1
|
Schopfer LM, Onder S, Lockridge O. Evaluation of mass spectrometry MS/MS spectra for the presence of isopeptide crosslinked peptides. PLoS One 2021; 16:e0254450. [PMID: 34242352 PMCID: PMC8270460 DOI: 10.1371/journal.pone.0254450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Isopeptide crosslinked proteins can be the product of transglutaminase or of exposure to organophosphorus toxicants (OP). Transglutaminase links glutamine to lysine with loss of ammonia. OP toxicants induce a link between glutamic acid and lysine with loss of water. Our goal was to establish criteria to distinguish real from false isopeptide crosslinks reported by software searches of mass spectrometry data. We used fragmentation spectra of tryptic peptides from MAP-rich tubulin Sus scrofa as a test system for detection of naturally-occurring isopeptide crosslinks. Data were analyzed with Protein Prospector. Criteria for the assignments included the presence of at least 1 crosslink specific product ion, fragment ions from both peptides, Protein Prospector scores ≥20, and best fit of the MS/MS data to the crosslinked peptide as opposed to a linear peptide. Out of 301,364 spectra, 15 potential transglutaminase-type crosslinked peptide candidates were identified. Manual evaluation of these MS/MS spectra reduced the number to 1 valid crosslink between Q112 of NFH and K368 of Tau. Immunopurification with anti-isopeptide 81D1C2 confirmed that MAP-rich tubulin contained only one isopeptide. Support for this isopeptide bond was obtained by showing that transglutaminase was capable of incorporating dansyl-aminohexyl -QQIV into K368. A model of the KIETHK-QLEAHNR isopeptide was synthesized with the aid of transglutaminase. MS/MS spectra of the model validated our interpretation of the native isopeptide. An OP-induced isopeptide bond between K163 of tubulin alpha-1A and E158 of tubulin beta-4B was induced by treating MAP-rich tubulin with 100 μM chlorpyrifos oxon. This crosslink was supported by the criteria described above and by the presence of diethoxyphospho-lysine 163 in the tubulin alpha-1A peptide. The information obtained in this work is valuable for future studies that aim to understand why exposure to OP is associated with increased risk of neurodegenerative disease.
Collapse
Affiliation(s)
- Lawrence M. Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Seda Onder
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
2
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
André W, Nondier I, Valensi M, Guillonneau F, Federici C, Hoffner G, Djian P. Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases. Neurobiol Dis 2017; 101:40-58. [DOI: 10.1016/j.nbd.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
|
4
|
Gaetano Gatta N, Romano R, Fioretti E, Gentile V. Transglutaminase inhibition: possible therapeutic mechanisms to protect cells from death in neurological disorders. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Zhang J, Wang S, Huang W, Bennett DA, Dickson DW, Wang D, Wang R. Tissue Transglutaminase and Its Product Isopeptide Are Increased in Alzheimer's Disease and APPswe/PS1dE9 Double Transgenic Mice Brains. Mol Neurobiol 2016; 53:5066-78. [PMID: 26386840 PMCID: PMC4799778 DOI: 10.1007/s12035-015-9413-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by intracellular and extracellular protein aggregates, including microtubule-associated protein tau and cleavage product of amyloid precursor protein, β-amyloid (Aβ). Tissue transglutaminase (tTG) is a calcium-dependent enzyme that cross-links proteins forming a γ-glutamyl-ε-lysine isopeptide bond. Highly resistant to proteolysis, this bond can induce protein aggregation and deposition. We set out to determine if tTG may play a role in pathogenesis of AD. Previous studies have shown that tTG and isopeptide are increased in advanced AD, but they have not addressed if this is an early or late feature of AD. In the present study, we measured tTG expression levels and enzyme activity in the brains of individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD, as well as a transgenic mouse model of AD. We found that both enzyme expression and activity were increased in MCI as well as AD compared to NCI. In the transgenic model of AD, tTG expression and enzyme activity increased sharply with age and were relatively specific for the hippocampus. We also assessed overlap of isopeptide immunoreactivity with neurodegeneration-related proteins with Western blots and found neurofilament, tau, and Aβ showed co-localization with isopeptide in both AD and transgenic mice. These results suggest that tTG might be a key factor in pathogenesis of abnormal protein aggregation in AD.
Collapse
Affiliation(s)
- Ji Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Suqing Wang
- Department of Nutrition and Food Health, School of Public Health, Wuhan University, Wuhan, China
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Dennis W Dickson
- Department of Pathology (Neuropathology) and Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Dengshun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA.
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
6
|
Gaetano Gatta N, Cammarota G, Gentile V. Possible roles of transglutaminases in molecular mechanisms responsible for human neurodegenerative diseases. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 2015; 6:6121. [PMID: 25607655 PMCID: PMC4302951 DOI: 10.1038/ncomms7121] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/14/2014] [Indexed: 01/17/2023] Open
Abstract
Mutations in GPR56, a member of the adhesion G protein-coupled receptor family, cause a human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Magnetic resonance imaging (MRI) of BFPP brains reveals myelination defects in addition to brain malformation. However, the cellular role of GPR56 in oligodendrocyte development remains unknown. Here, we demonstrate that loss of Gpr56 leads to hypomyelination of the central nervous system in mice. GPR56 levels are abundant throughout early stages of oligodendrocyte development, but are downregulated in myelinating oligodendrocytes. Gpr56-knockout mice manifest with decreased oligodendrocyte precursor cell (OPC) proliferation and diminished levels of active RhoA, leading to fewer mature oligodendrocytes and a reduced number of myelinated axons in the corpus callosum and optic nerves. Conditional ablation of Gpr56 in OPCs leads to a reduced number of mature oligodendrocytes as seen in constitutive knockout of Gpr56. Together, our data define GPR56 as a cell-autonomous regulator of oligodendrocyte development.
Collapse
Affiliation(s)
- Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yiyu Deng
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Kelly R Monk
- 1] Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Yanqin Ying
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sung-Jin Jeong
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Manabu Makinodan
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Allison R Bialas
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bernard S Chang
- Comprehensive Epilepsy Center, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Beth Stevens
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gabriel Corfas
- 1] F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
8
|
Serretiello E, Iannaccone M, Titta F, G. Gatta N, Gentile V. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Wilhelmus MMM, Drukarch B. Tissue transglutaminase is a biochemical marker for Alzheimer's disease. Neurobiol Aging 2013; 35:e3-4. [PMID: 24080177 DOI: 10.1016/j.neurobiolaging.2013.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Itoh M, Tatsukawa H, Eun-Seo L, Yamanishi K, Kojima S, Hitomi K. Variations in both TG1 and TG2 isozyme-specific in situ activities and protein expressions during mouse embryonic development. J Histochem Cytochem 2013; 61:793-801. [PMID: 23896968 DOI: 10.1369/0022155413501676] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transglutaminase (TG) is a family of enzymes that catalyzes cross-linking reactions among proteins. Using fluorescent-labeled highly reactive substrate peptides, we recently developed a system to visualize isozyme-specific in situ enzymatic activity. In the present study, we investigated the in situ activities of TG1 (skin-type) and TG2 (tissue-type) using whole mouse sections of various embryonic developmental stages and neonates. In each case, we also successfully used immunostaining of identical whole mouse sections for protein expression after detection of enzymatic activities. In general, the enzymatic activity was correlated with TG protein expression. However, in some tissues, TG protein expression patterns, which were inconsistent with the enzymatic activities, suggested that inactive TGs were produced possibly by self cross-linking or other modifications. Our method allowed us to simultaneously observe developmental variations in both TG isozyme-specific activities and protein levels in mouse embryonic and neonate tissues.
Collapse
Affiliation(s)
- Miho Itoh
- Graduate School of Bioagricultural Sciences (MI), Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Song Y, Kirkpatrick LL, Schilling AB, Helseth DL, Chabot N, Keillor JW, Johnson GVW, Brady ST. Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 2013; 78:109-23. [PMID: 23583110 DOI: 10.1016/j.neuron.2013.01.036] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Abstract
Neuronal microtubules support intracellular transport, facilitate axon growth, and form a basis for neuronal morphology. While microtubules in nonneuronal cells are depolymerized by cold, Ca(2+), or antimitotic drugs, neuronal microtubules are unusually stable. Such stability is important for normal axon growth and maintenance, while hyperstability may compromise neuronal function in aging and degeneration. Though mechanisms for stability are unclear, studies suggest that stable microtubules contain biochemically distinct tubulins that are more basic than conventional tubulins. Transglutaminase-catalyzed posttranslational incorporation of polyamines is one of the few modifications of intracellular proteins that add positive charges. Here we show that neuronal tubulin can be polyaminated by transglutaminase. Endogenous brain transglutaminase-catalyzed polyaminated tubulins have the biochemical characteristics of neuronal stable microtubules. Inhibiting polyamine synthesis or transglutaminase activity significantly decreases microtubule stability in vitro and in vivo. Together, these findings suggest that transglutaminase-catalyzed polyamination of tubulins stabilizes microtubules essential for unique neuronal structures and functions.
Collapse
Affiliation(s)
- Yuyu Song
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Iannaccone M, Stefanile A, Vivo GD, Martin A, Serretiello E, Gentile V. Transglutaminase inhibition: A therapy to protect cells from death in neurodegeneration? World J Biol Chem 2012; 3:184-186. [PMID: 23193435 PMCID: PMC3508428 DOI: 10.4331/wjbc.v3.i11.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/30/2012] [Indexed: 02/05/2023] Open
Abstract
Transglutaminases (TGs; E.C. 2.3.2.13) are ubiquitous enzymes which catalyze post-translational modifications of proteins. TGs and TG-catalyzed post-translational modifications of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases. In particular, TG activity has been hypothesized to also be involved also in the molecular mechanisms responsible for human neurodegenerative diseases. In support of this hypothesis, Basso et al recently demonstrated that the TG inhibition protects against oxidative stress-induced neuronal death, suggesting that multiple TG isoforms participate in oxidative stress-induced cell death and that nonselective TG isoform inhibitors will be most effective in fighting oxidative death in neurological disorders. In this commentary, we discuss the possible molecular mechanisms by which TG activity could be involved in the pathogenesis of neurological diseases, with particular reference to neurodegenerative diseases, and the possible involvement of multiple TG isoforms expressed simultaneously in the nervous system in these diseases. Moreover, therapeutic strategies based on the use of selective or nonselective TG inhibitors for the amelioration of the symptoms of patients with neurological diseases, characterized by aberrant TG activity, are also discussed.
Collapse
|
13
|
Singer K, Luo R, Jeong SJ, Piao X. GPR56 and the developing cerebral cortex: cells, matrix, and neuronal migration. Mol Neurobiol 2012; 47:186-96. [PMID: 23001883 DOI: 10.1007/s12035-012-8343-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022]
Abstract
GPR56, a member of the adhesion G protein-coupled receptor (GPCR) family, is integral to the development of the cortex, as mutations in GPR56 cause bilateral frontoparietal polymicrogyria (BFPP). BFPP is a cobblestone-like cortical malformation, characterized by overmigrating neurons and the formation of neuronal ectopias on the surface of the brain. Since its original cloning a decade ago, GPR56 has emerged from an orphaned and uncharacterized protein to an increasingly well-understood receptor, both in terms of its signaling and function. Collagen III is the ligand of GPR56 in the developing brain. Upon binding to collagen III, GPR56 activates RhoA via coupling to Gα(12/13). This pathway appears to be particularly critical in the preplate neurons, which are the earliest born neurons in the cortex, as the expression pattern of GPR56 in these neurons mimics the anterior to posterior gradient of malformation associated with loss of GPR56 in both humans and mice. Further characterizing the role of GPR56 in the preplate will shed light on the mechanism of cortical development and patterning.
Collapse
Affiliation(s)
- Kathleen Singer
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
14
|
Campisi A, Spatuzza M, Russo A, Raciti G, Vanella A, Stanzani S, Pellitteri R. Expression of tissue transglutaminase on primary olfactory ensheathing cells cultures exposed to stress conditions. Neurosci Res 2011; 72:289-95. [PMID: 22222252 DOI: 10.1016/j.neures.2011.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/27/2023]
Abstract
Tissue transglutaminase (TG2), a multifunctional enzyme implicated in cellular proliferation and differentiation processes, plays a modulatory role in the cell response to stressors. Herein, we used olfactory ensheathing cells (OECs), representing an unusual population of glial cells to promote axonal regeneration and to provide trophic support, as well as to assess whether the effect of some Growth Factors (GFs), NGF, bFGF or GDNF, on TG2 overexpression induced by stress conditions, such as glutamate or lipopolysaccaride (LPS). Glial Fibrillary Acidic Protein (GFAP) and vimentin were used as markers of astroglial differentiation and cytoskeleton component, respectively. Glutamate or LPS treatment induced a particular increase of TG2 expression. A pre-treatment of the cells with the GFs restored the levels of the protein to that of untreated ones. Our results demonstrate that the treatment of OECs with the GFs was able to restore the OECs oxidative status as modified by stress, also counteracting TG2 overexpression. It suggests that, in OECs, TG2 modulation or inhibition induced by GFs might represent a therapeutic target to control the excitotoxicity and/or inflammation, which are involved in several acute and chronic brain diseases.
Collapse
Affiliation(s)
- Agata Campisi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Verhaar R, Drukarch B, Bol JGJM, Jongenelen CAM, Musters RJP, Wilhelmus MMM. Increase in endoplasmic reticulum-associated tissue transglutaminase and enzymatic activation in a cellular model of Parkinson's disease. Neurobiol Dis 2011; 45:839-50. [PMID: 22051113 DOI: 10.1016/j.nbd.2011.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/12/2011] [Accepted: 10/16/2011] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is characterized by accumulation of α-synuclein aggregates and degeneration of melanized, catecholaminergic neurons. The tissue transglutaminase (tTG) enzyme catalyzes molecular protein cross-linking. In PD, tTG levels are increased and cross-linking has been identified as an important factor in α-synuclein aggregation. In our quest to link tTGs distribution in the human brain to the hallmarks of PD pathology, we recently reported that catecholaminergic neurons in PD disease-affected brain areas display typical endoplasmic reticulum (ER) granules showing tTG immunoreactivity. In the present study, we set out to elucidate the nature of the interaction between tTG and the ER in PD pathogenesis, using retinoic-acid differentiated SH-SY5Y cells exposed to the PD-mimetic 1-methyl-4-phenylpyridinium (MPP(+)). Alike our observations in PD brain, MPP(+)-treated cells displayed typical TG-positive granules, that were also induced by other PD mimetics and by ER-stress inducing toxins. Additional immunocytochemical and biochemical investigation revealed that tTG is indeed associated to the ER, in particular at the cytoplasmic face of the ER. Upon MPP(+) exposure, additional recruitment of tTG toward the ER was found. In addition, we observed that MPP(+)-induced tTG activity results in transamidation of ER membrane proteins, like calnexin. Our data provide strong evidence for a, so far unrecognized, localization of tTG at the ER, at least in catecholaminergic neurons, and suggests that in PD activation of tTG may have a direct impact on ER function, in particular via post-translational modification of ER membrane proteins.
Collapse
Affiliation(s)
- Robin Verhaar
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Gentile V. Physiopathological roles of human transglutaminase 2. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:47-95. [PMID: 22220472 DOI: 10.1002/9781118105771.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vittorio Gentile
- Department of Biochemistry and Biophysics, Medical School, Second University of Naples, Naples, Italy
| |
Collapse
|
17
|
Transglutaminase 6: a protein associated with central nervous system development and motor function. Amino Acids 2011; 44:161-77. [PMID: 21984379 PMCID: PMC3535377 DOI: 10.1007/s00726-011-1091-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/16/2011] [Indexed: 12/20/2022]
Abstract
Transglutaminases (TG) form a family of enzymes that catalyse various post-translational modifications of glutamine residues in proteins and peptides including intra- and intermolecular isopeptide bond formation, esterification and deamidation. We have characterized a novel member of the mammalian TG family, TG6, which is expressed in a human carcinoma cell line with neuronal characteristics and in mouse brain. Besides full-length protein, alternative splicing results in a short variant lacking the second β-barrel domain in man and a variant with truncated β-sandwich domain in mouse. Biochemical data show that TG6 is allosterically regulated by Ca2+ and guanine nucleotides. Molecular modelling indicates that TG6 could have Ca2+ and GDP-binding sites related to those of TG3 and TG2, respectively. Localization of mRNA and protein in the mouse identified abundant expression of TG6 in the central nervous system. Analysis of its temporal and spatial pattern of induction in mouse development indicates an association with neurogenesis. Neuronal expression of TG6 was confirmed by double-labelling of mouse forebrain cells with cell type-specific markers. Induction of differentiation in mouse Neuro 2a cells with NGF or dibutyryl cAMP is associated with an upregulation of TG6 expression. Familial ataxia has recently been linked to mutations in the TGM6 gene. Autoantibodies to TG6 were identified in immune-mediated ataxia in patients with gluten sensitivity. These findings suggest a critical role for TG6 in cortical and cerebellar neurons.
Collapse
|
18
|
Martin A, De Vivo G, Gentile V. Possible role of the transglutaminases in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases. Int J Alzheimers Dis 2011; 2011:865432. [PMID: 21350675 PMCID: PMC3042675 DOI: 10.4061/2011/865432] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/05/2011] [Indexed: 12/30/2022] Open
Abstract
Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Parkinson's disease, supranuclear palsy, Huntington's disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.
Collapse
Affiliation(s)
- Antonio Martin
- Department of Biochemistry and Biophysics, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | | | | |
Collapse
|
19
|
Ricotta M, Iannuzzi M, Vivo GD, Gentile V. Physio-pathological roles of transglutaminase-catalyzed reactions. World J Biol Chem 2010; 1:181-7. [PMID: 21541002 PMCID: PMC3083958 DOI: 10.4331/wjbc.v1.i5.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 05/04/2010] [Accepted: 05/14/2010] [Indexed: 02/05/2023] Open
Abstract
Transglutaminases (TGs) are a large family of related and ubiquitous enzymes that catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted /crosslinked adducts) or -OH groups (to form ester linkages). In the absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. The TG enzymes are also capable of catalyzing other reactions important for cell viability. The distribution and the physiological roles of TG enzymes have been widely studied in numerous cell types and tissues and their roles in several diseases have begun to be identified. “Tissue” TG (TG2), a member of the TG family of enzymes, has definitely been shown to be involved in the molecular mechanisms responsible for a very widespread human pathology: i.e. celiac disease (CD). TG activity has also been hypothesized to be directly involved in the pathogenetic mechanisms responsible for several other human diseases, including neurodegenerative diseases, which are often associated with CD. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease and other recently identified polyglutamine diseases, are characterized, in part, by aberrant cerebral TG activity and by increased cross-linked proteins in affected brains. In this review, we discuss the physio-pathological role of TG-catalyzed reactions, with particular interest in the molecular mechanisms that could involve these enzymes in the physio-pathological processes responsible for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariangela Ricotta
- Mariangela Ricotta, Maura Iannuzzi, Giulia De Vivo, Vittorio Gentile, Department of Biochemistry and Biophysics, Medical School, Second University of Naples, via Costantinopoli 16, 80138 Napoli, Italy
| | | | | | | |
Collapse
|
20
|
TG2 protects neuroblastoma cells against DNA-damage-induced stress, suppresses p53 activation. Amino Acids 2010; 39:523-32. [PMID: 20112034 DOI: 10.1007/s00726-009-0468-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/26/2009] [Indexed: 12/11/2022]
Abstract
Tissue transglutaminase (TG2) is a multifunctional member of the transglutaminase (TGase) family (E.C.2.3.2.13), which catalyzes in a calcium-dependent reaction the formation of covalent bonds between the gamma-carboxamide groups of peptide-bound glutamine residues and various primary amines. Here, we investigated the role of TG2 in a response of the neuroblastoma SH-SY5Y cells to topoisomerase II inhibitor etoposide, known to trigger DNA-damage cell response. We found an early and transient (approximately 2 h) increase of the TG2 protein in SH-SY5Y cells treated with etoposide, along with the increase of phosphorylated and total levels of the p53 protein. Next, we showed that SH-SY5Y cells, which overexpress wild-type TG2 were significantly protected against etoposide-induced cell death. The TG2 protective effect was associated only with the transamidation active form of TG2, because overexpression the wild-type TG2, but not its transamidation inactive C277S form, resulted in a pronounced suppression of caspase-3 activity as well as p53 phosphorylation during the etoposide-induced stress. In addition, exacerbation of cell death with a significant increase in caspase-3 and p53 activation was observed in SH/anti-TG2 cells, in which expression of the endogenous TG2 protein has been greatly reduced by the antisense cDNA construct. Though the cell signaling and molecular mechanisms of the TG2-driven suppression of the cell death machinery remain to be investigated, our findings strongly suggest that TG2 plays an active role in the response of neuroblastoma cells to DNA-damage-induced stress by exerting a strong protective effect, likely by the suppression of p53 activation and p53-driven cell signaling events.
Collapse
|
21
|
Abstract
There are a total of 33 members of adhesion G protein-coupled receptors (GPCRs) in humans and 30 members in mice and rats. More than half of these receptors are expressed in the central nervous system (CNS), indicating their possible roles in the development and function of the CNS. Indeed, it has been shown that adhesion-GPCRs are involved in the regulation of neurulation, cortical development and neurite growth. Among the few adhesion-GPCRs being studied, GPR56 is so far the only member associated with a human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). The histopathology of BFPP is a cobblestone-like brain malformation characterized by neuronal overmigration through a breached pial basement membrane (BM). Further studies in the Gpr56 knockout mouse model revealed that GPR56 is expressed in radial glial cells and regulates the integrity of the pial BM by binding a putative ligand in the extracellular matrix of the developing brain.
Collapse
|
22
|
Wilhelmus MMM, Verhaar R, Bol JGJM, van Dam AM, Hoozemans JJM, Rozemuller AJM, Drukarch B. Novel role of transglutaminase 1 in corpora amylacea formation? Neurobiol Aging 2009; 32:845-56. [PMID: 19464759 DOI: 10.1016/j.neurobiolaging.2009.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/06/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Corpora amylacea (CA) are both age and neurodegeneration-related spherical bodies, consisting of polymerized proteins, often thought to be involved in sequestration of hazardous products of cellular metabolism in brain. Although CA formation is associated with cellular stress, the process underlying their formation remains obscure. Transglutaminases (TGs) are stress associated enzymes that induce molecular cross-links, leading to polymerization of substrate proteins. TG expression and activity are elevated in Alzheimer's disease (AD) and Parkinson's disease (PD), and TG-catalyzed cross-links are present in their lesions. Considering the nature of CA, the aim of this study was to investigate the presence of TGs and TG cross-links in CA of healthy aging brain, AD and PD brain, using immunohistochemistry. We observed TG1 and TG cross-links in CA, together with typical cytoskeletal proteins. Furthermore, the presence of proteins associated with AD or PD pathogenesis was not altered in CA of disease brain compared to controls. We propose that TG1-catalyzed cross-linking and consequent polymerization of cytoskeletal and cytoskeleton-associated proteins may underlie CA formation.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
23
|
Dikranian K, Cohen R, Mac Donald C, Pan Y, Brakefield D, Bayly P, Parsadanian A. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp Neurol 2008; 211:551-60. [PMID: 18440507 DOI: 10.1016/j.expneurol.2008.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/28/2008] [Accepted: 03/01/2008] [Indexed: 10/22/2022]
Abstract
The immature brain in the first several years of childhood is very vulnerable to trauma. Traumatic brain injury (TBI) during this critical period often leads to neuropathological and cognitive impairment. Previous experimental studies in rodent models of infant TBI were mostly concentrated on neuronal degeneration, while axonal injury and its relationship to cell death have attracted much less attention. To address this, we developed a closed controlled head injury model in infant (P7) mice and characterized the temporospatial pattern of axonal degeneration and neuronal cell death in the brain following mild injury. Using amyloid precursor protein (APP) as marker of axonal injury we found that mild head trauma causes robust axonal degeneration in the cingulum/external capsule as early as 30 min post-impact. These levels of axonal injury persisted throughout a 24 h period, but significantly declined by 48 h. During the first 24 h injured axons underwent significant and rapid pathomorphological changes. Initial small axonal swellings evolved into larger spheroids and club-like swellings indicating the early disconnection of axons. Ultrastructural analysis revealed compaction of organelles, axolemmal and cytoskeletal defects. Axonal degeneration was followed by profound apoptotic cell death in the posterior cingulate and retrosplenial cortex and anterior thalamus which peaked between 16 and 24 h post-injury. At early stages post-injury no evidence of excitotoxic neuronal death at the impact site was found. At 48 h apoptotic cell death was reduced and paralleled with the reduction in the number of APP-labeled axonal profiles. Our data suggest that early degenerative response to injury in axons of the cingulum and external capsule may cause disconnection between cortical and thalamic neurons, and lead to their delayed apoptotic death.
Collapse
Affiliation(s)
- K Dikranian
- Department of Anatomy and Neurobiology, Washington University, St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Wilhelmus MMM, van Dam AM, Drukarch B. Tissue transglutaminase: a novel pharmacological target in preventing toxic protein aggregation in neurodegenerative diseases. Eur J Pharmacol 2008; 585:464-72. [PMID: 18417122 DOI: 10.1016/j.ejphar.2008.01.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 01/10/2008] [Accepted: 01/24/2008] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease, Parkinson's disease and Huntington's disease are neurodegenerative diseases, characterized by the accumulation and deposition of neurotoxic protein aggregates. The capacity of specific proteins to self-interact and form neurotoxic aggregates seems to be a common underlying mechanism leading to pathology in these neurodegenerative diseases. This process might be initiated and/or accelerated by proteins that interact with these aggregating proteins. The transglutaminase (TG) family of proteins are calcium-dependent enzymes that catalyze the formation of covalent epsilon-(gamma-glutamyl)lysine isopeptide bonds, which can result in both intra- and intermolecular cross-links. Intramolecular cross-links might modify self-interacting proteins, and make them more prone to aggregate. In addition, intermolecular cross-links could link self-aggregating proteins and thereby initiate and/or stimulate the aggregation process. So far, increased levels and activity of tissue transglutaminase (tTG), the best characterized member of the TG family, have been observed in many neurodegenerative diseases, and the self-interacting proteins, characteristic of Alzheimer's disease, Parkinson's disease and Huntington's disease, are known substrates of tTG. Here, we focus on the role of tTG in the initiation of the aggregation process of self-interacting proteins in these diseases, and promote the notion that tTG might be an attractive novel target for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences VU University Medical Center, Institute for Clinical and Experimental Neurosciences (ICEN), Amsterdam, The Netherlands.
| | | | | |
Collapse
|
25
|
Ruan Q, Quintanilla RA, Johnson GVW. Type 2 transglutaminase differentially modulates striatal cell death in the presence of wild type or mutant huntingtin. J Neurochem 2007; 102:25-36. [PMID: 17403029 DOI: 10.1111/j.1471-4159.2007.04491.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD), which is caused by an expanded polyglutamine tract in huntingtin (htt), is characterized by extensive loss of striatal neurons. The dysregulation of type 2 transglutaminase (TG2) has been proposed to contribute to the pathogenesis in HD as TG2 is up-regulated in HD brain and knocking out TG2 in mouse models of HD ameliorates the disease process. To understand the role of TG2 in the pathogenesis of HD, immortalized striatal cells established from mice in which mutant htt with a polyglutamine stretch of 111 Gln had been knocked-in and wild type (WT) littermates, were stably transfected with human TG2 in a tetracycline inducible vector. Overexpression of TG2 in the WT striatal cells resulted in significantly greater cell death under basal conditions as well as in response to thapsigargin treatment, which causes increased intracellular calcium concentrations. Furthermore, in WT striatal cells TG2 overexpression potentiated mitochondrial membrane depolarization, intracellular reactive oxygen species production, and apoptotic cell death in response to thapsigargin. In contrast, in mutant striatal cells, TG2 overexpression did not increase cell death, nor did it potentiate thapsigargin-induced mitochondrial membrane depolarization or intracellular reactive oxygen species production. Instead, TG2 overexpression in mutant striatal cells attenuated the thapsigargin-activated apoptosis. When in situ transglutaminase activity was quantitatively analyzed in these cell lines, we found that in response to thapsigargin treatment TG2 was activated in WT, but not mutant striatal cells. These data suggest that mutant htt alters the activation of TG2 in response to certain stimuli and therefore differentially modulates how TG2 contributes to cell death processes.
Collapse
Affiliation(s)
- Qingmin Ruan
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | | | |
Collapse
|
26
|
Tucholski J, Roth KA, Johnson GVW. Tissue transglutaminase overexpression in the brain potentiates calcium-induced hippocampal damage. J Neurochem 2006; 97:582-94. [PMID: 16539654 DOI: 10.1111/j.1471-4159.2006.03780.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue transglutaminase (tTG) post-translationally modifies proteins in a calcium-dependent manner by incorporation of polyamines, deamination or crosslinking. Moreover, tTG can also bind and hydrolyze GTP. tTG is the major transglutaminase in the mammalian nervous system, localizing predominantly in neurons. Although tTG has been clearly demonstrated to be elevated in neurodegenerative diseases and in response to acute CNS injury, its role in these pathogenic processes remains unclear. Transgenic mice that overexpress human tTG (htTG) primarily in CNS neurons were generated to explore the role of tTG in the nervous system and its contribution to neuropathological processes. tTG transgenic mice were phenotypically normal and were born with the expected Mendelian frequency. However, when challenged systemically with kainic acid, tTG transgenic mice, in comparison to wild-type (WT) mice, developed more extensive hippocampal neuronal damage. This was evidenced by a decreased number of healthy neurons, and increased terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) labeling as an indicator of neuronal cell death in the kainic acid-treated transgenic mice. Moreover, the duration and severity of seizures developed by htTG transgenics in response to kainic acid administration were significantly more pronounced than those observed in WT mice. These data indicate for the first time that tTG may play an active role in excitatory amino acid-induced neuronal cell death, which has been postulated to be an important component of acute CNS injury and chronic CNS neurodegenerative conditions.
Collapse
Affiliation(s)
- Janusz Tucholski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|