine neurotoxin 6-hydroxydopamine (6-OHDA) have not been examined and are the focus of this study. In the first set of experiments, rats received co-administration of thrombin (1U) or saline and 6-OHDA (5microg) into the medial forebrain bundle. 6-OHDA+thrombin resulted in striking increases in behavioral deficits, compared to 6-OHDA+saline. Similarly, co-administration of an agonist to protease-activated receptor (PAR)-1, a thrombin receptor, also resulted in significantly greater behavioral deficits. In a second set of experiments, thrombin (1U) or saline was administered 1 or 7 days after 6-OHDA to determine the effects of thrombin after 6-OHDA. Surprisingly, the rats that received saline had strikingly increased behavioral and neurochemical deficits resulting from the 6-OHDA lesion, while delayed thrombin administration prevented this effect. The results indicate that thrombin has differential effects in the 6-OHDA model, dependent on the time of administration. The ability of a second cannula insertion with saline infusion to increase dramatically deficits raises questions as to what role physical injury to already susceptible cells might play in the pathogenesis of some cases of PD.
Collapse
Affiliation(s)
- Jason R. Cannon
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109
- Department of Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Timothy Schallert
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712
| |
Collapse
|
31
|
Olianas MC, Dedoni S, Onali P. Proteinase-activated receptors 1 and 2 in rat olfactory system: layer-specific regulation of multiple signaling pathways in the main olfactory bulb and induction of neurite retraction in olfactory sensory neurons. Neuroscience 2007; 146:1289-301. [PMID: 17434682 DOI: 10.1016/j.neuroscience.2007.02.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 02/21/2007] [Accepted: 02/23/2007] [Indexed: 11/26/2022]
Abstract
Proteinase-activated receptors (PARs) are a family of four G protein-coupled receptors that are widely distributed in the CNS and involved in neural cell proliferation, differentiation and survival. The olfactory system undergoes continuous neurogenesis throughout life and may represent a critical target of PAR cellular actions. In the present study we investigated the functional activity of PAR1 and PAR2 in microdissected tissue preparations of olfactory nerve-glomerular layer (ON-GL), external plexiform layer (EPL) and granule cell layer (GRL) of the rat main olfactory bulb and in primary cultures of olfactory neuroepithelial cells. Activation of either PAR1 or PAR2 regulated multiple signaling pathways, including activation of pertussis-toxin sensitive Gi/o proteins, inhibition of cyclic AMP formation, stimulation of Gq/11-mediated phosphoinositide (PI) hydrolysis, phosphorylation of Ca2+/calmodulin-dependent protein kinase II and activation of the monomeric G protein Rho, predominantly in ON-GL, whereas only activation of Rho was detected in the deeper layers. Olfactory nerve lesion by nasal irrigation with ZnSO4 induced a marked decrease of PAR signaling in ON-GL. In primary cultures of olfactory neurons, double immunofluorescence analysis showed the localization of PAR1 and PAR2 in cells positive for olfactory-marker protein and neuron-specific enolase. Cell exposure to either nanomolar concentrations of thrombin and trypsin or PAR-activating peptides caused rapid neurite retraction. This study provides the first characterization of the laminar distribution of PAR1 and PAR2 signaling in rat olfactory bulb, demonstrates the presence of the receptors in olfactory sensory neurons and suggests a role of PARs in olfactory sensory neuron neuritogenesis.
Collapse
Affiliation(s)
- M C Olianas
- Department of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | | | | |
Collapse
|
32
|
Griffiths M, Neal JW, Gasque P. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:29-55. [PMID: 17678954 DOI: 10.1016/s0074-7742(07)82002-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain inflammation due to infection, hemorrhage, and aging is associated with activation of the local innate immune system as expressed by infiltrating cells, resident glial cells, and neurons. The innate immune response relies on the detection of "nonself" and "danger-self" ligands behaving as "eat me signals" by a plethora of pattern recognition receptors (PRRs) expressed by professional and amateur phagocytes to promote the clearance of pathogens, toxic cell debris (amyloid fibrils, aggregated synucleins, prions), and apoptotic cells accumulating within the brain parenchyma and the cerebrospinal fluid (CSF). These PRRs (e.g., complement, TLR, CD14, scavenger receptors) are highly conserved between vertebrates and invertebrates and may represent the most ancestral innate scavenging system involved in tissue homeostasis. However, in some diseases, these protective mechanisms lead to neurodegeneration on the ground that several innate immune molecules have neurocytotoxic activities. The response is a "double-edged sword" representing a fine balance between protective and detrimental effects. Several key regulatory mechanisms have now been evidenced in the control of CNS innate immunity, and these could be harnessed to explore novel therapeutic avenues. We will herein provide new emphasis on the role of neuroimmune regulatory proteins (NIRegs), such as CD95L, TNF, CD200, CD47, sialic acids, CD55, CD46, fH, C3a, HMGB1, which are involved in silencing innate immunity at the cellular and molecular levels and suppression of inflammation. For instance, NIRegs may play an important role in controlling lymphocyte/macrophage/microglia hyperinflammatory responses, while sparing host defense and repair mechanisms. Moreover, NIRegs have direct beneficial effects on neurogenesis and contributing to brain tissue remodeling.
Collapse
Affiliation(s)
- M Griffiths
- Brain Inflammation and Immunity Group (BIIG), Department of Medical Biochemistry, School of Medicine, Cardiff University, CF144XN Cardiff, United Kingdom
| | | | | |
Collapse
|
33
|
Tang Y, Cai D, Chen Y. Thrombin inhibits aquaporin 4 expression through protein kinase C-dependent pathway in cultured astrocytes. J Mol Neurosci 2007; 31:83-93. [PMID: 17416972 DOI: 10.1007/bf02686120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 10/23/2022]
Abstract
Aquaporin 4 (AQP4) is a key molecule for maintaining water balance in the central nervous system, and its dysfunction might cause brain edema. However, little is known about the regulation of AQP4 expression. Because thrombin has been implicated in brain edema formation, the purpose of this study is to determine whether thrombin affects expression of AQP4 in astrocytes. Here, the effect of thrombin on AQP4 expression in vitro was evaluated using Western blot analysis and RT-PCR. Meanwhile, we investigated whether the effect of thrombin on AQP4 expression was due to protease-activated receptor 1 (PAR-1). In addition, we examined the role of protein kinase C (PKC) in the effect of thrombin on AQP4 expression using Western blot analysis. We found that thrombin did not affect cell viability at concentrations of 0.05, 0.5, 5, or 50 nM but killed astrocytes at concentrations of 500 nM, with approx 72% of astrocytes surviving at 500 nM thrombin. Our data showed that AQP4 protein expression achieved only 28% of controls in 500 nM thrombin treatment, even if astrocytes survived approx 72% of controls at 500 nM thrombin. Thrombin significantly inhibited AQP4 in a time- and dose dependent manner in vitro (p<0.05). Cathepsin-G, a thrombin PAR-1 inhibitor, reversed significantly (p<0.05) the effect of thrombin on AQP4 mRNA and protein expression in astrocytes. We also observed that PKC inhibitor H-7 or prolonged pretreatment with TPA can rapidly increase AQP4 expression (p<0.05). Thrombin might inhibit AQP4 expression in rat astrocytes, and this effect is possibly mediated by the PKC pathway.
Collapse
Affiliation(s)
- Yuping Tang
- Laboratory of Neurology, Institute of Integrative Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
34
|
Slomiany P, Baker T, Elliott ER, Grossel MJ. Changes in motility, gene expression and actin dynamics: Cdk6-induced cytoskeletal changes associated with differentiation in mouse astrocytes. J Cell Biochem 2006; 99:635-46. [PMID: 16767702 DOI: 10.1002/jcb.20966] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclin dependent kinase (cdk) 4 and cdk6 have historically been understood to be D-cyclin kinases that phosphorylate pRb in the nucleus to regulate G1 phase of the cell cycle. In conflict with this understood redundancy are several studies that have demonstrated a novel role for cdk6 in differentiation. Cdk6 expression must be reduced to allow proper osteoblast and osteoclast differentiation, enforced cdk6 expression blocked differentiation of mouse embryo fibroblasts, and cdk6 expression in primary astrocytes favored the expression of progenitor cell markers (Ericson et al. [2003] Mol Cancer Res 1:654-664; Matushansky et al. [2003] Oncogene 22:4143-4149; Ogasawara et al. [2004a] J Bone Miner Res 19:1128-1136; Ogasawara et al. [2004b] Mol Cell Biol 24:6560-6568). Experiments shown here investigate novel cytoplasmic and nuclear functions of cdk6. These data demonstrate that cdk6 expression in mouse astrocytes results in changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility. These changes in cdk6-infected cells are associated with the process of cellular differentiation.
Collapse
Affiliation(s)
- Peter Slomiany
- Department of Biology, Connecticut College, New London, Connecticut, USA
| | | | | | | |
Collapse
|
35
|
Henrich-Noack P, Striggow F, Reiser G, Reymann KG. Preconditioning with thrombin can be protective or worsen damage after endothelin-1-induced focal ischemia in rats. J Neurosci Res 2006; 83:469-75. [PMID: 16397902 DOI: 10.1002/jnr.20746] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The serine protease thrombin has shown direct neuroprotective and neurotoxic effects on brain tissue in cerebral ischemia. Previous data suggested that thrombin-induced protection in vivo can be achieved by preconditioning rather than by acute treatment. In the current work, we used a model of mild ischemia to investigate the effects of preischemic intracerebral thrombin injection on neural damage. By intracerebral injection of endothelin-1 in freely moving animals, we achieved middle cerebral artery occlusion (MCAO), and 7 days postischemia we performed histological quantification of the infarct areas. Thrombin was injected as a preconditioning stimulus intracerebrally 7 days or 2 and 3 days before ischemia. For acute treatment, thrombin was injected 20 min before MCAO. Thrombin induced significant neuroprotection when given 7 days before endothelin-1-induced MCAO but was deleterious when given 2 and 3 days before the insult. The deleterious effect was not seen when thrombin was given acutely before ischemia. Our data demonstrate that preconditioning with thrombin can protect against damage or worsen ischemic damage. Its effect depended on the time interval between thrombin injection and insult. A low dose of thrombin did not induce a major deleterious effect in the acute phase of the infarct development after mild transient ischemia.
Collapse
Affiliation(s)
- Petra Henrich-Noack
- Institute for Neurobiochemistry, Otto-von-Guericke University Medical Faculty, Magdeburg, Germany
| | | | | | | |
Collapse
|
36
|
Ishida Y, Nagai A, Kobayashi S, Kim SU. Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J Neuropathol Exp Neurol 2006; 65:66-77. [PMID: 16410750 DOI: 10.1097/01.jnen.0000195941.48033.eb] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the present study, we investigated the expression of protease-activated receptors (PARs), receptors for thrombin, in substantia nigra pars compacta (SNpc) of Parkinson disease (PD) brains and cultures of human neurons, astrocytes, oligodendrocytes, and microglia as determined by immunocytochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Expression of PAR-1 was demonstrated only in glial fibrillary acidic protein-positive astrocytes in SNpc, and the number of astrocytes expressing PAR-1 increased in SNpc of PD as compared with nonneurologic control brain. Immunoreactivity for thrombin and prothrombin was stronger in astrocytes and the vessel walls in SNpc of PD brains. PAR-1 was expressed in human astrocytes and neurons, but not in oligodendrocytes or microglia as determined by RT-PCR. We investigated thrombin-mediated activation of human astrocytes. Thrombin treatment activates human astrocytes and induces morphologic change and a marked increase in proliferation of astrocytes. Increased expression of glial cell line-derived growth factor and glutathione peroxidase (GPx) but no change in the expression of nerve growth factor and inflammatory cytokines/chemokine (IL-1beta, IL-6, IL-8, MCP-1) was found in thrombin/PAR-activated astrocytes. Next, we studied the neuroprotective effect exerted by thrombin-activated astrocytes in human cerebral neuron x human neuroblastoma hybrid neurons. Although thrombin showed neurotoxicity against human hybrid neurons in a dose-dependent manner, the conditioned media derived from thrombin-pretreated astrocyte cultures promoted the survival of human hybrid neurons. The protective effect was completely inhibited with a GPx inhibitor, mercaptosuccinic acid, indicating that GPx released from thrombin/PAR-activated astrocytes is responsible for neuroprotection of hybrid neurons against thrombin cytotoxicity. The present study suggests that the increased expression of PAR-1 in astrocytes in SNpc of PD brain is the restorative move taken by the brain to provide neuroprotection against neuronal degeneration and cell death of dopaminergic neurons caused by noxious insults during the progression of PD pathology.
Collapse
Affiliation(s)
- Yuri Ishida
- Department of Neurology and Department of Laboratory Medicine, Shimane University School of Medicine, Izumo, Japan
| | | | | | | |
Collapse
|
37
|
Park GH, Ryu JR, Shin CY, Choi MS, Han BH, Kim WK, Kim HC, Ko KH. Evidence that protease-activated receptor-2 mediates trypsin-induced reversal of stellation in cultured rat astrocytes. Neurosci Res 2005; 54:15-23. [PMID: 16256233 DOI: 10.1016/j.neures.2005.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/05/2005] [Accepted: 09/22/2005] [Indexed: 11/25/2022]
Abstract
Serine proteases such as thrombin and trypsin play a key role in the development and repair processes in the central nervous system. Molecular actions of serine proteases include multiple cellular events like activation of protease-activated receptors (PARs). PARs belong to a family of G protein-coupled receptors that can be stimulated through their proteolytic cleavage by ligands. PAR-2 has been implicated in neurodegenerative diseases including astrogliosis. Although recent studies have shown that low concentration of trypsin activates PAR-2, its role in morphological changes in primary astrocytes has not been studied. In the present study, we investigated the effects of PAR-2 in astrocyte stellation in rat primary astrocyte culture. Both trypsin (0.1-1 U/ml) and a PAR-2-activating peptide SLIGRL-NH2 (1-50 microM) significantly reversed the stellation induced by serum deprivation in rat astrocytes. Treatment of astrocytes with trypsin or SLIGRL-NH2 resulted in a transient rise of the intracellular Ca2+ level and trypsin-induced morphological changes were blocked by BAPTA, a Ca2+ chelator. In addition, a protein kinase C (PKC) inhibitor, bisindolylmaleimide significantly inhibited the trypsin-induced morphological changes, whereas activation of PKC by phorbol-12-myristate-13-acetate acted as trypsin. Taken together, these results suggest that activation of PAR-2 by trypsin caused reversal of stellation in cultured astrocytes, in part, via the mobilization of intracellular Ca2+ and activation of PKC.
Collapse
Affiliation(s)
- Gyu Hwan Park
- Department of Pharmacology, College of Pharmacy, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hua Y, Tang L, Keep RF, Schallert T, Fewel ME, Muraszko KM, Hoff JT, Xi G. The role of thrombin in gliomas. J Thromb Haemost 2005; 3:1917-23. [PMID: 15975137 DOI: 10.1111/j.1538-7836.2005.01446.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In a previous study we found that intracerebral infusion of argatroban, a specific thrombin inhibitor, reduces brain edema and neurologic deficits in a C6 glioma model. OBJECTIVES To examine the role of thrombin in gliomas and whether systemic argatroban administration can reduce glioma mass and neurologic deficits and extend survival time in C6 and F98 gliomas. METHODS The presence of thrombin in human glioblastoma samples and rat C6 glioma cells (in vitro and in vivo) was assessed using immunohistochemistry. The effect of thrombin on C6 cell proliferation in vitro was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. The role of thrombin in vivo was assessed in rat C6 and F98 glioma cell models using argatroban, a thrombin inhibitor. The effects of argatroban on tumor mass, neurologic deficits and survival time were investigated. RESULTS Thrombin immunoreactivity was found in cultured rat C6 glioma cells and human glioblastomas. Thrombin induced C6 cell proliferation in vitro. In C6 glioma, argatroban reduced glioma mass (P < 0.05) and neurologic deficits (P < 0.05) at day 9. In F98 glioma, argatroban prolonged survival time (P < 0.05). CONCLUSION These results suggest that thrombin plays an important role in glioma growth. Thrombin may be a new therapeutic target for gliomas.
Collapse
Affiliation(s)
- Y Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sheehan JJ, Tsirka SE. Fibrin-modifying serine proteases thrombin, tPA, and plasmin in ischemic stroke: a review. Glia 2005; 50:340-350. [PMID: 15846799 DOI: 10.1002/glia.20150] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ischemic stroke is a sudden loss of circulation to a portion of the brain that results in a loss of neurologic function. Many ischemic strokes are embolic. They result from a thrombus traveling into the central circulation and occluding a blood vessel. Treatment of ischemic stroke with recombinant tissue plasminogen activator (tPA) can improve patient outcomes. However, tPA must be used during a specific time window after the stroke onset to be effective and it risks converting an ischemic stroke into a hemorrhagic one. We explore the basic effects of fibrin-modifying proteases on neurons, astrocytes, and microglia during ischemia. tPA, thrombin, and plasmin can initiate microglial activation and change both neuronal and astrocytic survival. As a result of these functions and of their role in blood homeostasis, all three of these proteases have profound effects on neurons and glial cells in the brain and are capable of altering the development and severity of ischemic stroke.
Collapse
Affiliation(s)
- John J Sheehan
- Program in Molecular and Cellular Pharmacology and Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology and Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York
| |
Collapse
|
40
|
Saito T, Bunnett NW. Protease-activated receptors: regulation of neuronal function. Neuromolecular Med 2005; 7:79-99. [PMID: 16052040 DOI: 10.1385/nmm:7:1-2:079] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/13/2005] [Accepted: 02/17/2005] [Indexed: 12/20/2022]
Abstract
Certain serine proteases from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast-cell tryptase, neutrophil proteinase 3), and from many other cell types (e.g., trypsins) can specifically signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. Proteases cleave PARs at specific sites within the extracellular amino-terminus to expose amino-terminal tethered ligand domains that bind to and activate the cleaved receptors. The proteases that activate PARs are often generated and released during injury and inflammation, and activated PARs orchestrate tissue responses to injury, including hemostasis, inflammation, pain, and repair. This review concerns protease and PAR signaling in the nervous system. Neurons of the central and peripheral nervous systems express all four PARs. Proteases that may derive from the circulation, inflammatory cells, or neural tissues can cleave PARs on neurons and thereby activate diverse signaling pathways that control survival, morphology, release of neurotransmitters, and activity of ion channels. In this manner proteases and PARs regulate neurodegeneration, neurogenic inflammation, and pain transmission. Thus, PARs may participate in disease states and PAR antagonists or agonists may be useful therapies for certain disorders.
Collapse
Affiliation(s)
- Toshiyuki Saito
- Department of Surgery, University of California, San Francisco, CA, USA
| | | |
Collapse
|
41
|
Hua Y, Tang LL, Fewel ME, Keep RF, Schallert T, Muraszko KM, Hoff JT, Xi GH. Systemic use of argatroban reduces tumor mass, attenuates neurological deficits and prolongs survival time in rat glioma models. ACTA NEUROCHIRURGICA. SUPPLEMENT 2005; 95:403-6. [PMID: 16463890 DOI: 10.1007/3-211-32318-x_82] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Our previous studies showed that intracerebral infusion of argatroban, a specific thrombin inhibitor, reduces brain edema and neurological deficits in a C6 glioma model. The present study investigated whether systemic argatroban administration can reduce glioma mass and neurological deficits and extend survival time in C6 and F98 gliomas. Rat C6 or F98 glioma cells were infused into the right caudate of adult male Fischer 344 rats. Osmotic minipump loaded with argatroban (0.3 mg/hour) or vehicle was implanted into abdomen immediately after glioma implantation. Tumor mass was determined at day 9. Over the period of the experiment, the animals underwent behavioral testing (forelimb placing and forelimb use asymmetry). In addition, survival time was tested in the F98 glioma model. In C6 glioma, argatroban reduced glioma mass (p < 0.05) and neurological deficits (p < 0.05) at day 9. In F98 glioma, agratroban prolonged the survival time (p < 0.05) and reduced the body weight loss (84 +/- 15 gram vs. 99 +/- 2 gram in the vehicle group, P < 0.05). In conclusion, systemic use of argatroban reduced tumor mass and neurological deficits, and prolonged survival time. These results suggest that thrombin plays a key role in glioma growth and thrombin inhibition with argatroban may be a novel treatment for gliomas.
Collapse
Affiliation(s)
- Y Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-0532, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim S. Characterization of the prothrombin gene expression during nerve differentiation. ACTA ACUST UNITED AC 2004; 1679:1-9. [PMID: 15245911 DOI: 10.1016/j.bbaexp.2004.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/15/2004] [Accepted: 03/19/2004] [Indexed: 11/27/2022]
Abstract
The transcriptional regulation of the prothrombin gene expression in neuroblastomas was investigated because of the interest in non-hepatic thrombin expression and function in the nervous system. The data indicated that the murine prothrombin gene was distinctively transcribed in proliferating murine N2a cells and that the transcripts were decreased during the differentiation of N2a cells. The gene transcription in proliferating N2a cells was due to the C-I nuclear complex formation in the promoter region, -248/-140. Mutation analyses indicated that nucleotides from -237 to -231 are the core C-I binding site while the longer sequence -248/-140 is needed for the C-I binding. The C-I binding to the promoter -248/-140 could be inhibited by the presence of competitor probe -187/-166, and the mutation in nucleotides from -186 to -179 significantly diminished not only the formation of C-I binding in the promoter region but also the promoter activity in proliferating neuroblastoma cells. Cyclic AMP response element (CRE) modulator, CREM, appeared to selectively bind to the sequence encompassing -186/-179. Taken together, the results indicate that the prothrombin gene transcription in proliferating N2a cells was critically dependent on the cooperative interaction between the factor(s) binding to the C-1 cis-acting element (-237/-231) and the putative CRE site (-186/-179) in the prothrombin promoter, and that the lack of prothrombin expression that coincided with nerve differentiation was mainly due to the lack of C-I complex formation in the promoter.
Collapse
Affiliation(s)
- Sunghee Kim
- Laboratory of Developmental Neurobiology, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Mhatre M, Nguyen A, Kashani S, Pham T, Adesina A, Grammas P. Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol Aging 2004; 25:783-93. [PMID: 15165703 DOI: 10.1016/j.neurobiolaging.2003.07.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 06/25/2003] [Accepted: 07/29/2003] [Indexed: 01/19/2023]
Abstract
Thrombin has been found in neuritic plaques in Alzheimer's disease (AD). Also, traumatic brain injury, where neurons are exposed to high thrombin levels, is associated with an increased incidence of AD. Our objective was to determine the effects of thrombin administered in vivo on cognitive function and neuropathology. Rats were trained using a radial eight-arm maze and then thrombin (25 or 100 nM, 0.25 microl/h, 28 days) or vehicle was delivered via intracerebroventricular infusion. Animals that received 100 nM thrombin demonstrated cognitive impairments including deficits in reference memory and an increase in task latency. Also, significant neuropathology was detected in these animals such as enlargement of cerebral ventricles, an increased number of TUNEL-positive cells, astrogliosis, and an increase in the immunoreactivity for phosphorylated neurofilament, and apolipoprotein-E fragments. Thrombin-induced changes in cognitive function and ventricular enlargement were inhibited by hirudin. These findings demonstrate that thrombin is a mediator of neurotoxicity and cognitive deficits and suggest that inhibition of thrombin may be a treatment strategy for AD- or head trauma-associated cognitive deficits.
Collapse
Affiliation(s)
- Molina Mhatre
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Proteases acting at the surface of cells generate and destroy receptor agonists and activate and inactivate receptors, thereby making a vitally important contribution to signal transduction. Certain serine proteases that derive from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast cell and neutrophil proteases), and from multiple other sources (e.g., epithelial cells, neurons, bacteria, fungi) can cleave protease-activated receptors (PARs), a family of four G protein-coupled receptors. Cleavage within the extracellular amino terminus exposes a tethered ligand domain, which binds to and activates the receptors to initiate multiple signaling cascades. Despite this irreversible mechanism of activation, signaling by PARs is efficiently terminated by receptor desensitization (receptor phosphorylation and uncoupling from G proteins) and downregulation (receptor degradation by cell-surface and lysosomal proteases). Protease signaling in tissues depends on the generation and release of proteases, availability of cofactors, presence of protease inhibitors, and activation and inactivation of PARs. Many proteases that activate PARs are produced during tissue damage, and PARs make important contributions to tissue responses to injury, including hemostasis, repair, cell survival, inflammation, and pain. Drugs that mimic or interfere with these processes are attractive therapies: selective agonists of PARs may facilitate healing, repair, and protection, whereas protease inhibitors and PAR antagonists can impede exacerbated inflammation and pain. Major future challenges will be to understand the role of proteases and PARs in physiological control mechanisms and human diseases and to develop selective agonists and antagonists that can be used to probe function and treat disease.
Collapse
|
45
|
Noorbakhsh F, Vergnolle N, Hollenberg MD, Power C. Proteinase-activated receptors in the nervous system. Nat Rev Neurosci 2004; 4:981-90. [PMID: 14682360 DOI: 10.1038/nrn1255] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent data point to important roles for proteinases and their cognate proteinase-activated receptors (PARs) in the ontogeny and pathophysiology of the nervous system. PARs are a family of G-protein-coupled receptors that can affect neural cell proliferation, morphology and physiology. PARs also have important roles in neuroinflammatory and degenerative diseases such as human immunodeficiency virus-associated dementia, Alzheimer's disease and pain. These receptors might also influence the pathogenesis of stroke and multiple sclerosis, conditions in which the blood-brain barrier is disrupted. The diversity of effects of PARs on neural function and their widespread distribution in the nervous system make them attractive therapeutic targets for neurological disorders. Here, we review the roles of PARs in the central and peripheral nervous systems during health and disease, with a focus on neuroinflammatory and degenerative disorders.
Collapse
|
46
|
Wang H, Reiser G. Signal transduction by serine proteinases in astrocytes: Regulation of proliferation, morphologic changes, and survival via proteinase-activated receptors. Drug Dev Res 2003. [DOI: 10.1002/ddr.10319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Noorbakhsh F, Power C. Proteinase-activated receptor expression and function in the brain. Drug Dev Res 2003. [DOI: 10.1002/ddr.10320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Festoff BW. Proteinase-activated receptors (PARs) in the nervous system: Roles in neuroplasticity and neurotrauma. Drug Dev Res 2003. [DOI: 10.1002/ddr.10321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Lanuza MA, Garcia N, González CM, Santafé MM, Nelson PG, Tomas J. Role and expression of thrombin receptor PAR-1 in muscle cells and neuromuscular junctions during the synapse elimination period in the neonatal rat. J Neurosci Res 2003; 73:10-21. [PMID: 12815704 DOI: 10.1002/jnr.10576] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A role for thrombin and its receptor (ThR) during mammalian skeletal muscle cell differentiation and neuromuscular junction (NMJ) formation has been suggested. Previously, we found that the synapse elimination process in the neonatal rat muscle was accelerated by thrombin and blocked by hirudin, its specific inhibitor (Lanuza et al. [2001] J. Neurosci. Res. 63:330-340). To test whether this process resulted from a signal transduction cascade initiated by activation of ThR, in particular PAR-1, we applied to the levator auris longus (LAL) muscle of newborn rats two synthetic peptides (SFLL and FSLL). SFLL is a potent specific agonist for activation of PAR-1, whereas FSLL is an inactive peptide. We have demonstrated that the activation of PAR-1 by SFLL produced acceleration of the presynaptic loss of connections and the postsynaptic maturation of NMJs. Moreover, Western blot analysis showed that PAR-1 was present in the skeletal muscle, and by immunohistochemistry we detected PAR-1 in muscle fibers concentrated in the synaptic area but also in satellite cells. Several lines of evidence suggested that PAR-1 is localized in the postsynaptic membrane: PAR-1 immunofluorescence was concentrated at denervated synaptic sites and was present in the myotube membrane in vitro in the absence of neurons and in dissociated single muscle fibers from which nerve terminals and Schwann cells had been removed. Taken together, these results indicate that thrombin mediates certain stages of activity-dependent synapse elimination in the skeletal muscle and does so through its action on the thrombin receptor PAR-1 localized, at least in part, on the postsynaptic membrane.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Female
- Immunohistochemistry
- Muscle Denervation
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/innervation
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/metabolism
- Peptide Fragments/pharmacology
- Pregnancy
- Protein Kinase C/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, PAR-1
- Receptors, Thrombin/biosynthesis
- Receptors, Thrombin/physiology
- Synapses/metabolism
- Thrombin/metabolism
Collapse
Affiliation(s)
- María A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus (Tarragona), Spain.
| | | | | | | | | | | |
Collapse
|
50
|
Carreño-Müller E, Herrera AJ, de Pablos RM, Tomás-Camardiel M, Venero JL, Cano J, Machado A. Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia. J Neurochem 2003; 84:1201-14. [PMID: 12603843 DOI: 10.1046/j.1471-4159.2003.01634.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven days after the injection of different concentrations of thrombin into the nigrostriatal pathway, a strong macrophage/microglial reaction was observed in the substantia nigra (SN), indicated by immunostaining, using OX-42 and OX-6 antibodies, and by the induction of iNOS, IL-1alpha, Il-1beta and TNF-alpha. Moreover, selective damage to dopaminergic neurones was produced after thrombin injection, evidenced by loss of tyrosine hydroxylase immunostaining and tyrosine hydroxylase mRNA-expressing cell bodies, and the unaltered transcription of glutamic acid decarboxylase mRNA in the SN and striatum. These thrombin effects could be produced by its ability to induce the activation of microglia described in in vitro studies, and are in agreement with the effects described for other proinflammatory compounds. Thrombin effects are produced by its biological activity since they almost disappeared when thrombin was heat-inactivated or injected along with its inhibitor alpha-NAPAP. Thrombin is a multi-functional serine protease rapidly produced from prothrombin at the sites of tissue injury, and also upon breakdown of the blood-brain barrier, which strongly suggests it could easily enter into the CNS. These results could have special importance in some degenerative processes of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Eloisa Carreño-Müller
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|