1
|
Nutsch VL, Will RG, Robison CL, Martz JR, Tobiansky DJ, Dominguez JM. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience. Front Behav Neurosci 2016; 10:75. [PMID: 27147996 PMCID: PMC4834303 DOI: 10.3389/fnbeh.2016.00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/01/2016] [Indexed: 01/23/2023] Open
Abstract
Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | | | - Julia R Martz
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at AustinAustin, TX, USA; Department of Psychology, The University of Texas at AustinAustin, TX, USA
| |
Collapse
|
2
|
Zhang L, McCarthy DM, Sharma N, Bhide PG. Dopamine receptor and Gα(olf) expression in DYT1 dystonia mouse models during postnatal development. PLoS One 2015; 10:e0123104. [PMID: 25860259 PMCID: PMC4393110 DOI: 10.1371/journal.pone.0123104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND DYT1 dystonia is a heritable, early-onset generalized movement disorder caused by a GAG deletion (ΔGAG) in the DYT1 gene. Neuroimaging studies and studies using mouse models suggest that DYT1 dystonia is associated with dopamine imbalance. However, whether dopamine imbalance is key to DYT1 or other forms of dystonia continues to be debated. METHODOLOGY/PRINCIPAL FINDINGS We used Dyt1 knock out (Dyt1 KO), Dyt1 ΔGAG knock-in (Dyt1 KI), and transgenic mice carrying one copy of the human DYT1 wild type allele (DYT1 hWT) or human ΔGAG mutant allele (DYT1 hMT). D1R, D2R, and Gα(olf) protein expression was analyzed by western blot in the frontal cortex, caudate-putamen and ventral midbrain in young adult (postnatal day 60; P60) male mice from all four lines; and in the frontal cortex and caudate putamen in juvenile (postnatal day 14; P14) male mice from the Dyt1 KI and KO lines. Dopamine receptor and Gα(olf) protein expression were significantly decreased in multiple brain regions of Dyt1 KI and Dyt1 KO mice and not significantly altered in the DYT1 hMT or DYT1 hWT mice at P60. The only significant change at P14 was a decrease in D1R expression in the caudate-putamen of the Dyt1 KO mice. CONCLUSION/SIGNIFICANCE We found significant decreases in key proteins in the dopaminergic system in multiple brain regions of Dyt1 KO and Dyt1 KI mouse lines at P60. Deletion of one copy of the Dyt1 gene (KO mice) produced the most pronounced effects. These data offer evidence that impaired dopamine receptor signaling may be an early and significant contributor to DYT1 dystonia pathophysiology.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Sciences, Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, United States of America
- * E-mail: (LZ); (PGB)
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences, Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Nutan Sharma
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, United States of America
- * E-mail: (LZ); (PGB)
| |
Collapse
|
3
|
Malone DT, Kearn CS, Chongue L, Mackie K, Taylor DA. Effect of social isolation on CB1 and D2 receptor and fatty acid amide hydrolase expression in rats. Neuroscience 2008; 152:265-72. [PMID: 18082330 DOI: 10.1016/j.neuroscience.2007.10.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 11/17/2022]
Abstract
Rearing rats in isolation has been shown to produce behavioral and neurochemical alterations similar to those observed in psychoses such as schizophrenia. Also, a dysregulation in both the endocannabinoid and dopaminergic systems has been implicated in schizophrenia. The aim of this study was to determine if there are differences in CB1 receptor and fatty acid amide hydrolase (FAAH) protein expression, as well as D2 dopamine receptor expression in different brain regions in rats reared in different environmental conditions. Twenty-one-day-old male Sprague-Dawley rats were either reared in individual cages (isolated rats) or in group cages of six per cage (group-housed rats) for 8 weeks. Quantitative fluorescence immunohistochemistry was performed on brain slices using antibodies specific to the CB1 or D2 receptor, or the enzyme FAAH. Raising rats in isolation led to a significant decrease in CB1 receptor expression in the caudate putamen and the amygdala, a significant increase in FAAH expression in the caudate putamen and the nucleus accumbens core and shell, and no significant change in D2 receptor expression in any region studied. These results indicate that the endocannabinoid system is altered in an animal model of aspects of psychosis. This implies that rearing rats under different housing conditions may provide new insight into the role of the endocannabinoid system in the development of psychoses.
Collapse
Affiliation(s)
- D T Malone
- Department of Pharmaceutical Biology, Victorian College of Pharmacy, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia.
| | | | | | | | | |
Collapse
|
4
|
López-Aranda MF, Acevedo MJ, Gutierrez A, Koulen P, Khan ZU. Role of a Galphai2 protein splice variant in the formation of an intracellular dopamine D2 receptor pool. J Cell Sci 2007; 120:2171-8. [PMID: 17550964 DOI: 10.1242/jcs.005611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of D2-receptor-expressing cells with specific drugs upregulates the receptor number at the cell surface independently of protein synthesis, leading to the concept of an intracellular receptor pool. However, how this pool is operating is still an enigma. Here, we report that a splice variant of the Galphai2 protein, protein sGalphai2, plays a crucial role in the maintenance of this D2-receptor pool. Co-expression of sGi2 with D2 receptor reduced receptor localization to cell surface by one-third. This effect is associated with specific intracellular protein-protein interaction and the formation of a sGi2-D2-receptor complex. It has been suggested that the formation of this complex serves to prevent D2 receptors from reaching the cell membrane. Treatment of D2-receptor-expressing cells with agonists increased the number of cell surface D2 receptors and coincided with a reduction in these receptors from intracellular complexes, suggesting that agonist treatment released D2 receptors from the complex allowing them to localize to the cell membrane. Thus, in addition to elucidating how the intracellular pool of D2 receptor functions, our findings uncover a novel mechanism regulating the density of cell surface D2 receptors.
Collapse
Affiliation(s)
- Manuel F López-Aranda
- Neurobiology Laboratory, CIMES, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, 29071-Malaga, Spain
| | | | | | | | | |
Collapse
|
5
|
Maltais S, C té S, Drolet G, Falardeau P. Cellular colocalization of dopamine D1 mRNA and D2 receptor in rat brain using a D2 dopamine receptor specific polyclonal antibody. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24:1127-49. [PMID: 11131177 DOI: 10.1016/s0278-5846(00)00125-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The main objective of this work was to investigate the extent of cellular colocalization of dopamine D1 and D2 receptors in the rat brain. A double labeling technique, that combined immunocytochemical labeling of the D2 receptor using polyclonal antibodies raised against the third intracellular loop of the short isoform of the human D2 receptor in combination with in situ hybridization detecting D1 mRNA expression, was designed to accomplish this goal. 2. The specificity of the antisera obtained was confirmed by immunoprecipitation assay, Western blot analysis, and immunocytochemistry on D2R transfected cells and murine brain tissue. Western blot using the D2 receptor antibody revealed a specific broad band centered at 67 kDa in transfected cells and a major protein of 88 kDa corresponding to D2R expressed in the caudate-putamen, to a lesser extent in the cortex, and not at all detected in the hypothalamic region. 3. The content of neurons double-labeled for D1/D2 receptors was observed at in differing intensities in the dorsal endopiroform nucleus, the intercalated nucleus of amygdala, the anterior part of the cortical nucleus amygdala, the nucleus of the lateral olfactory tract, the piriform cortex, the parabrachial nucleus, the supraoptic nucleus and the parabigeminal nucleus. All other regions of the brain revealed neurons expressing either D1 or D2 dopamine receptors but not both at that same time. 4. These results clearly demonstrated that specific neurons expressed both receptors D1 and D2, and that this colocalization was restricted to particular regions of the rat brain.
Collapse
Affiliation(s)
- S Maltais
- Centre Hospitalier Universitaire de Québec, Pavilion CHUL, Unité de Neuroscience, Ste-Foy, Canada
| | | | | | | |
Collapse
|
6
|
Luedtke RR, Griffin SA, Conroy SS, Jin X, Pinto A, Sesack SR. Immunoblot and immunohistochemical comparison of murine monoclonal antibodies specific for the rat D1a and D1b dopamine receptor subtypes. J Neuroimmunol 1999; 101:170-87. [PMID: 10580800 DOI: 10.1016/s0165-5728(99)00142-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The two D1-like dopamine receptor subtypes, D1a and D1b, are structurally similar and pharmacologically indistinguishable using currently available ligands. To differentiate between the D1-like dopamine receptor subtypes, murine monoclonal antibodies to the rat Dla and the rat D1b dopamine receptor have been prepared. Rat D1-like and D2-like dopamine receptors expressed in Sf9 cells were used to verify the immunospecificity of the monoclonal anti-(D1a dopamine receptor) and anti-(D1b dopamine receptor) antibodies using immunoblot and immunohistochemical techniques. These two antibodies were used to compare the temporal dynamics of D1-like dopamine receptors expressed in Sf9 cells following infection with recombinant baculovirus and to monitor the partial purification of detergent solubilized receptors following ion exchange chromatography. Immunoreactivity of the anti-(D1a receptor) antibody was observed in the striatum and cortical regions of the rat brain using immunoblot techniques. No reactivity on immunoblots was observed for the anti-(D1b receptor) antibody using rat brain tissue, probably due to the low levels of receptor expression. For immunohistochemical studies using rat brain slices, the anti-(D1a receptor) antibody heterogeneously labeled cells and punctate processes within the striatal neuropil while labeling in the adjacent cerebral cortex was weak. Anti-(D1b receptor) antibody immunoreactivity was weak in the .striatum and generally limited to sparse perikarya in the dorsal region. However, immunoreactivity was observed in numerous cells within the vertical and horizontal limbs of the diagonal band and in the ventral pallidum. Immunoreactivity of the anti-(D1b receptor) antibody was also observed in layer V pyramidal neurons of the frontal sensorimotor cortex.
Collapse
Affiliation(s)
- R R Luedtke
- Department of Pharmacology, University of North Texas Health Science Center at Fort Worth, 76107, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Lachowicz JE, Sibley DR. Chimeric D2/D3 dopamine receptor coupling to adenylyl cyclase. Biochem Biophys Res Commun 1997; 237:394-9. [PMID: 9268722 DOI: 10.1006/bbrc.1997.7146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have sought to determine which area of the D2 dopamine receptor's third intracellular loop contributes to G-protein coupling by constructing reciprocal chimeric D2/D3 receptors with fusion points near the center of the third intracellular loop. Both receptor chimeras were expressed equally well in Chinese Hamster Ovary (CHO) cells and exhibited ligand binding properties similar to those of the wild type receptors. Surprisingly, both of the D2/D3 receptor chimeras were able to effectively inhibit adenylyl cyclase activity to almost the same extent as that seen with the D2 receptor whereas the D3 receptor was without effect. These results suggest that the D2 receptor possesses two redundant and independent domains for G-protein coupling and inhibition of adenylyl cyclase activity.
Collapse
Affiliation(s)
- J E Lachowicz
- Experimental Therapeutics Branch, National Institutes of Health, Bethesda, Maryland, 20892-1406, USA
| | | |
Collapse
|
8
|
van Dijken H, Dijk J, Voom P, Holstege JC. Localization of dopamine D2 receptor in rat spinal cord identified with immunocytochemistry and in situ hybridization. Eur J Neurosci 1996; 8:621-8. [PMID: 8963454 DOI: 10.1111/j.1460-9568.1996.tb01247.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study the distribution of dopamine D2 receptors in rat spinal cord was determined by means of immunocytochemistry using an anti-peptide antibody, directed against the putative third intracellular loop of the D2 receptor and in situ hybridization (ISH) using a [35S]UTP labelled anti-sense riboprobe. With the immunocytochemical technique, labelling was confined to neuronal cell bodies and their proximal dendrites. Strongest labelling was present in the parasympathetic area of the sacral cord and in two sexually dimorphic motor nuclei of the lumbosacral cord, the spinal nucleus of the bulbocavernosus and the dorsolateral nucleus. Moderately labelled cells were present in the intermediolateral cell column, the area around the central canal and lamina I of the dorsal horn. Weak labelling was present in the lateral spinal nucleus and laminae VII and VIII of the ventral horn. Except for the two sexually dimorphic motornuclei of the lumbosacral cord labelled motoneurons were not encountered. With the ISH technique radioactive labelling was present in many neurons, indicating that they contained D2 receptor mRNA. The distribution of these neurons was very similar to the distribution obtained with immunocytochemistry, but with ISH additional labelled cells were detected in laminae III and IV of the dorsal horn, which were never labelled with immunocytochemistry. The present study shows that the D2 receptor is expressed in specific areas of the rat spinal cord. This distribution provides anatomical support for the involvement of D2 receptors in modulating nociceptive transmission and autonomic control. Our data further indicate that D2 receptors are not directly involved in modulating motor functions with the exception, possibly, of some sexual motor functions.
Collapse
Affiliation(s)
- H van Dijken
- Department of Anatomy, Erasmus University Medical School, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
9
|
Boudin H, Grauz-Guyon A, Faure MP, Forgez P, Lhiaubet AM, Dennis M, Beaudet A, Rostene W, Pelaprat D. Immunological recognition of different forms of the neurotensin receptor in transfected cells and rat brain. Biochem J 1995; 305 ( Pt 1):277-83. [PMID: 7826341 PMCID: PMC1136460 DOI: 10.1042/bj3050277] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, the molecular forms of the rat neurotensin receptor (NTR) expressed in transfected Chinese hamster ovary (CHO) cells, in infected Sf9 insect cells and in rat cerebral cortex were immunologically detected by means of an anti-peptide antibody raised against a fragment of the third intracellular loop of the receptor. Immunoblot experiments against a fusion protein indicated that the anti-peptide antibody recognized, under denaturing conditions, the corresponding amino acid sequence within the NTR. In immunoblot analysis of membranes from NTR-transfected CHO cells, high levels of immunoreactivity were observed between 60 and 72 kDa, while only a faint labelling was observed at 47 kDa, the molecular mass deduced for the rat NTR cDNA. The bands of high molecular mass were no longer observed after deglycosylation of membrane proteins by peptide N-glycosidase F, indicating that they represented glycosylated forms of the receptor. Extracts of membranes derived from baculovirus-infected Sf9 insect-cells expressing the NTR provided a quite different immunoblot pattern, since the major band detected in that case was at 47 kDa, the molecular size of the non-glycosylated receptor. Taken together, these data show that, while most of the NTR protein was glycosylated in CHO cells, it was unglycosylated in Sf9 insect-cells. In addition, molecular sizes of the receptor proteins observed in these two cell lines differed from those obtained for the NTR endogenously expressed in the rat cerebral cortex of 7 day-old rats, where bands at 56 and 54 kDa were detected. Binding experiments carried out on membrane preparations obtained from baculovirus-infected Sf9 cells demonstrated that the immunogenic sequence was still accessible to the antibody when the receptor was embedded in the cell membrane. Immunohistochemical studies carried out on both transfected CHO cells and infected Sf9 cells confirmed this interpretation and further indicated that the antibody could be applied in the visualization of the receptor.
Collapse
Affiliation(s)
- H Boudin
- Institut National de la Santé et de la Recherche Médicale, Unité 339, Hôpital St Antoine, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gérard C, Langlois X, Gingrich J, Doucet E, Vergé D, Kia HK, Raisman R, Gozlan H, el Mestikawy S, Hamon M. Production and characterization of polyclonal antibodies recognizing the intracytoplasmic third loop of the 5-hydroxytryptamine1A receptor. Neuroscience 1994; 62:721-39. [PMID: 7870302 DOI: 10.1016/0306-4522(94)90472-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The portion of the complementary DNA encoding the third intracellular loop of the rat 5-hydroxytryptamine1A (serotonin) receptor was subcloned into the vector pGEX-KG and expressed in Escherichia coli as a fusion protein coupled with the glutathione S-transferase of Schistosoma japonicum. The fusion protein was purified on a glutathione-agarose affinity column and used to immunize rabbits for the production of polyclonal anti-5-hydroxytryptamine1A receptor antibodies. Enzyme-linked immunosorbent assay revealed that antibodies were produced as early as one month after the first injection of the fusion protein, and immune response plateaued at a maximum after the third (monthly) booster injection. These antibodies only marginally affected the specific binding of [3H]8-hydroxy-2-(di-n-propyl-amino) tetralin to solubilized and membrane bound 5-hydroxytryptamine1A receptors, and did not interfere with serotonin-induced inhibition of forskolin-stimulated adenylate cyclase negatively coupled to 5-hydroxytryptamine1A receptors in rat hippocampal membranes. However, antibodies were able to immunoprecipitate 5-hydroxytryptamine1A receptor binding sites solubilized from rat hippocampal membranes. The distribution of immunoautoradiographic labelling and immunohistochemical staining of rat brain sections exposed to the antibodies raised against the fusion protein superimposed to that of 5-hydroxytryptamine1A receptor binding sites labelled by specific radioligands, with marked enrichment in the limbic areas (dentate gyrus and CA1 area in the hippocampus, lateral septum, entorhinal cortex) and the anterior raphe nuclei. The differential cellular location of immunoreactivity within the hippocampus (where dendritic fields but not pyramidal cell somas were immunostained) and the median raphe nucleus (where the plasmic membrane of somas was strongly immunoreactive) suggests that the addressing of 5-hydroxytryptamine1A receptors might differ from one neuronal cell type to another.
Collapse
MESH Headings
- Adenylyl Cyclases/analysis
- Amino Acid Sequence
- Animals
- Antibody Specificity
- Base Sequence
- Chromatography, Affinity
- Colforsin/pharmacology
- Cytoplasm
- DNA, Complementary/genetics
- Entorhinal Cortex/chemistry
- Escherichia coli
- Glutathione Transferase/genetics
- Hippocampus/chemistry
- Humans
- Isoantibodies/immunology
- Limbic System/chemistry
- Male
- Molecular Sequence Data
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/immunology
- Peptide Fragments/immunology
- Peptide Fragments/isolation & purification
- Protein Structure, Tertiary
- Protozoan Proteins/genetics
- Rabbits
- Raphe Nuclei/chemistry
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin/analysis
- Receptors, Serotonin/chemistry
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/genetics
- Receptors, Serotonin/immunology
- Receptors, Serotonin, 5-HT1
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Schistosoma japonicum/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Serotonin/pharmacology
Collapse
Affiliation(s)
- C Gérard
- INSERM U288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine, Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jackson DM, Westlind-Danielsson A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 1994; 64:291-370. [PMID: 7878079 DOI: 10.1016/0163-7258(94)90041-8] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The description of new dopamine (DA) receptor subtypes, D1-(D1 and D5) and D2-like (D2A, D2B, D3, D4), has given an impetus to DA research. While selective agonists and antagonists are not generally available yet, the receptor distribution in the brain suggests that they could be new targets for drug development. Binding characteristics and second messenger coupling has been explored in cell lines expressing the new cloned receptors. The absence of selective ligands has meant that in vivo studies have lagged behind. However, progress has been made in understanding the function of DA-containing discrete brain nuclei and the functional consequence of the DA's interaction with other neurotransmitters. This review explores some of the latest advances in these various areas.
Collapse
Affiliation(s)
- D M Jackson
- Department of Behavioural, Pharmacology, Astra Arcus AB, Södertälje, Sweden
| | | |
Collapse
|