1
|
Cooper DMF. Store-operated Ca²⁺-entry and adenylyl cyclase. Cell Calcium 2015; 58:368-75. [PMID: 25978874 DOI: 10.1016/j.ceca.2015.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
Abstract
One of the longest-standing effects of SOCE is in its selective regulation of Ca(2+)-sensitive adenylyl cyclase (AC) activity in non-excitable cells. Remarkably it was this source of Ca(2+) (SOCE) rather than the apparent magnitude of the Ca(2+)-rise that conferred AC responsiveness. The molecular basis for this dependence is now resolved in the case of adenylyl cyclase 8 (AC8). Sensors for Ca(2+) and cAMP targeted to ACs have been particularly useful in dissecting the influences upon and composition of what turn out to be signalling microdomains centred on ACs. A number of physiological processes depend on the regulation by SOCE of ACs, but the issue is under-studied. Here I will expand on these topics and point to some immediate unresolved questions.
Collapse
Affiliation(s)
- Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
2
|
Abstract
Interplay between the signaling pathways of the intracellular second messengers, cAMP and Ca(2+), has vital consequences for numerous essential physiological processes. Although cAMP can impact on Ca(2+)-homeostasis at many levels, Ca(2+) either directly, or indirectly (via calmodulin [CaM], CaM-binding proteins, protein kinase C [PKC] or Gβγ subunits) may also regulate cAMP synthesis. Here, we have evaluated the evidence for regulation of adenylyl cyclases (ACs) by Ca(2+)-signaling pathways, with an emphasis on verification of this regulation in a physiological context. The effects of compartmentalization and protein signaling complexes on the regulation of AC activity by Ca(2+)-signaling pathways are also addressed. Major gaps are apparent in the interactions that have been assumed, revealing a need to comprehensively clarify the effects of Ca(2+) signaling on individual ACs, so that the important ramifications of this critical interplay between Ca(2+) and cAMP are fully appreciated.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | | |
Collapse
|
3
|
Coune P, Taleb O, Mensah-Nyagan AG, Maitre M, Kemmel V. Calcium and cAMP signaling induced by gamma-hydroxybutyrate receptor(s) stimulation in NCB-20 neurons. Neuroscience 2010; 167:49-59. [PMID: 20153403 DOI: 10.1016/j.neuroscience.2010.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
The NCB-20 neurohybridoma cells differentiated with dibutyryl-cyclic-AMP represent an interesting model to study several components of the gamma-hydroxybutyrate (GHB) system in brain. In particular, an active Na(+)-dependent uptake and a depolarization-evoked release of GHB is expressed by these cells, together with high affinity specific binding sites for this substance. However, only little is known about cellular mechanisms following GHB receptor(s) stimulation in these neurons. Electrophysiological data indicate that GHB can differently affect Ca(2+) currents. L-type calcium channels were typically inhibited by GHB when NCB-20 cells were depolarized. In contrast, when NCB-20 cells were at resting potential, GHB induced a specific Ca(2+) entry through T-type calcium channels. In this study, we investigated the effect induced on cytosolic free Ca(2+) level and cAMP production by GHB receptor(s) stimulated with micromolar concentrations of GHB or structural analogues of GHB. Ca(2+) movements studied by cellular imaging were dose-dependently increased but disappeared for GHB concentrations >25 microM. In addition, nanomolar doses of GHB inhibited forskolin-stimulated adenylate cyclase. This effect was also rapidly desensitized at higher GHB concentrations. Acting as an antagonist, NCS-382 decreased GHB receptor(s) mediated cAMP and calcium signals. The agonist NCS-356 mimicked GHB effects which were not affected by the GABA(B) receptor antagonist CGP-55-845. Our results reveal the occurrence of Ca(2+)-dependent adenylate cyclase inhibition in NCB-20 neurons after GHB receptor(s) stimulation by GHB concentrations <50 microM. Above this dose, GHB effects were inactivated. In addition, at GHB concentrations exceeding 50 microM, GTP-gammaS binding was also reduced, confirming the desensitization of GHB receptor(s). Taken together, these results support the existence in NCB-20 neurons of GHB receptors belonging to GPCR family that may recruit various G protein subtypes.
Collapse
Affiliation(s)
- P Coune
- Equipe Stéroïdes, Neuromodulateurs et Neuropathologies, Unité de Physiopathologie et Médecine Translationnelle, EA-4438, Faculté de médecine, Université de Strasbourg, Strasbourg, France
| | | | | | | | | |
Collapse
|
4
|
Willoughby D, Cooper DMF. Organization and Ca2+Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiol Rev 2007; 87:965-1010. [PMID: 17615394 DOI: 10.1152/physrev.00049.2006] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adenylyl cyclases are variously regulated by G protein subunits, a number of serine/threonine and tyrosine protein kinases, and Ca2+. In some physiological situations, this regulation can be readily incorporated into a hormonal cascade, controlling processes such as cardiac contractility or neurotransmitter release. However, the significance of some modes of regulation is obscure and is likely only to be apparent in explicit cellular contexts (or stages of the cell cycle). The regulation of many of the ACs by the ubiquitous second messenger Ca2+provides an overarching mechanism for integrating the activities of these two major signaling systems. Elaborate devices have been evolved to ensure that this interaction occurs, to guarantee the fidelity of the interaction, and to insulate the microenvironment in which it occurs. Subcellular targeting, as well as a variety of scaffolding devices, is used to promote interaction of the ACs with specific signaling proteins and regulatory factors to generate privileged domains for cAMP signaling. A direct consequence of this organization is that cAMP will exhibit distinct kinetics in discrete cellular domains. A variety of means are now available to study cAMP in these domains and to dissect their components in real time in live cells. These topics are explored within the present review.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
5
|
Cooper DMF. Regulation and organization of adenylyl cyclases and cAMP. Biochem J 2003; 375:517-29. [PMID: 12940771 PMCID: PMC1223734 DOI: 10.1042/bj20031061] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 08/07/2003] [Accepted: 08/26/2003] [Indexed: 11/17/2022]
Abstract
Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments.
Collapse
Affiliation(s)
- Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
6
|
Abstract
Ca(2+) regulates mammalian adenylyl cyclases in a type-specific manner. Stimulatory regulation is moderately well understood. By contrast, even the concentration range over which Ca(2+) inhibits adenylyl cyclases AC5 and AC6 is not unambiguously defined; even less so is the mechanism of inhibition. In the present study, we compared the regulation of Ca(2+)-stimulable and Ca(2+)-inhibitable adenylyl cyclases expressed in Sf9 cells with tissues that predominantly express these activities in the mouse brain. Soluble forms of AC5 containing either intact or truncated major cytosolic domains were also examined. All adenylyl cyclases, except AC2 and the soluble forms of AC5, displayed biphasic Ca(2+) responses, suggesting the presence of two Ca(2+) sites of high ( approximately 0.2 microM) and low affinity ( approximately 0.1 mM). With a high affinity, Ca(2+) (i) stimulated AC1 and cerebellar adenylyl cyclases, (ii) inhibited AC6 and striatal adenylyl cyclase, and (iii) was without effect on AC2. With a low affinity, Ca(2+) inhibited all adenylyl cyclases, including AC1, AC2, AC6, and both soluble forms of AC5. The mechanism of both high and low affinity inhibition was revealed to be competition for a stimulatory Mg(2+) site(s). A remarkable selectivity for Ca(2+) was displayed by the high affinity site, with a K(i) value of approximately 0.2 microM, in the face of a 5000-fold excess of Mg(2+). The present results show that high and low affinity inhibition by Ca(2+) can be clearly distinguished and that the inhibition occurs type-specifically in discrete adenylyl cyclases. Distinction between these sites is essential, or quite spurious inferences may be drawn on the nature or location of high affinity binding sites in the Ca(2+)-inhibitable adenylyl cyclases.
Collapse
Affiliation(s)
- J L Guillou
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
7
|
Chabardès D, Imbert-Teboul M, Elalouf JM. Functional properties of Ca2+-inhibitable type 5 and type 6 adenylyl cyclases and role of Ca2+ increase in the inhibition of intracellular cAMP content. Cell Signal 1999; 11:651-63. [PMID: 10530873 DOI: 10.1016/s0898-6568(99)00031-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Among the different adenylyl cyclase (AC) isoforms, type 5 and type 6 constitute a subfamily which has the remarkable property of being inhibited by submicromolar Ca2+ concentrations in addition to Galphai-mediated processes. These independent and cumulative negative regulations are associated to a low basal enzymatic activity which can be strongly activated by Galphas-mediated interactions or forskolin. These properties ensure possible wide changes of cAMP synthesis. Regulation of cAMP synthesis by Ca2+ was studied in cultured or native cells which express naturally type 5 and/or type 6 AC, including well-defined renal epithelial cells. The results underline two characteristics of the inhibition due to agonist-elicited increase of intracellular Ca2+: i) Ca2+ rises achieved through capacitive Ca2+ entry or intracellular Ca2+ release can inhibit AC to a similar extent; and ii) in a same cell type, different agonists inducing similar overall Ca2+ rises elicit a variable inhibition of AC activity. The results suggest that a high efficiency of AC regulation by Ca2+ is linked to a requisite close localization of AC enzyme and Ca2+ rises.
Collapse
Affiliation(s)
- D Chabardès
- URA 1859 CNRS, Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, Gif sur Yvette, France.
| | | | | |
Collapse
|
8
|
Abstract
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells.
Collapse
Affiliation(s)
- H Takemura
- Department of Pharmacology, School of Medicine, Sapporo Medical University, Japan
| | | |
Collapse
|
9
|
Fagan KA, Mons N, Cooper DM. Dependence of the Ca2+-inhibitable adenylyl cyclase of C6-2B glioma cells on capacitative Ca2+ entry. J Biol Chem 1998; 273:9297-305. [PMID: 9535924 DOI: 10.1074/jbc.273.15.9297] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of adenylyl cyclases to be regulated by physiological transitions in Ca2+ provides a key point for integration of cytosolic Ca2+ concentration ([Ca2+]i) and cAMP signaling. Ca2+-sensitive adenylyl cyclases, whether endogenously or heterologously expressed, require Ca2+ entry for their regulation, rather than Ca2+ release from intracellular stores (Chiono, M., Mahey, R., Tate, G., and Cooper, D. M. F. (1995) J. Biol. Chem. 270, 1149-1155; Fagan, K., Mahey, R., and Cooper, D. M. F. (1996) J. Biol. Chem. 271, 12438-12444). The present study compared the regulation by capacitative Ca2+ entry versus ionophore-mediated Ca2+ entry of an endogenously expressed Ca2+-inhibitable adenylyl cyclase in C6-2B cells. Even in the face of a dramatic [Ca2+]i rise generated by ionophore, Ca2+ entry via capacitative Ca2+ entry channels was solely responsible for the regulation of the adenylyl cyclase. Selective efficacy of BAPTA over equal concentrations of EGTA in blunting the regulation of the cyclase by capacitative Ca2+ entry defined the intimacy between the adenylyl cyclase and the capacitative Ca2+ entry sites. This association could not be impaired by disruption of the cytoskeleton by a variety of strategies. These results not only establish an intimate spatial relationship between an endogenously expressed Ca2+-inhibitable adenylyl cyclase with capacitative Ca2+ entry sites but also provide a physiological role for capacitative Ca2+ entry other than store refilling.
Collapse
Affiliation(s)
- K A Fagan
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
10
|
Zhang WM, Wong TM. Suppression of cAMP by phosphoinositol/Ca2+ pathway in the cardiac kappa-opioid receptor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C82-7. [PMID: 9458715 DOI: 10.1152/ajpcell.1998.274.1.c82] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To determine whether the phosphoinositol/Ca2+ pathway interacts with the adenylate cyclase/adenosine 3',5'-cyclic monophosphate (cAMP) pathway in the cardiac kappa-receptor, the effects of U-50488, a specific kappa-receptor agonist, on the intracellular Ca2+ concentration ([Ca2+]i) and forskolin-induced accumulation of cAMP in rat ventricular myocytes were determined after interference of the phosphoinositol/Ca2+ pathway. U-50488 suppressed the forskolin-induced accumulation of cAMP and elevated [Ca2+]i, which were blocked by norbinaltorphimine, a specific kappa-receptor antagonist, and pertussis toxin. The effects of U-50488 were qualitatively similar to those of A-23187, a Ca2+ ionophore, but opposite to those of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester (AM), a [Ca2+]i chelator. Abolition of U-50488-induced elevation of [Ca2+]i by BAPTA-AM also abolished the effect of U-50488 on forskolin-induced accumulation of cAMP. Inhibition of the phospholipase C by specific inhibitors, U-73122 and neomycin, abolished the effects of U-50488 on both [Ca2+]i and forskolin-induced accumulation of cAMP. The results showed for the first time that kappa-receptor stimulation may suppress cAMP accumulation via activation of the phosphoinositol/Ca2+ pathway in the rat heart.
Collapse
Affiliation(s)
- W M Zhang
- Department of Physiology, Faculty of Medicine, University of Hong Kong, Hong Kong
| | | |
Collapse
|
11
|
Song SL, Chueh SH. P2 purinoceptor-mediated inhibition of cyclic AMP accumulation in NG108-15 cells. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00645-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Sipma H, den Hertog A, Nelemans A. Ca(2+)-dependent and -independent mechanism of cyclic-AMP reduction: mediation by bradykinin B2 receptors. Br J Pharmacol 1995; 115:937-44. [PMID: 7582524 PMCID: PMC1909031 DOI: 10.1111/j.1476-5381.1995.tb15901.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Bradykinin caused a transient reduction of about 25% in the cyclic AMP level in forskolin prestimulated DDT1 MF-2 smooth muscle cells (IC50: 36.4 +/- 4.9 nM) and a pronounced, sustained inhibition (40%) of the isoprenaline-stimulated cyclic AMP level (IC50: 37.5 +/- 1.1 nM). 2. The Ca2+ ionophore, ionomycin, mimicked both the bradykinin-induced transient reduction in the forskolin-stimulated cyclic AMP level and the sustained reduction in the isoprenaline-stimulated cyclic AMP level. 3. The Ca(2+)-dependent effect on cyclic AMP induced by bradykinin was mediated solely by Ca2+ release from internal stores, since inhibition of Ca2+ entry with LaCl3 did not reduce the response to bradykinin. 4. The involvement of calmodulin-dependent enzyme activities, protein kinase C or an inhibitory GTP binding protein in the bradykinin-induced responses was excluded since a calmodulin inhibitor, calmidazolium, a PKC inhibitor, staurosporine and pertussis toxin, respectively did not affect the decline in the cyclic AMP level. 5. Bradykinin enhanced the rate of cyclic AMP breakdown in intact cells, which effect was not mimicked by ionomycin. This suggested a Ca(2+)-independent activation of phosphodiesterase activity by bradykinin in DDT1 MF-2 cells. 6. The bradykinin B1 receptor agonist, desArg9-bradykinin, did not affect cyclic AMP formation in isoprenaline prestimulated cells, while the bradykinin B2 receptor antagonists, Hoe 140 (D-Arg[Hyp3, Thi5, D-Tic7, Oic8]-BK) and D-Arg[Hyp3, Thi5,8, D-Phe7]-BK completely abolished the bradykinin response in both forskolin and isoprenaline prestimulated cells. 7. Bradykinin caused an increase in intracellular Ca2+, which was antagonized by the bradykinin B2 receptor antagonists, Hoe 140 and D-Arg[Hyp3, Thi5,8, D-Phe7]-BK. The bradykinin B2 receptor agonist,desArg9-bradykinin, did not evoke a rise in cytoplasmic Ca2 .8. It is concluded, that stimulation of bradykinin B2 receptors causes a reduction in cellular cyclic AMP in DDT1, MF-2 cells. This decline in cyclic AMP is partly mediated by a Ca2+/calmodulin independent activation of phosphodiesterase activity. The increase in [Ca2+], mediated by bradykinin B2 receptors inhibited forskolin- and isoprenaline-activated adenylyl cyclase differently, most likely by interfering with different components of the adenylyl cyclase signalling pathway.
Collapse
Affiliation(s)
- H Sipma
- Groningen Institute for Drugs Studies GIDS, Department of Clinical Pharmacology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
13
|
Chiono M, Mahey R, Tate G, Cooper DM. Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6-2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)-inhibitable adenylyl cyclase in non-excitable cells. J Biol Chem 1995; 270:1149-55. [PMID: 7836373 DOI: 10.1074/jbc.270.3.1149] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Elevation of cytosolic free Ca2+ inhibits the type VI adenylyl cyclase that predominates in C6-2B cells. However, it is not known whether there is any selective requirement for Ca2+ entry or release for inhibition of cAMP accumulation to occur. In the present study, the effectiveness of intracellular Ca2+ release evoked by three independent methods (thapsigargin, ionomycin, and UTP) was compared with the capacitative Ca2+ entry that was triggered by these treatments. In each situation, only Ca2+ entry could inhibit cAMP accumulation (La3+ ions blocked the effect); Ca2+ release, which was substantial in some cases, was without effect. A moderate inhibition, as was elicited by a modest degree of Ca2+ entry, could be rendered substantial in the absence of phosphodiesterase inhibitors. Such conditions more closely mimic the physiological situation of normal cells. These results are particularly significant, in demonstrating not only that Ca2+ entry mediates the inhibitory effects of Ca2+ on cAMP accumulation, but also that diffuse elevations in [Ca2+]i are ineffective in modulating cAMP synthesis. This property suggests that, as with certain Ca(2+)-sensitive ion channels, Ca(2+)-sensitive adenylyl cyclases may be functionally colocalized with Ca2+ entry channels.
Collapse
Affiliation(s)
- M Chiono
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- D M Cooper
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, U.S.A
| | | | | |
Collapse
|
15
|
Cooper DM, Yoshimura M, Zhang Y, Chiono M, Mahey R. Capacitative Ca2+ entry regulates Ca(2+)-sensitive adenylyl cyclases. Biochem J 1994; 297 ( Pt 3):437-40. [PMID: 8110177 PMCID: PMC1137851 DOI: 10.1042/bj2970437] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A number of the currently described adenylyl cyclase species can be regulated by Ca2+ in the submicromolar concentration range in in vitro assays. The regulatory significance of these observations hinges on whether a physiological elevation in intracellular Ca2+ can regulate these cyclase activities in intact cells. However, achieving a physiological elevation in cytosolic Ca2+ is complicated by the fact that hormonal increases in cytosolic Ca2+ can be accompanied by additional effects, such as liberation of beta gamma-subunits of G-proteins and activation of protein kinase C, which can have disparate type-specific effects on cyclase activities. Therefore we have devised a strategy based on capacitative Ca2+ entry to show that, when types I and VI adenylyl cyclase are expressed in human embryonic kidney 293 cells, they are stimulated and inhibited respectively by Ca2+ entry. Blockade of Ca2+ entry by La3+ ions blocks the effects of Ca2+ entry on cyclic AMP synthesis. These studies establish that adenylyl cyclases deemed to be sensitive to Ca2+ in in vitro assays can be regulated by physiological Ca2+ entry, and therefore, such cyclases are poised to respond to changes in intracellular Ca2+ in tissues in which they are expressed.
Collapse
Affiliation(s)
- D M Cooper
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | |
Collapse
|
16
|
Schinelli S, Paolillo M, Corona GL. Modulation of dopamine-induced cAMP production in rat striatal cultures by the calcium ionophore A23187 and by phorbol-12-myristate-13-acetate. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 21:162-6. [PMID: 8164517 DOI: 10.1016/0169-328x(94)90389-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The modulation of cAMP formation by protein kinase C (PKC), activated by phorbol-12-myristate-13-acetate, and by Ca2+ entry, using the ionophore A23187, was investigated in rat striatal neurons grown in primary dissociated cell culture. Phorbol-12-myristate-13-acetate (PMA) potentiated forskolin-induced and dopamine-induced cAMP formation in a concentration-dependent manner. In contrast, the calcium ionophore A23187 inhibited dopamine-induced cAMP formation. When PMA and A23187 were tested simultaneously, the levels of cAMP were not statistically different from those found in the presence of dopamine alone. Furthermore, the decreasing effect of A23187 on cAMP formation was enhanced when PKC was desensitized by pretreating the neurons with 1 microM PMA for 18 h. These data indicate that in striatal neurons Ca2+ entry and PKC activation exert opposing effect on cAMP production.
Collapse
Affiliation(s)
- S Schinelli
- Istituto di Farmacologia, Facoltà di Farmacia dell'Università di Pavia, Italy
| | | | | |
Collapse
|
17
|
Cooper DM. Regulation of Ca(2+)-sensitive adenylyl cyclases by calcium ion in vitro and in vivo. Methods Enzymol 1994; 238:71-81. [PMID: 7799804 DOI: 10.1016/0076-6879(94)38007-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D M Cooper
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| |
Collapse
|
18
|
Debernardi MA, Munshi R, Yoshimura M, Cooper DM, Brooker G. Predominant expression of type-VI adenylate cyclase in C6-2B rat glioma cells may account for inhibition of cyclic AMP accumulation by calcium. Biochem J 1993; 293 ( Pt 2):325-8. [PMID: 8393657 PMCID: PMC1134362 DOI: 10.1042/bj2930325] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In C6-2B cells, agonist-stimulated cyclic AMP accumulation is inhibited when the cytosolic Ca2+ concentration is increased. We now demonstrate that in C6-2B cells: (i) the early kinetics of the cyclic AMP inhibition by substance K (t1/2 = 35 s) and thapsigargin (t1/2 = 1.6 min) closely mimic the kinetics of the cytosolic Ca2+ increase evoked by either agent (t1/2 = 25 s and 1.5 min respectively); (ii) the Ca2+ rise and cyclic AMP inhibition by substance K or thapsigargin are similarly affected in EGTA-containing medium; (iii) PCR detects type-III and type-VI adenylate cyclase cDNAs, and RNAase protection assays show that the mRNA for type-VI adenylate cyclase, an isoform inhibitable by submicromolar Ca2+ concentrations, is the predominant species, strongly suggesting that type-VI adenylate cyclase is probably the target molecule for Ca(2+)-mediated inhibition of cyclic AMP accumulation.
Collapse
Affiliation(s)
- M A Debernardi
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007
| | | | | | | | | |
Collapse
|