1
|
Wang GW, Cao J, Wang XQ. Effects of ethanol extract from Bidens pilosa L. on spontaneous activity, learning and memory in aged rats. Exp Gerontol 2019; 125:110651. [PMID: 31295527 DOI: 10.1016/j.exger.2019.110651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bidens pilosa L., a herbal medicine, is rich in flavonoids, but its anti-aging effect on neurocognitive functions is not well understood. In the present study, we investigated the effects of ethanol extract from Bidens pilosa L. (EEBP) on spontaneous activity, learning and memory in aged rats. METHODS Forty aged (21.90 ± 0.22 months) and 10 young (10 weeks) adult male Sprague-Dawley rats were divided into 5 groups, which were respectively treated orally with 0 mg/kg (young and aged control), 25 mg/kg, 50 mg/kg and 100 mg/kg of EEBP for 30 days consecutively. Then, the animals were examined with open-field, passive avoidance and Morris water maze tasks. RESULTS In the open-field task, compared with the aged control, the EEBP animals exhibited more rearing (50 mg/kg, P < 0.01) and urination (50 mg/kg, P < 0.01), but less defecation (P < 0.05). In the passive avoidance task, the retention latencies were longer than those in the training phase in all other groups (P < 0.01) except the aged control (P > 0.05). Compared with the young control, the retention latency of the aged control decreased (P < 0.01), but that of the EEBP animals increased again (P < 0.05 vs. aged control). In the Morris water maze, the EEBP animals had shorter latency (100 mg/kg) and had more crossing times (25 mg/kg) in seeking the platform position (P < 0.05, vs. aged control). CONCLUSION The results suggested that EEBP could affect the spontaneous activity and improve memory in aged animals and could have potential advantages for cognition improvement in aged populations.
Collapse
Affiliation(s)
- Gong-Wu Wang
- School of Life Sciences and School of Physical Education, Yunnan Normal University, Kunming 650500, China; Engineering Research Center of Sustainable Development and Utilization of Biomass, MOE, Kunming 650500, China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
| | - Jun Cao
- School of Agriculture and Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming 650504, China
| | - Xiao-Qin Wang
- School of Life Sciences and School of Physical Education, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
2
|
Komori T. The Effects of Phosphatidylserine and Omega-3 Fatty Acid-Containing Supplement on Late Life Depression. Ment Illn 2015; 7:5647. [PMID: 26266022 PMCID: PMC4508628 DOI: 10.4081/mi.2015.5647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Late life depression is often associated with a poor response to antidepressants; therefore an alternative strategy for therapy is required. Although several studies have reported that phosphatidylserine (PS) may be effective for late life depression and that omega-3 fatty acids DHA and EPA have also proven beneficial for many higher mental functions, including depression, no concrete conclusion has been reached. This study was performed to clarify the effect of PS and omega-3 fatty acid-containing supplement for late life depression by not only clinical evaluation but also salivary cortisol levels. Eighteen elderly subjects with major depression were selected for the study. In all, insufficient improvement had been obtained by antidepressant therapy for at least 6 months. The exclusion criteria from prior brain magnetic resonance images (MRI) included the presence of structural MRI findings compatible with stroke or other gross brain lesions or malformations, but not white matter hypersensitivities. They took a supplement containing PS 100 mg, DHA 119 mg and EPA 70 mg three times a day for 12 weeks. The effects of the supplement were assessed using the 17-item Hamilton depression scale (HAM-D17) and the basal levels and circadian rhythm of salivary cortisol. The study adopted them as indices because: salivary cortisol levels are high in patients with depression, their circadian rhythm related to salivary cortisol is often irregular, and these symptoms are alleviated as depression improves. The mean HAM-D17 in all subjects taking the supplement was significantly improved after 12 weeks of taking the supplement. These subjects were divided into 10 non-responders and 8 responders. The basal levels and circadian rhythm of salivary cortisol were normalized in the responders while not in non-responders. PS and omega-3 fatty acids, or other elements of the supplement, may be effective for late life depression, associated with the correction of basal levels and circadian rhythm of salivary cortisol.
Collapse
Affiliation(s)
- Teruhisa Komori
- Department of Adult Health and Psychiatric Nursing, Faculty of Medicine, School of Nursing, Mie University , Japan
| |
Collapse
|
3
|
Lin Q, Zhang J, Pei W, Zhang C, Yew JL. Determination of phosphatidylserine in milk-based nutritional products using online derivatization high-performance liquid chromatography. J Chromatogr A 2015; 1381:260-3. [DOI: 10.1016/j.chroma.2014.12.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 11/25/2022]
|
4
|
Scholey AB, Camfield DA, Hughes ME, Woods W, K Stough CK, White DJ, Gondalia SV, Frederiksen PD. A randomized controlled trial investigating the neurocognitive effects of Lacprodan® PL-20, a phospholipid-rich milk protein concentrate, in elderly participants with age-associated memory impairment: the Phospholipid Intervention for Cognitive Ageing Reversal (PLICAR): study protocol for a randomized controlled trial. Trials 2013; 14:404. [PMID: 24279904 PMCID: PMC4220811 DOI: 10.1186/1745-6215-14-404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/11/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Age-related cognitive decline (ARCD) is of major societal concern in an ageing population, with the development of dietary supplements providing a promising avenue for amelioration of associated deficits. Despite initial interest in the use of phospholipids (PLs) for ARCD, in recent years there has been a hiatus in such research. Because of safety concerns regarding PLs derived from bovine cortex, and the equivocal efficacy of soybean-derived PLs, there is an important need for the development of new PL alternatives. Phospholipids derived from milk proteins represent one potential candidate treatment. METHODS In order to reduce the effects of age-associated memory impairment (AAMI) the Phospholipid Intervention for Cognitive Ageing Reversal (PLICAR) was developed to test the efficacy of a milk protein concentrate rich in natural, non-synthetic milk phospholipids (Lacprodan® PL-20). PLICAR is a randomized, double-blind, placebo-controlled parallel-groups study where 150 (N = 50/group) AAMI participants aged > 55 years will be randomized to receive a daily supplement of Lacprodan® PL-20 or one of two placebos (phospholipid-free milk protein concentrate or inert rice starch) over a 6-month (180-day) period. Participants will undergo testing at baseline, 90 days and 180 days. The primary outcome is a composite memory score from the Rey Auditory Verbal Learning Test. Secondary outcomes include cognitive (verbal learning, working memory, prospective and retrospective memory, processing speed and attention), mood (depression, anxiety, stress and visual analogue scales), cardiovascular (blood pressure, blood velocity and pulse wave pressure), gastrointestinal microbiota and biochemical measures (oxidative stress, inflammation, B vitamins and Homocysteine, glucoregulation and serum choline). Allelic differences in the Apolipoprotein E and (APOE) and Methylenetetrahydrofolate reductase (MTHFR) gene will be included for subgroup analysis. A subset (N = 60; 20/group)) will undergo neuroimaging using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in order to further explore in vivo central mechanisms of action of Lacprodan® PL-20. This study will enable evaluation of the efficacy of milk-derived phospholipids for AAMI, and their mechanisms of action. TRIAL REGISTRATION The trial is jointly funded by Arla Foods and Swinburne University of Technology, currently recruiting and is registered on the Australian New Zealand Clinical Trials Registry as ACTRN12613000347763.
Collapse
Affiliation(s)
- Andrew B Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne 3122, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Mild cognitive impairment (MCI) is an aspect of cognitive aging that is considered to be a transitional state between normal aging and the dementia into which it may convert. Appropriate animal models are necessary in order to understand the pathogenic mechanisms of MCI and develop drugs for its treatment. In this review, we identify the features that should characterize an animal model of MCI, namely old age, subtle memory impairment, mild neuropathological changes, and changes in the cholinergic system, and the age at which these features can be detected in laboratory animals. These features should occur in aging animals with normal motor activity and feeding behavior. The animal models may be middle-aged rats and mice, rats with brain ischemia, transgenic mice overexpressing amyloid precursor protein and presenilin 1 (tested at an early stage), or aging monkeys. Memory deficits can be detected by selecting appropriately difficult behavioral tasks, and the deficits can be associated with neuropathological alterations. The reviewed literature demonstrates that, under certain conditions, these animal species can be considered to be MCI models, and that cognitive impairment in these models responds to drug treatment.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Srividhya R, Gayathri R, Kalaiselvi P. Impact of epigallo catechin-3-gallate on acetylcholine-acetylcholine esterase cycle in aged rat brain. Neurochem Int 2012; 60:517-22. [DOI: 10.1016/j.neuint.2012.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/21/2012] [Accepted: 02/04/2012] [Indexed: 01/30/2023]
|
7
|
Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male Wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets. Biogerontology 2009; 11:151-66. [DOI: 10.1007/s10522-009-9237-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
8
|
Osella MC, Re G, Badino P, Bergamasco L, Miolo A. Phosphatidylserine (PS) as a potential nutraceutical for canine brain aging: A review. J Vet Behav 2008. [DOI: 10.1016/j.jveb.2007.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Chen S, Li KW. Comparison of molecular species of various transphosphatidylated phosphatidylserine (PS) with bovine cortex PS by mass spectrometry. Chem Phys Lipids 2008; 152:46-56. [PMID: 18230349 DOI: 10.1016/j.chemphyslip.2008.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/28/2007] [Accepted: 01/03/2008] [Indexed: 11/30/2022]
Abstract
The exogenous introduction of a molecular species mixture of bovine cortex phosphatidylserine (BC-PS) has been claimed to improve memory function in subjects suffering from age-associated memory impairment and dementia. However, it has been also reported that oral administration of another molecular species mixture of transphosphatidylated-soybean phosphatidylserine (T-Soy-PS) showed a little effect in older individuals with memory complaints. In this study, a new type of mixture of transphosphatidylated-fish liver phosphatidylserine (T-FL-PS) species, as well as intact molecular species of the two commercial products of T-Soy-PS made in the United States and Europe, were characterized by mass spectrometry and tandem mass spectrometry, and molecular species of various transphosphatidylated PSs, including T-FL-PS, T-Soy-PS and transphosphatidylated-squid skin phosphatidylserine (T-SS-PS) were then compared with those of BC-PS for the first time. The results show that (i) the presence of a relatively high content of docosahexaenoic acid (DHA)-containing species (more than 45%) is remarkable in T-FL-PS, (ii) DHA-ether PS species are found only in T-FL-PS, especially the species (about 17%) made from marine fish liver, rather than BC-PS and T-SS-PS, and (iii) DHA species present in both T-FL-PS and T-SS-PS are significantly enriched, compared with those in BC-PS (about 10%) and T-Soy-PS (no DHA species). We conclude that mixtures of T-FL-PS and T-SS-PS species are considered to be qualified alternatives of BC-PS supplement used as brain nutrients. It is expected that intact structural information on molecular species in current and potential transphosphatidylated PS products provided here will be useful in the further study and development of therapeutic roles of the phospholipid at molecular species level.
Collapse
Affiliation(s)
- Su Chen
- Chain on Neurotrophin Biotechnology Inc., Research and Development, 41 Bayberry Drive, Malta, NY 12020, USA.
| | | |
Collapse
|
10
|
|
11
|
Osella MC, Re G, Odore R, Girardi C, Badino P, Barbero R, Bergamasco L. Canine cognitive dysfunction syndrome: Prevalence, clinical signs and treatment with a neuroprotective nutraceutical. Appl Anim Behav Sci 2007. [DOI: 10.1016/j.applanim.2006.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Abstract
Many treatment options are now available for pets with age-related cognitive dysfunction, including drugs, nutritional supplements, and diets. This article describes the theory, evidence of efficacy, and potential neuroprotective effects of products used to treat cognitive dysfunction. Cognitive dysfunction is a diagnosis of exclusion, because many painful conditions and health problems may present with similar signs. Practitioners must, therefore, actively question owners of senior pets in order to diagnose cognitive dysfunction and to assess the pet’s general health and well-being.
Collapse
Affiliation(s)
- Gary Landsberg
- Doncaster Animal Clinic, 99 Henderson Avenue, Thornhill, Ontario, L3T 2K9, Canada
| |
Collapse
|
13
|
Messier C, Wall PM, Ethier K. Contribution of cholinergic and gabaergic functions to memory processes in BALB/cANnCrlBR mice. Brain Res 1999; 818:583-92. [PMID: 10082853 DOI: 10.1016/s0006-8993(98)01337-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several lines of evidence indicate that glucose influences on memory depend on interactions between glucose, glucoregulation and hippocampal cholinergic function. We previously demonstrated that glucose and scopolamine differentially affected memory consolidation for an operant bar pressing task in two closely-related BALB/c mouse strains. Whereas glucose normally improves memory in several animal strains, memory consolidation was not effected by systemic glucose injections in BALB/cANnCrlBR mice. Moreover, these mice were relatively insensitive to the normally observed amnestic effects of scopolamine. We therefore sought to determine whether cholinergic mechanisms in the dorsal hippocampus were involved in such atypical drug effects on memory processing in that strain of mice. In Experiment 1, we examined whether post-training oxotremorine would also atypically influence memory consolidation for an appetitively reinforced operant bar pressing task following microinjection in the dorsal hippocampus. In Experiment 2, we examined the effects of intrahippocampal GABAA drugs on memory consolidation. The non-selective muscarinic agonist, oxotremorine, dose-dependently impaired memory and the GABAA antagonist, bicuculline, improved retention in BALB/cANnCrlBR mice. It was concluded that GABA-mediated influences on hippocampal pyramidal output in BALB/cANnCrlBR mice and other strains are similar; but the amnestic effects of oxotremorine from the dorsal hippocampus were opposite to facilitating effects normally observed in other animal strains. Results are discussed relative to possible altered septo-hippocampal cholinergic neurotransmission in BALB/cANnCrlBR mice.
Collapse
Affiliation(s)
- C Messier
- School of Psychology, University of Ottawa, Vanier: Room 215, Ottawa, Ontario, K1N 6N5, Canada.
| | | | | |
Collapse
|
14
|
Avignone E, Molnar M, Berretta N, Casamenti F, Prosperi C, Ruberti F, Cattaneo A, Cherubini E. Cholinergic function in the hippocampus of juvenile rats chronically deprived of NGF. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:137-47. [PMID: 9729337 DOI: 10.1016/s0165-3806(98)00072-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intracellular and extracellular recordings were used to assess the cholinergic function in hippocampal slices from juvenile rats chronically deprived of NGF. NGF was neutralised by implanting into the lateral ventricle of postnatal (P) day 2 rats, alphaD11 hybridoma cells (secreting monoclonal antibodies specific for NGF). Parental myeloma cells (P3U) were used as controls. At P15-P18, slow cholinergic EPSPs could be elicited in cells from both alphaD11- and P3U-treated rats. However, slices from alphaD11-implanted rats exhibited a 50% reduction in acetylcholine release following stimulation of cholinergic fibres. This effect was associated to a significant increase in the sensitivity of pyramidal cells to carbachol, as suggested by the shift to the left of the dose/response curve. This may reflect a compensatory mechanism for the reduced efficacy of cholinergic innervation in NGF-deprived rats. In both alphaD11- and P3U-treated rats, carbachol was able to induce a similar concentration-dependent depression of the field EPSPs, evoked by Schaffer collateral stimulation, suggesting that presynaptic muscarinic receptors were not altered. In rats implanted with alphaD11 cells at P15 and sacrificed at P21-P24, no changes in the sensitivity to carbachol were found. At this developmental stage, no differences in acetylcholine release were observed between P3U- and alphaD11-treated animals. These results provide physiological evidence for a regulatory role of NGF in the cholinergic function of the hippocampus during postnatal development.
Collapse
Affiliation(s)
- E Avignone
- Neuroscience Program and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Vannucchi MG, Scali C, Kopf SR, Pepeu G, Casamenti F. Selective muscarinic antagonists differentially affect in vivo acetylcholine release and memory performances of young and aged rats. Neuroscience 1997; 79:837-46. [PMID: 9219946 DOI: 10.1016/s0306-4522(97)00091-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain acetylcholine release and memory performance were investigated in young (three- to six-months) and old (20- to 24-months) rats. Acetylcholine release was measured in vivo in the cortex and hippocampus of freely-moving animals, under basal conditions and in the presence of the following muscarinic antagonists: scopolamine, (+/-)-5,11-dihydro-11-[[(2-[2-[(dipropylamino) methyl]-1-piperidinyl]ethyl) amino] carbonyl]-6H-pyrido(2,3-b)(1,4)-benzodiazepine-6-one (AFDX 384) and pirenzepine. The amount of acetylcholine released from the cortex and hippocampus of old rats was significantly reduced. In the presence of scopolamine and AFDX 384 but not of pirenzepine, the acetylcholine release was significantly higher in the old than the young rats, suggesting that changes in presynaptic M2/M4 muscarinic receptor function occur with ageing in the two brain regions. Cognitive capacities were evaluated using two different behavioural tasks: object recognition and passive avoidance response. Old rats were unable to discriminate between familiar and novel objects and had impaired performance in the passive avoidance test. AFDX 384 restored the performance in both tests. Furthermore, in young rats AFDX 384 reversed the impairment of both object recognition and passive avoidance response induced by scopolamine. The effect of AFDX 384 on acetylcholine release and behaviour in the old rats offers further support to a relationship between the age-related cholinergic hypofunction and cognitive impairment and indicates the blockade of presynaptic muscarinic receptors as a possible selective target for therapeutic strategies aimed at improving age-associated memory deficits.
Collapse
Affiliation(s)
- M G Vannucchi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | |
Collapse
|
16
|
Scali C, Giovannini MG, Bartolini L, Prosperi C, Hinz V, Schmidt B, Pepeu G. Effect of metrifonate on extracellular brain acetylcholine and object recognition in aged rats. Eur J Pharmacol 1997; 325:173-80. [PMID: 9163564 DOI: 10.1016/s0014-2999(97)00128-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of metrifonate were investigated in 4-6- and 22-24-month-old rats. Extracellular acetylcholine levels were measured by transversal microdialysis in vivo. Baseline extracellular acetylcholine levels in the cerebral cortex and hippocampus were 42% and 60% lower, respectively, in old than in young rats. Old rats did not discriminate between familiar and novel objects. In old rats, metrifonate (80 mg/kg p.o.) brought about 85% inhibition of cholinesterase activity in the cortex and hippocampus, a 4-fold increase in extracellular acetylcholine levels in the cortex only, and restored object recognition. In young rats, metrifonate caused 75% cholinesterase inhibition in the cerebral cortex and hippocampus, a 2-fold increase in cortical and hippocampal extracellular acetylcholine levels, and no effect on object recognition. The slight cholinesterase inhibition following metrifonate (30 mg/kg) in aged rats had no effect on cortical acetylcholine levels and object recognition. In conclusion, metrifonate may improve the age-associated cholinergic hypofunction and cognitive impairment.
Collapse
Affiliation(s)
- C Scali
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Giovannini MG, Casamenti F, Bartolini L, Pepeu G. The brain cholinergic system as a target of cognition enhancers. Behav Brain Res 1997; 83:1-5. [PMID: 9062653 DOI: 10.1016/s0166-4328(97)86038-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M G Giovannini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | |
Collapse
|
18
|
Latini S, Pazzagli M, Pepeu G, Pedata F. A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. GENERAL PHARMACOLOGY 1996; 27:925-33. [PMID: 8909972 DOI: 10.1016/0306-3623(96)00044-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. Adenosine is an endogenous neuromodulator that exerts its depressant effect on neurons by acting on the A1 adenosine receptor subtype. Excitatory actions of adenosine, mediated by the activation of the A2 adenosine receptor subtype, have also been shown in the central nervous system. 2. Adenosine A2a receptors are highly localized in the striatum, as demonstrated by the binding assay of the A2a selective agonist, CGS2680, and by analysis of the A2 receptor mRNA localization with in situ hybridization histochemistry. However, adenosine A2a, receptors, albeit at lower levels, are also localized in other brain regions, such as the cortex and the hippocampus. 3. In the striatum, adenosine A2a, receptors are implicated in the control of motor activity. Evidences exists of an antagonistic interaction between adenosine A2a and dopamine D2 receptors. 4. Utilizing selective agonists and antagonists for adenosine A2a receptors, their role in the modulation of the release of several neurotransmitters (acetylcholine, dopamine, glutamate, GABA) has been extensively studied in the brain (striatum, cortex, hippocampus). Controversial results have been obtained and, because the overall effect of endogenous adenosine in the brain is that of an inhibitory tonus, the physiological meaning of the excitatory A2 receptor remains to be clarified.
Collapse
Affiliation(s)
- S Latini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | |
Collapse
|
19
|
Moore H, Stuckman S, Sarter M, Bruno JP. Potassium, but not atropine-stimulated cortical acetylcholine efflux, is reduced in aged rats. Neurobiol Aging 1996; 17:565-71. [PMID: 8832631 DOI: 10.1016/0197-4580(96)00075-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using in vivo microdialysis, cortical acetylcholine (ACh) efflux was measured in freely moving Brown Norway/Fischer 344 F1 rats, aged 4 or 22 months. The effects of local, intracortical perfusion of atropine (1.0 or 100.0 microM) via the dialysis probe were compared to local K+ (100.0 mM) stimulation in the presence of elevated extracellular Ca2+ (2.5 mM). Basal cortical ACh efflux in aged rats was similar to that of young animals. Administration of atropine (1.0 or 100.0 microM) via the cortical dialysis probe substantially increased cortical ACh efflux, but did not differentially stimulate ACh efflux in young and aged rats. In contrast, ACh efflux stimulated locally with K+ and Ca2+ was significantly reduced in aged rats relative to young adults. The implications of the dissociable effects of K(+)-depolarization and muscarinic blockade for local regulation of cortical ACh efflux in aged animals are discussed.
Collapse
Affiliation(s)
- H Moore
- Department of Psychology, Ohio State University, Columbus 43210 USA
| | | | | | | |
Collapse
|
20
|
Bartolini L, Casamenti F, Pepeu G. Aniracetam restores object recognition impaired by age, scopolamine, and nucleus basalis lesions. Pharmacol Biochem Behav 1996; 53:277-83. [PMID: 8808132 DOI: 10.1016/0091-3057(95)02021-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Object recognition was investigated in adult and aging male rats in a two-trials, unrewarded, test that assessed a form of working-episodic memory. Exploration time in the first trial, in which two copies of the same object were presented, was recorded. In the second trial, in which one of the familiar objects and a new object were presented, the time spent exploring the two objects was separately recorded and a discrimination index was calculated. Adult rats explored the new object longer than the familiar object when the intertrial time ranged from 1 to 60 min. Rats older than 20 months of age did not discriminate between familiar and new objects. Object discrimination was lost in adult rats after scopolamine (0.2 mg/kg SC) administration and with lesions of the nucleus basalis, resulting in a 40% decrease in cortical ChAT activity. Both aniracetam (25, 50, 100 mg/kg os) and oxiracetam (50 mg/kg os) restored object recognition in aging rats, in rats treated with scopolamine, and with lesions of the nucleus basalis. In the rat, object discrimination appears to depend on the integrity of the cholinergic system, and nootropic drugs can correct its disruption.
Collapse
Affiliation(s)
- L Bartolini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | |
Collapse
|
21
|
Vannucchi MG, Pepeu G. Muscarinic receptor modulation of acetylcholine release from rat cerebral cortex and hippocampus. Neurosci Lett 1995; 190:53-6. [PMID: 7624055 DOI: 10.1016/0304-3940(95)11498-l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An attempt to identify the muscarinic receptor subtypes involved in presynaptic modulation of acetylcholine (ACh) release from cortical and hippocampal slices was made by means of several muscarinic antagonists. Cortical and hippocampal slices prepared from adult rats were superfused with Krebs solution containing physostigmine; ACh content of the superfusate at rest and after electrical stimulation (1 Hz) was quantified by high performance liquid chromatography. The antagonists were added to the Krebs at the concentration of 1 microM. ACh release at rest was enhanced only in the cortex by (+/-)-5,11-dihydro-11-([(2-[2-[(dipropylamino)methyl]-1- piperidinyl)ethyl)amino]carbonyl)-6H-pyrido[2,3-b](1,4)- benzodiazepine-6-one (AFDX384), an M2/M4 selective antagonist. The evoked ACh release from the cerebral cortex was significantly increased by AFDX384, methoctramine, pirenzepine, M2/M4, M2 and M1 selective antagonists, respectively, and scopolamine. This finding suggests that M1, M2 and M4 presynaptic receptor subtypes could regulate evoked ACh release in the cortex. In hippocampal slices, the evoked ACh release was enhanced by AFDX384, pirenzepine and scopolamine but not by methoctramine. In this region ACh release seems therefore regulated only by M1 and M4 receptor subtypes. The M3 antagonist (+/-)-p-fluorohexahydro-sila-difenidol hydrochloride did not affect ACh release.
Collapse
Affiliation(s)
- M G Vannucchi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | |
Collapse
|
22
|
Pepeu G, Giovannelli L. The central cholinergic system during aging. PROGRESS IN BRAIN RESEARCH 1994; 100:67-71. [PMID: 7938536 DOI: 10.1016/s0079-6123(08)60770-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- G Pepeu
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | |
Collapse
|
23
|
Vannucchi MG, Goldman-Rakic PS. Age-dependent decrease in the affinity of muscarinic M1 receptors in neocortex of rhesus monkeys. Proc Natl Acad Sci U S A 1991; 88:11475-9. [PMID: 1763062 PMCID: PMC53158 DOI: 10.1073/pnas.88.24.11475] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In vitro autoradiography on tissue sections and receptor assay in cortical membrane homogenates revealed that pirenzepine high-affinity muscarinic sites (M1) decrease in affinity in the prefrontal cortex and in other cortical areas of aged rhesus monkey (Macaca mulatta). Carbachol competition experiments detected only a single, low-affinity class of sites in old monkeys, while two classes of sites (low and high affinity) were observed in young adults. The change in affinity in the aged monkeys is not accompanied by a decrease in the density of these sites and, further, the age-related decline in the affinity of the M1 site is reversible. In the presence of Mg2+, the M1 muscarinic receptors in the aged monkeys were capable of forming carbachol high-affinity sites. These results provide evidence for age-dependent functional changes in receptor activity in cerebral cortex and indicate that these receptors maintain a degree of plasticity that could be a strategic target for research aimed at treatment of memory disorders in aged humans.
Collapse
Affiliation(s)
- M G Vannucchi
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
24
|
Casamenti F, Scali C, Pepeu G. Phosphatidylserine reverses the age-dependent decrease in cortical acetylcholine release: a microdialysis study. Eur J Pharmacol 1991; 194:11-6. [PMID: 2060587 DOI: 10.1016/0014-2999(91)90117-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vivo basal acetylcholine (ACh) and choline (Ch) output from the parietal cortex of 3- and 19-month-old freely moving rats was measured by microdialysis. A dialysis tubing was inserted transversally through the parietal cortex 24 h before the experiment. ACh and Ch concentrations were determined in the same perfusate samples by HPLC with electrochemical detection. In 19-month-old rats treated with Tris buffer, ACh and Ch outputs were 39 and 16% lower, respectively, than in 3-month-old rats. Phosphatidylserine (PtdSer) administration (15 mg/kg i.p. daily) for 8 days to 19-month-old rats markedly attenuated the decrease in ACh release. The same treatment did not affect ACh and Ch outputs in 3-month-old rats. ACh and Ch outputs in 19-month-old rats administered either phosphatidylcholine (PtdCho) or o-phospho-dl-serine (P-Ser) (15 mg/kg i.p. daily) for 8 days were as low as in 19-month-old rats receiving Tris buffer only. It is possible that chronic PtdSer treatment improve ACh release in aging rats by increasing the availability of Ch for ACh synthesis.
Collapse
Affiliation(s)
- F Casamenti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | |
Collapse
|