1
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
3
|
Rehabilitation of the P2X5 receptor: a re-evaluation of structure and function. Purinergic Signal 2022:10.1007/s11302-022-09903-0. [DOI: 10.1007/s11302-022-09903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractOf the extended family of ATP-gated P2X ion-channels, the P2X5 receptor has received comparatively little attention since first cloned over 25 years ago. Disinterest in studying this P2X subtype stems from two commonly held beliefs: (i) canonical human P2X5 is non-functional because the P2X5 subunit is truncated (hP2X5A, 422 aa) and missing the critical peptide sequence (22 aa) encoded by exon 10; (ii) rat and mouse P2X5 subunits are fully formed (455 aa) but the receptor is only weakly functional, and successive ATP responses rapidly run down in amplitude. However, newer studies have re-evaluated these notions. First, a low proportion (around 10%) of humans possess full-length P2X5 subunits (444 aa) and can form competent P2X5 receptors. Full-length P2X5 has been identified only in black Americans, but may occur in a wider population as more ethnicities are screened. Second, replacement of one of three amino acids in rat P2X5 subunits with corresponding residues in human P2X5 subunits (V67I, S191F, or F195H) significantly improves the responsiveness of rat P2X5 to ATP. Replaced residues exert an allosteric action on the left flipper, allowing the docking jaw for ATP to flex the lower body of the subunit and fully open the ion pore. This proposed action may drive the search for naturally occurring modulators which act allosterically on wildtype rat P2X5. This review collates the available information on the structure and function of human and rat P2X5 receptors, with the view to rehabilitating the reputation of these ATP-gated ion channels and stimulating future lines of research.
Collapse
|
4
|
Sattler C, Benndorf K. Enlightening activation gating in P2X receptors. Purinergic Signal 2022; 18:177-191. [PMID: 35188598 PMCID: PMC9123132 DOI: 10.1007/s11302-022-09850-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
P2X receptors are trimeric nonselective cation channels gated by ATP. They assemble from seven distinct subunit isoforms as either homo- or heteromeric complexes and contain three extracellularly located binding sites for ATP. P2X receptors are expressed in nearly all tissues and are there involved in physiological processes like synaptic transmission, pain, and inflammation. Thus, they are a challenging pharmacological target. The determination of crystal and cryo-EM structures of several isoforms in the last decade in closed, open, and desensitized states has provided a firm basis for interpreting the huge amount of functional and biochemical data. Electrophysiological characterization in conjugation with optical approaches has generated significant insights into structure–function relationships of P2X receptors. This review focuses on novel optical and related approaches to better understand the conformational changes underlying the activation of these receptors.
Collapse
Affiliation(s)
- Christian Sattler
- Institut Für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
| | - Klaus Benndorf
- Institut Für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
| |
Collapse
|
5
|
Kennedy C. ATP as a cotransmitter in sympathetic and parasympathetic nerves - another Burnstock legacy. Auton Neurosci 2021; 235:102860. [PMID: 34340045 DOI: 10.1016/j.autneu.2021.102860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
Geoff Burnstock created an outstanding scientific legacy that includes identification of adenosine 5'-triphosphate (ATP) as an inhibitory neurotransmitter in the gut, the discovery and characterisation of a large family of purine and uridine nucleotide-sensitive ionotropic P2X and metabotropic P2Y receptors and the demonstration that ATP is as an excitatory cotransmitter in autonomic nerves. The evidence for cotransmission includes that: 1) ATP is costored with noradrenaline in synaptic vesicles in postganglionic sympathetic nerves innervating smooth muscle tissues, including the vas deferens and most arteries. 2) When coreleased with noradrenaline, ATP acts at postjunctional P2X1 receptors to elicit depolarisation, Ca2+ influx, Ca2+ sensitisation and contraction. 3) ATP is also coreleased with acetylcholine from postganglionic parasympathetic nerves innervating the urinary bladder, where it stimulates postjunctional P2X1 receptors, and a second, as yet unidentified site to evoke contraction of detrusor smooth muscle. In both systems membrane-bound ecto-enzymes and soluble nucleotidases released from postganglionic nerves dephosphorylate ATP and so terminate its neurotransmitter actions. Currently, the most promising potential area of therapeutic application relating to cotransmission is treatment of dysfunctional urinary bladder. This family of disorders is associated with the appearance of a purinergic component of neurogenic contractions. This component is an attractive target for drug development and targeting it may be a rewarding area of research.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
6
|
Vargas-Martínez EM, Gómez-Coronado KS, Espinosa-Luna R, Valdez-Morales EE, Barrios-García T, Barajas-Espinosa A, Ochoa-Cortes F, Montaño LM, Barajas-López C, Guerrero-Alba R. Functional expression of P2X1, P2X4 and P2X7 purinergic receptors in human monocyte-derived macrophages. Eur J Pharmacol 2020; 888:173460. [PMID: 32805257 DOI: 10.1016/j.ejphar.2020.173460] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
This study sought to examine the co-expression of the following purinergic receptor subunits: P2X1, P2X1del, P2X4, and P2X7 and characterize the P2X response in human monocyte-derived macrophages (MDMs). Single-cell RT-PCR shows the presence of P2X1, P2X1del, P2X4, and P2X7 mRNA in 40%, 5%, 20%, and 90% of human MDMs, respectively. Of the studied human MDMs, 25% co-expressed P2X1 and P2X7 mRNA; 5% co-expressed P2X4 and P2X7; and 15% co-expressed P2X1, P2X4, and P2X7 mRNA. In whole-cell patch clamp recordings of human MDMs, rapid application of ATP (0.01 mM) evoked fast current activation and two different desensitization kinetics: 1. a rapid desensitizing current antagonized by PPADS (1 μM), reminiscent of the P2X1 receptor's current; 2. a slow desensitizing current, insensitive to PPADS but potentiated by ivermectin (3 μM), similar to the P2X4 receptor's current. Application of 5 mM ATP induced three current modalities: 1. slow current activation with no desensitization, similar to the P2X7 receptor current, present in 69% of human macrophages and antagonized by A-804598 (0.1 μM); 2. fast current activation and fast desensitization, present in 15% of human MDMs; 3. fast activation current followed by biphasic desensitization, observed in 15% of human MDMs. Both rapid and biphasic desensitization kinetics resemble those observed for the recombinant human P2X1 receptor expressed in oocytes. These data demonstrate, for the first time, the co-expression of P2X1, P2X4, and P2X7 transcripts and confirm the presence of functional P2X1, P2X4, and P2X7 receptors in human macrophages.
Collapse
Affiliation(s)
- Eydie M Vargas-Martínez
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Karen S Gómez-Coronado
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Rosa Espinosa-Luna
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Eduardo E Valdez-Morales
- Catedras CONACYT, Departamento de Medicina, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Tonatiuh Barrios-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Alma Barajas-Espinosa
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Fernando Ochoa-Cortes
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
| |
Collapse
|
7
|
Ferrari D, Vuerich M, Casciano F, Longhi MS, Melloni E, Secchiero P, Zech A, Robson SC, Müller T, Idzko M. Eosinophils and Purinergic Signaling in Health and Disease. Front Immunol 2020; 11:1339. [PMID: 32733449 PMCID: PMC7360723 DOI: 10.3389/fimmu.2020.01339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Tobias Müller
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Zhang WJ, Luo HL, Zhu ZM. The role of P2X4 receptors in chronic pain: A potential pharmacological target. Biomed Pharmacother 2020; 129:110447. [PMID: 32887026 DOI: 10.1016/j.biopha.2020.110447] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pain is a common symptom of most clinical diseases, which seriously affects the psychosomatic health of patients and brings some pain to patients. Due to its pathological mechanism is very complicated and the treatment of chronic pain has always been a difficult problem in clinical. Normally, drugs are usually used to relieve pain, but the analgesic effect is not good, especially for cancer pain patients, the analgesic effect is poor. Therefore, exploring the pathogenesis and treatment of chronic pain has aroused the interest of many researchers. A large number of studies have shown that the role of ATP and P2X4 receptor (P2X4R) play an important role in the pathogenesis of chronic pain. P2X4R is dependent on ATP ligand-gated ion channel receptor, which can be activated by ATP and plays an important role in the information transmission of nerve system and the formation of pain. Therefore, in this paper, we comprehensively described the structure and biological functions of P2X4R, and outlined behavioral evaluation methods of chronic pain models. Moreover, we also explored the inherent relationship between P2X4R and chronic pain, and described the therapeutic effect of P2X4R antagonist on chronic pain, and provided some valuable help for the treatment of chronic pain.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| |
Collapse
|
9
|
Zhang WJ, Zhu ZM, Liu ZX. The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacol Res 2020; 158:104875. [PMID: 32407956 DOI: 10.1016/j.phrs.2020.104875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Neuropathic pain (NPP) is a common symptom of most diseases in clinic, which seriously affects the mental health of patients and brings certain pain to patients. Due to its pathological mechanism is very complicated, and thus, its treatment has been one of the challenges in the field of medicine. Therefore, exploring the pathogenesis and treatment approach of NPP has aroused the interest of many researchers. ATP is an important energy information substance, which participates in the signal transmission in the body. The P2 × 4 receptor (P2 × 4R) is dependent on ATP ligand-gated cationic channel receptor, which can be activated by ATP and plays an important role in the transmission of information in the nervous system and the formation of pain. In this paper, we provide a comprehensive review of the structure and function of the P2 × 4R gene. We also discuss the pathogenesis of NPP and the intrinsic relationship between P2 × 4R and NPP. Moreover, we explore the pharmacological properties of P2 × 4R antagonists or inhibitors used as targeted therapies for NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zeng-Xu Liu
- Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
10
|
Abstract
Adenosine 5′-triphosphate acts as an extracellular signalling molecule (purinergic signalling), as well as an intracellular energy source. Adenosine 5′-triphosphate receptors have been cloned and characterised. P1 receptors are selective for adenosine, a breakdown product of adenosine 5′-triphosphate after degradation by ectonucleotidases. Four subtypes are recognised, A1, A2A, A2B and A3 receptors. P2 receptors are activated by purine and by pyrimidine nucleotides. P2X receptors are ligand-gated ion channel receptors (seven subunits (P2X1-7)), which form trimers as both homomultimers and heteromultimers. P2Y receptors are G protein-coupled receptors (eight subtypes (P2Y1/2/4/6/11/12/13/14)). There is both purinergic short-term signalling and long-term (trophic) signalling. The cloning of P2X-like receptors in primitive invertebrates suggests that adenosine 5′-triphosphate is an early evolutionary extracellular signalling molecule. Selective purinoceptor agonists and antagonists with therapeutic potential have been developed for a wide range of diseases, including thrombosis and stroke, dry eye, atherosclerosis, kidney failure, osteoporosis, bladder incontinence, colitis, neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Khoja S, Huynh N, Warnecke AMP, Asatryan L, Jakowec MW, Davies DL. Preclinical evaluation of avermectins as novel therapeutic agents for alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1697-1709. [PMID: 29500584 PMCID: PMC5949264 DOI: 10.1007/s00213-018-4869-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/20/2018] [Indexed: 12/23/2022]
Abstract
The deleterious effects of alcohol use disorders (AUDs) on human health have been documented worldwide. The enormous socioeconomic burden coupled with lack of efficacious pharmacotherapies underlies the need for improved treatment strategies. At present, there is a growing body of preclinical evidence that demonstrates the potential of avermectins [ivermectin (IVM), selamectin (SEL), abamectin (ABM), and moxidectin (MOX)] in treatment of AUDs. Avermectins are derived by fermentation of soil micro-organism, Streptomyces avermitilis, and have been extensively used for treatment of parasitic infections. From the mechanistic standpoint, avermectins are positive modulators of purinergic P2X4 receptors (P2X4Rs). P2X4Rs belong to P2X superfamily of cation-permeable ion channels gated by adenosine 5'-triphosphate (ATP). Building evidence has implicated a role for P2X4Rs in regulation of ethanol intake and that ethanol can inhibit ATP-gated currents in P2X4Rs. Investigations using recombinant cell models and animal models of alcohol drinking have reported that IVM, ABM, and MOX, but not SEL, were able to antagonize the inhibitory effects of ethanol on P2X4Rs in vitro and reduce ethanol intake in vivo. Furthermore, IVM was shown to reduce ethanol consumption via P2X4R potentiation in vivo, supporting the involvement of P2X4Rs in IVM's anti-alcohol effects and that P2X4Rs can be used as a platform for developing novel anti-alcohol compounds. Taken together, these findings support the utility of avermectins as a novel class of drug candidates for treatment of AUDs.
Collapse
Affiliation(s)
- Sheraz Khoja
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Nhat Huynh
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Alicia M P Warnecke
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA.
| |
Collapse
|
12
|
Yu W, Hill WG, Robson SC, Zeidel ML. Role of P2X 4 Receptor in Mouse Voiding Function. Sci Rep 2018; 8:1838. [PMID: 29382907 PMCID: PMC5789870 DOI: 10.1038/s41598-018-20216-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/16/2018] [Indexed: 01/16/2023] Open
Abstract
Purinergic signalling plays an important role in the regulation of bladder smooth muscle (BSM) contractility, and P2X4 receptor is expressed in the bladder wall, where it may act by forming heteromeric receptors with P2X1, the major purinergic force-generating muscle receptor. To test this hypothesis, we examined mouse BSM contractile properties in the absence and presence of selective P2X1 (NF449 & NF279) and P2X4 antagonists (5-BDBD). These drugs inhibited BSM purinergic contraction only partially, suggesting the possibility of a heteromeric receptor. However, carefully controlled co-immunoprecipitation experiments indicated that P2X1 and P2X4 do not form physically linked heteromers. Furthermore, immunofluorescence staining showed that P2X4 is not present in mouse BSM per se, but in an unknown cellular structure among BSM bundles. To investigate whether deletion of P2X4 could impact voiding function in vivo, P2X4 null mice were characterized. P2X4 null mice had normal bladder weight and morphology, normal voiding spot size and number by voiding spot assay, normal voiding interval, pressure and compliance by cystometrogram, and normal BSM contractility by myography. In conclusion, these data strongly suggest that P2X4 is not present in mouse BSM cells, does not affect smooth muscle contractility and that mice null for P2X4 exhibit normal voiding function.
Collapse
Affiliation(s)
- Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachuesetts, USA.
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachuesetts, USA
| | - Simon C Robson
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachuesetts, USA
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachuesetts, USA
| |
Collapse
|
13
|
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology. Front Pharmacol 2017; 8:291. [PMID: 28588493 PMCID: PMC5441391 DOI: 10.3389/fphar.2017.00291] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Adenosine 5′-triphosphate is a well-known extracellular signaling molecule and neurotransmitter known to activate purinergic P2X receptors. Information has been elucidated about the structure and gating of P2X channels following the determination of the crystal structure of P2X4 (zebrafish), however, there is still much to discover regarding the role of this receptor in the central nervous system (CNS). In this review we provide an overview of what is known about P2X4 expression in the CNS and discuss evidence for pathophysiological roles in neuroinflammation and neuropathic pain. Recent advances in the development of pharmacological tools including selective antagonists (5-BDBD, PSB-12062, BX430) and positive modulators (ivermectin, avermectins, divalent cations) of P2X4 will be discussed.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom.,School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Janice A Layhadi
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom
| | - Kshitija Dhuna
- School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| |
Collapse
|
14
|
Yoshida K, Ito M, Matsuoka I. Divergent regulatory roles of extracellular ATP in the degranulation response of mouse bone marrow-derived mast cells. Int Immunopharmacol 2016; 43:99-107. [PMID: 27988461 DOI: 10.1016/j.intimp.2016.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) play a critical role in allergic inflammation. Although purinergic signalling is implicated in the regulation of various immune responses, its role in MC function is not fully understood. In this study, we investigated the regulatory role of purinergic signalling in MC degranulation, using mouse bone marrow-derived mast cells (BMMCs). Notably, BMMCs expressed various functional P2 adenosine triphosphate (ATP) receptors, including ionotropic P2X4 and P2X7, involved in the regulation of BMMC degranulation. Thus, P2X7 receptor activation induced a marked degranulation from BMMCs directly. Although P2X4 receptor activation did not independently induce degranulation, it significantly potentiated the degranulation triggered by antigen-induced, high-affinity IgE receptor (FcεRI) stimulation. In addition, ATP synergistically augmented degranulation induced by adenosine A3 receptor activation. Moreover, BMMCs highly expressed ecto-nucleotidase CD39, but not ecto-5'-nucleotidase (CD73), and were therefore unable to directly convert ATP to adenosine. However, in the presence of CD73-expressing cells, ATP-mediated BMMC stimulation caused a marked degranulation in a CD73- and adenosine-dependent manner. These results demonstrate that purinergic signalling plays an important role in MC degranulation through at least three distinct mechanisms: (1) higher ATP concentrations directly induce degranulation via P2X7 receptor activation, (2) lower ATP concentrations augment FcεRI-mediated degranulation via P2X4 receptor activation, and (3) in an ecto-nucleotidase-enrich environment, ATP and the converted product adenosine induce a synergistic degranulation by P1 and P2 receptor co-activation.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Masaaki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan.
| |
Collapse
|
15
|
López-López C, Jaramillo-Polanco J, Portales-Pérez DP, Gómez-Coronado KS, Rodríguez-Meléndez JG, Cortés-García JD, Espinosa-Luna R, Montaño LM, Barajas-López C. Two P2X1 receptor transcripts able to form functional channels are present in most human monocytes. Eur J Pharmacol 2016; 793:82-88. [PMID: 27823931 DOI: 10.1016/j.ejphar.2016.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 12/24/2022]
Abstract
To characterize the presence and general properties of P2X1 receptors in single human monocytes we used RT-PCR, flow cytometry, and the patch-clamp and the two-electrode voltage-clamp techniques. Most human monocytes expressed the canonical P2X1 (90%) and its splicing variant P2X1del (88%) mRNAs. P2X1 receptor immunoreactivity was also observed in 70% of these cells. Currents mediated by P2X1 (EC50=1.9±0.8µm) and P2X1del (EC50 >1000µm) channels, expressed in Xenopus leavis oocytes, have different ATP sensitivity and kinetics. Both currents mediated by P2X1 and P2X1del channels kept increasing during the continuous presence of high ATP concentrations. Currents mediated by the native P2X1 receptors in human monocytes showed an EC50=6.3±0.2µm. Currents have kinetics that resemble those observed for P2X1 and P2X1del receptors in oocytes. Our study is the first to demonstrate the expression of P2X1 transcript and its splicing variant P2X1del in most human monocytes. We also, for the first time, described functional homomeric P2X1del channels and demonstrated that currents mediated by P2X1 or P2X1del receptors, during heterologous expression, increased in amplitude when activated with high ATP concentrations in a similar fashion to those channels that increase their conductance under similar conditions, such as P2X7, P2X2, and P2X4 channels.
Collapse
Affiliation(s)
- Cintya López-López
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Josue Jaramillo-Polanco
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | | | - Karen S Gómez-Coronado
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Jessica G Rodríguez-Meléndez
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Juan D Cortés-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Rosa Espinosa-Luna
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, México
| | - Carlos Barajas-López
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México.
| |
Collapse
|
16
|
Fleck D, Mundt N, Bruentgens F, Geilenkirchen P, Machado PA, Veitinger T, Veitinger S, Lipartowski SM, Engelhardt CH, Oldiges M, Spehr J, Spehr M. Distinct purinergic signaling pathways in prepubescent mouse spermatogonia. J Gen Physiol 2016; 148:253-71. [PMID: 27574293 PMCID: PMC5004339 DOI: 10.1085/jgp.201611636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/22/2016] [Indexed: 01/24/2023] Open
Abstract
Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP-a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts-activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca(2+)-activated large-conductance K(+) channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis.
Collapse
Affiliation(s)
- David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Nadine Mundt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Felicitas Bruentgens
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Petra Geilenkirchen
- Institute of Bio- and Geosciences (IBG), IBG-1: Biotechnology, Research Center Jülich, D-52425 Jülich, Germany
| | - Patricia A Machado
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Thomas Veitinger
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sophie Veitinger
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Susanne M Lipartowski
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Corinna H Engelhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences (IBG), IBG-1: Biotechnology, Research Center Jülich, D-52425 Jülich, Germany
| | - Jennifer Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
17
|
Wright A, Mahaut-Smith M, Symon F, Sylvius N, Ran S, Bafadhel M, Muessel M, Bradding P, Wardlaw A, Vial C. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients. THE JOURNAL OF IMMUNOLOGY 2016; 196:4877-84. [PMID: 27183585 DOI: 10.4049/jimmunol.1501585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration.
Collapse
Affiliation(s)
- Adam Wright
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom
| | - Martyn Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Fiona Symon
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Nicolas Sylvius
- Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Shaun Ran
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Michelle Muessel
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Peter Bradding
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Andrew Wardlaw
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Catherine Vial
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
18
|
Mittal R, Chan B, Grati M, Mittal J, Patel K, Debs LH, Patel AP, Yan D, Chapagain P, Liu XZ. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System. J Cell Physiol 2015; 231:1656-70. [PMID: 26627116 DOI: 10.1002/jcp.25274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Abstract
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Science Institute, Florida International University, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
19
|
Abstract
The role of adenosine 5'-triphosphate (ATP) as a major intracellular energy source is well-established. In addition, ATP and related nucleotides have widespread extracellular actions via the ionotropic P2X (ligand-gated cation channels) and metabotropic P2Y (G protein-coupled) receptors. Numerous experimental techniques, including myography, electrophysiology and biochemical measurement of neurotransmitter release, have been used to show that ATP has several major roles as a neurotransmitter in peripheral nerves. When released from enteric nerves of the gastrointestinal tract it acts as an inhibitory neurotransmitter, mediating descending muscle relaxation during peristalsis. ATP is also an excitatory cotransmitter in autonomic nerves; 1) It is costored with noradrenaline in synaptic vesicles in postganglionic sympathetic nerves innervating smooth muscle preparations, such as the vas deferens and most arteries. When coreleased with noradrenaline, ATP acts at postjunctional P2X1 receptors to evoke depolarisation, Ca(2+) influx, Ca(2+) sensitisation and contraction. 2) ATP is also coreleased with acetylcholine from postganglionic parasympathetic nerves innervating the urinary bladder and again acts at postjunctional P2X1 receptors, and possibly also a P2X1+4 heteromer, to elicit smooth muscle contraction. In both cases the neurotransmitter actions of ATP are terminated by dephosphorylation by extracellular, membrane-bound enzymes and soluble nucleotidases released from postganglionic nerves. There are indications of an increased contribution of ATP to control of blood pressure in hypertension, but further research is needed to clarify this possibility. More promising is the upregulation of P2X receptors in dysfunctional bladder, including interstitial cystitis, idiopathic detrusor instability and overactive bladder syndrome. Consequently, these roles of ATP are of great therapeutic interest and are increasingly being targeted by pharmaceutical companies.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
20
|
Abstract
Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.
Collapse
|
21
|
Harhun MI, Povstyan OV, Albert AP, Nichols CM. ATP-evoked sustained vasoconstrictions mediated by heteromeric P2X1/4 receptors in cerebral arteries. Stroke 2014; 45:2444-50. [PMID: 25070962 DOI: 10.1161/strokeaha.114.005544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Current knowledge states that vasoconstrictor responses to ATP are mediated by rapidly desensitizing ligand-gated P2X1 receptors in vascular smooth muscle cells (VSMCs). However, ATP is implicated in contributing to pathological conditions involving sustained vasoconstrictor response such as cerebral vasospasm. The purpose of this study is to test the hypothesis that the stimulation of VSMC P2XR receptors (P2XRs) contributes to ATP-evoked sustained vasoconstrictions in rat middle cerebral arteries (RMCAs). METHODS Reverse transcription- polymerase chain reaction, Western blot, and immunocytochemistry were used to analyze expression of mRNA and proteins in RMCAs VSMCs. Ionic currents and calcium responses were investigated using patch-clamp and confocal imaging techniques, respectively. Functional responses were confirmed using wire myography. RESULTS Expression of mRNA and protein for P2X1R and P2X4R subunits was identified in RMCA VSMCs. Confocal imaging in fluo-3-loaded VSMCs showed that ATP and a selective P2XR agonist, αβmeATP, evoked similar dose-dependent increases in [Ca(2+)]i. Patch-clamp experiments identified 2 components of P2XR-mediated currents: consisting of a fast desensitizing phase mediated by homomeric P2X1Rs and a slowly desensitizing phase involving heteromeric P2X1/4Rs. Isometric tension measurements showed that ≈80%:20% of initial ATP-evoked vasoconstriction in RMCA is mediated by homomeric P2X1Rs and heteromeric P2X1/4Rs, respectively. The sustained slowly desensitizing and rapidly recovering from desensitization responses are mediated by heteromeric P2X1/4Rs. CONCLUSIONS This study reveals for the first time that apart from rapidly desensitizing homomeric P2X1Rs, heteromeric P2X1/4Rs contribute to the sustained component of the purinergic-mediated vasoconstriction in RMCA. Our study, therefore, identifies possible novel targets for therapeutical intervention in cerebral circulation.
Collapse
Affiliation(s)
- Maksym I Harhun
- From the Division of Biomedical Sciences, St George's, University of London, London, United Kingdom (M.I.H., O.V.P., A.P.A., C.M.N.); and Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine (O.V.P.).
| | - Oleksandr V Povstyan
- From the Division of Biomedical Sciences, St George's, University of London, London, United Kingdom (M.I.H., O.V.P., A.P.A., C.M.N.); and Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine (O.V.P.)
| | - Anthony P Albert
- From the Division of Biomedical Sciences, St George's, University of London, London, United Kingdom (M.I.H., O.V.P., A.P.A., C.M.N.); and Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine (O.V.P.)
| | - Claire M Nichols
- From the Division of Biomedical Sciences, St George's, University of London, London, United Kingdom (M.I.H., O.V.P., A.P.A., C.M.N.); and Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine (O.V.P.)
| |
Collapse
|
22
|
Vascular smooth muscle cells from small human omental arteries express P2X1 and P2X4 receptor subunits. Purinergic Signal 2014; 10:565-72. [PMID: 24845338 DOI: 10.1007/s11302-014-9415-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Stimulation of P2X receptors by ATP in vascular smooth muscle cells (VSMCs) is proposed to mediate vascular tone. However, understanding of P2X receptor-mediated actions in human blood vessels is limited, and therefore, the current work investigates the role of P2X receptors in freshly isolated small human gastro-omental arteries (HGOAs). Expression of P2X1 and P2X4 receptor subunit messenger RNA (mRNA) and protein was identified in individual HGOA VSMCs using RT-PCR and immunofluorescent analysis and using Western blot in multi-cellular preparations. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l, a selective P2X receptor agonist, evoked robust increases in [Ca(2+)]i in fluo-3-loaded HGOA VSMCs. Pre-incubation with 1 μmol/l NF279, a selective P2X receptor antagonist, reduced the amplitude of αβ-meATP-induced increase in [Ca(2+)]i by about 70 %. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l produced similar contractile responses in segments of HGOA, and these contractions were greatly reduced by 2 μmol/l NF449, a selective P2X receptor inhibitor. These data suggest that VSMCs from HGOA express P2X1 and P2X4 receptor subunits with homomeric P2X1 receptors likely serving as the predominant target for extracellular ATP.
Collapse
|
23
|
Alves LA, da Silva JHM, Ferreira DNM, Fidalgo-Neto AA, Teixeira PCN, de Souza CAM, Caffarena ER, de Freitas MS. Structural and molecular modeling features of P2X receptors. Int J Mol Sci 2014; 15:4531-49. [PMID: 24637936 PMCID: PMC3975412 DOI: 10.3390/ijms15034531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 01/05/2023] Open
Abstract
Currently, adenosine 5'-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.
Collapse
Affiliation(s)
- Luiz Anastacio Alves
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - João Herminio Martins da Silva
- Oswaldo Cruz Foundation (FIOCRUZ) Ceará Avenida Santos Dumont, 5753, Torre Saúde, Sala 1303, Papicu, Fortaleza-CE, CEP 60180-900, Brazil.
| | - Dinarte Neto Moreira Ferreira
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Antonio Augusto Fidalgo-Neto
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Pedro Celso Nogueira Teixeira
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Cristina Alves Magalhães de Souza
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Ernesto Raúl Caffarena
- Scientific Computation Program, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Mônica Santos de Freitas
- Jiri Jonas Nuclear Magnetic Resonance Center, Science and Technology Institute of Structural Biology and Bioimaging, Leopoldo de Meis Medical Biochemistry Institute, Rio de Janeiro Federal University (UFRJ), Carlos Chagas Filho ave, 373, Rio de Janeiro 21941-901, Brazil.
| |
Collapse
|
24
|
Saul A, Hausmann R, Kless A, Nicke A. Heteromeric assembly of P2X subunits. Front Cell Neurosci 2013; 7:250. [PMID: 24391538 PMCID: PMC3866589 DOI: 10.3389/fncel.2013.00250] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022] Open
Abstract
Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.
Collapse
Affiliation(s)
- Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University Aachen, Germany
| | - Achim Kless
- Department of Discovery Informatics, Grünenthal GmbH, Global Drug Discovery Aachen, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| |
Collapse
|
25
|
Smith SMC, Mitchell GS, Friedle SA, Sibigtroth CM, Vinit S, Watters JJ. Hypoxia Attenuates Purinergic P2X Receptor-Induced Inflammatory Gene Expression in Brainstem Microglia. HYPOXIA 2013; 2013. [PMID: 24377098 PMCID: PMC3873144 DOI: 10.2147/hp.s45529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours) in the presence and absence of the nonselective P2X receptor agonist 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate (BzATP) to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNFα), and interleukin (IL)-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X4 correlated only with iNOS. In addition, correlations between P2X7 and P2X4 were lost following hypoxia, suggesting that P2X4 and P2X7 receptor signaling differs in normoxia and hypoxia. Together, these data suggest that hypoxia suppresses P2X receptor-induced inflammatory gene expression, indicating a potentially immunosuppressive role of extracellular nucleotides in brainstem microglia following exposure to hypoxia.
Collapse
Affiliation(s)
- Stephanie M C Smith
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA 53706 ; Comparative Biomedical Sciences Training Program, University of Wisconsin, Madison, WI, USA 53706
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA 53706 ; Comparative Biomedical Sciences Training Program, University of Wisconsin, Madison, WI, USA 53706
| | - Scott A Friedle
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USA 53706
| | | | - Stéphane Vinit
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA 53706
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA 53706 ; Comparative Biomedical Sciences Training Program, University of Wisconsin, Madison, WI, USA 53706 ; Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USA 53706
| |
Collapse
|
26
|
Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin. Int J Neuropsychopharmacol 2013; 16:1059-70. [PMID: 23174033 PMCID: PMC3593990 DOI: 10.1017/s1461145712000909] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5'-triphosphate. In particular, convergent lines of evidence have recently highlighted P2X(4) receptors as a potentially critical target in the regulation of multiple nervous and behavioural functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X(4) receptor in behavioural organization remains poorly investigated. To study the effects of P2X(4) activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5-10 mg/kg i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviours in the tail-suspension and forced swim tests. The agent induced no significant behavioural changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by pre-pulse inhibition (PPI) of the acoustic startle reflex. In P2X(4) knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X(4) receptors may play a role in the regulation of sensorimotor gating.
Collapse
|
27
|
Oswald DJ, Lee A, Trinidad M, Chi C, Ren R, Rich CB, Trinkaus-Randall V. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors. PLoS One 2012; 7:e44574. [PMID: 22970252 PMCID: PMC3436752 DOI: 10.1371/journal.pone.0044574] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/09/2012] [Indexed: 01/15/2023] Open
Abstract
Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca2+ wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca2+ wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca2+ mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca2+ mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca2+ waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.
Collapse
Affiliation(s)
- Duane J Oswald
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | | | | | | | | | | |
Collapse
|
28
|
Weisman GA, Camden JM, Peterson TS, Ajit D, Woods LT, Erb L. P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y₂ receptor interactions in neuroinflammation. Mol Neurobiol 2012; 46:96-113. [PMID: 22467178 DOI: 10.1007/s12035-012-8263-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Hausmann R, Bodnar M, Woltersdorf R, Wang H, Fuchs M, Messemer N, Qin Y, Günther J, Riedel T, Grohmann M, Nieber K, Schmalzing G, Rubini P, Illes P. ATP binding site mutagenesis reveals different subunit stoichiometry of functional P2X2/3 and P2X2/6 receptors. J Biol Chem 2012; 287:13930-43. [PMID: 22378790 DOI: 10.1074/jbc.m112.345207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of the present experiments was to clarify the subunit stoichiometry of P2X2/3 and P2X2/6 receptors, where the same subunit (P2X2) forms a receptor with two different partners (P2X3 or P2X6). For this purpose, four non-functional Ala mutants of the P2X2, P2X3, and P2X6 subunits were generated by replacing single, homologous amino acids particularly important for agonist binding. Co-expression of these mutants in HEK293 cells to yield the P2X2 WT/P2X3 mutant or P2X2 mutant/P2X3 WT receptors resulted in a selective blockade of agonist responses in the former combination only. In contrast, of the P2X2 WT/P2X6 mutant and P2X2 mutant/P2X6 WT receptors, only the latter combination failed to respond to agonists. The effects of α,β-methylene-ATP and 2-methylthio-ATP were determined by measuring transmembrane currents by the patch clamp technique and intracellular Ca(2+) transients by the Ca(2+)-imaging method. Protein labeling, purification, and PAGE confirmed the assembly and surface trafficking of the investigated WT and WT/mutant combinations in Xenopus laevis oocytes. In conclusion, both electrophysiological and biochemical investigations uniformly indicate that one subunit of P2X2 and two subunits of P2X3 form P2X2/3 heteromeric receptors, whereas two subunits of P2X2 and one subunit of P2X6 constitute P2X2/6 receptors. Further, it was shown that already two binding sites of the three possible ones are sufficient to allow these receptors to react with their agonists.
Collapse
Affiliation(s)
- Ralf Hausmann
- Department of Molecular Pharmacology, University Hospital of Rheinisch Westfaelische Technische Hochschule, Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Baroja-Mazo A, Barberà-Cremades M, Pelegrín P. The participation of plasma membrane hemichannels to purinergic signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:79-93. [PMID: 22266266 DOI: 10.1016/j.bbamem.2012.01.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/30/2011] [Accepted: 01/04/2012] [Indexed: 12/17/2022]
Abstract
The field of hemichannels is closely related to the purinergic signaling and both areas have been growing in parallel. Hemichannels open in response to a wide range of stressful conditions, such as ischemia, pressure or swelling. Hemichannels represent an important mechanism for the cellular release of adenosine 5'-triphosphate (ATP), which is an agonist of the P2Y and P2X family of purinergic receptors. Therefore, hemichannels are key molecules in the regulation of purinergic receptor activation, during physiological and pathophysiological conditions. Furthermore, purinergic receptor activation can also lead to the opening of hemichannels and the subsequent amplification of purinergic signaling via a positive signaling feedback loop, giving rise to the concept of ATP-induced ATP release. Purinergic receptor signaling is involved in regulating many physiological and pathophysiological processes. P2Y receptors activate inositol trisphosphate and transiently increase intracellular calcium. This signaling opens both connexin and pannexin channels, therefore contributing to the expansion of calcium waves across astrocytes and epithelial cells. In addition, several of the P2X receptor subtypes, including the P2X2, P2X4 and P2X7 receptors, activate select cellular permeation pathways to large molecules, including the pannexin-1 channels, which are involved in the initiation of inflammatory responses and cell death. Consequently, the interplay between purinergic receptors and hemichannels could represent a novel target with substantial therapeutic implications in areas such as chronic pain, inflammation or atherosclerosis. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Alberto Baroja-Mazo
- University Hospital Virgen de la Arrixaca, Fundación Formación Investigación Sanitaria Región Murcia, Murcia, Spain
| | | | | |
Collapse
|
31
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
32
|
Pharmacochemistry of the platelet purinergic receptors. Purinergic Signal 2011; 7:305-24. [PMID: 21484092 DOI: 10.1007/s11302-011-9216-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022] Open
Abstract
Platelets contain at least five purinergic G protein-coupled receptors, e.g., the pro-aggregatory P2Y(1) and P2Y(12) receptors, a P2Y(14) receptor (GPR105) of unknown function, and anti-aggregatory A(2A) and A(2B) adenosine receptor (ARs), in addition to the ligand-gated P2X1 ion channel. Probing the structure-activity relationships (SARs) of the P2X and P2Y receptors for extracellular nucleotides has resulted in numerous new agonist and antagonist ligands. Selective agents derived from known ligands and novel chemotypes can be used to help define the subtypes pharmacologically. Some of these agents have entered into clinical trials in spite of the challenges of drug development for these classes of receptors. The functional architecture of P2 receptors was extensively explored using mutagenesis and molecular modeling, which are useful tools in drug discovery. In general, novel drug delivery methods, prodrug approaches, allosteric modulation, and biased agonism would be desirable to overcome side effects that tend to occur even with receptor subtype-selective ligands. Detailed SAR analyses have been constructed for nucleotide and non-nucleotide ligands at the P2Y(1), P2Y(12), and P2Y(14) receptors. The thienopyridine antithrombotic drugs Clopidogrel and Prasugrel require enzymatic pre-activation in vivo and react irreversibly with the P2Y(12) receptor. There is much pharmaceutical development activity aimed at identifying reversible P2Y(12) receptor antagonists. The screening of chemically diverse compound libraries has identified novel chemotypes that act as competitive, non-nucleotide antagonists of the P2Y(1) receptor or the P2Y(12) receptor, and antithrombotic properties of the structurally optimized analogues were demonstrated. In silico screening at the A(2A) AR has identified antagonist molecules having novel chemotypes. Fluorescent and other reporter groups incorporated into ligands can enable new technology for receptor assays and imaging. The A(2A) agonist CGS21680 and the P2Y(1) receptor antagonist MRS2500 were derivatized for covalent attachment to polyamidoamine dendrimeric carriers of MW 20,000, and the resulting multivalent conjugates inhibited ADP-promoted platelet aggregation. In conclusion, a wide range of new pharmacological tools is available to control platelet function by interacting with cell surface purine receptors.
Collapse
|
33
|
Asatryan L, Nam HW, Lee MR, Thakkar MM, Saeed Dar M, Davies DL, Choi DS. Implication of the purinergic system in alcohol use disorders. Alcohol Clin Exp Res 2011; 35:584-94. [PMID: 21223299 DOI: 10.1111/j.1530-0277.2010.01379.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the central nervous system, adenosine and adenosine 5'-triphosphate (ATP) play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems, such as, GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter type 1 (ENT1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-ventral tegmental area (VTA) has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e., GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders.
Collapse
Affiliation(s)
- Liana Asatryan
- Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, University of Southern California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Burnstock G, Kennedy C. P2X receptors in health and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:333-372. [PMID: 21586364 DOI: 10.1016/b978-0-12-385526-8.00011-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Seven P2X receptor subunits have been cloned which form functional homo- and heterotrimers. These are cation-selective channels, equally permeable to Na(+) and K(+) and with significant Ca(2+) permeability. The three-dimensional structure of the P2X receptor is described. The channel pore is formed by the α-helical transmembrane spanning region 2 of each subunit. When ATP binds to a P2X receptor, the pore opens within milliseconds, allowing the cations to flow. P2X receptors are expressed on both central and peripheral neurons, where they are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed in most types of nonneuronal cells and mediate a wide range of actions, such as contraction of smooth muscle, secretion, and immunomodulation. Changes in the expression of P2X receptors have been characterized in many pathological conditions of the cardiovascular, gastrointestinal, respiratory, and urinogenital systems and in the brain and special senses. The therapeutic potential of P2X receptor agonists and antagonists is currently being investigated in a range of disorders, including chronic neuropathic and inflammatory pain, depression, cystic fibrosis, dry eye, irritable bowel syndrome, interstitial cystitis, dysfunctional urinary bladder, and cancer.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, United Kingdom
| | | |
Collapse
|
35
|
Abstract
The pharmacological concept of specifically targeting purinoceptors (receptors for ATP and related nucleotides) has emerged over the last two decades in the quest for novel, differentiated therapeutics. Investigations from many laboratories have established a prominent role for ATP in the functional regulation of most tissue and organ systems, including the urinary tract, under normal and pathophysiological conditions. In the particular case of the urinary tract, ATP signaling via P2X1 receptors participates in the efferent control of detrusor smooth muscle excitability, and this function may be heightened in disease and aging. Perhaps of greater interest, ATP also appears to be involved in bladder sensation, operating via activation of P2X3-containing receptors on sensory afferent neurones, both on peripheral terminals within the urinary tract tissues (e.g., ureters, bladder) and on central synapses in the dorsal horn of the spinal cord. Such findings are based on results from classical pharmacological and localization studies in nonhuman and human tissues, gene knockout mice, and studies using recently identified pharmacological antagonists - some of which have progressed as candidate drug molecules. Based on recent advances in this field, it is apparent that the development of selective antagonists for these receptors will occur that could lead to therapies offering better relief of storage, voiding, and sensory symptoms for patients, while minimizing the systemic side effects that curb the clinical effectiveness of current urologic medicines.
Collapse
|
36
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|
37
|
Characterisation of P2X receptors expressed in rat pulmonary arteries. Eur J Pharmacol 2010; 649:342-8. [DOI: 10.1016/j.ejphar.2010.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 12/31/2022]
|
38
|
Stojilkovic SS, Yan Z, Obsil T, Zemkova H. Structural insights into the function of P2X4: an ATP-gated cation channel of neuroendocrine cells. Cell Mol Neurobiol 2010; 30:1251-8. [PMID: 21107680 DOI: 10.1007/s10571-010-9568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022]
Abstract
The P2X4 receptor (P2X4R) is a member of a family of ATP-gated cation channels that are composed of three subunits. Each subunit has two transmembrane (TM) domains linked by a large extracellular loop and intracellularly located N- and C-termini. The receptors are expressed in excitable and non-excitable cells and have been implicated in the modulation of membrane excitability, calcium signaling, neurotransmitter and hormone release, and pain physiology. P2X4Rs activate rapidly and desensitize within the seconds of agonist application, both with the rates dependent on ATP concentrations, and deactivate rapidly and independently of ATP concentration. Disruption of conserved cysteine ectodomain residues affects ATP binding and gating. Several ectodomain residues of P2X4R were identified as critical for ATP binding, including K67, K313, and R295. Ectodomain residues also account for the allosteric regulation of P2X4R; H140 is responsible for copper binding and H286 regulates receptor functions with protons. Ivermectin sensitized receptors, amplified the current amplitude, and slowed receptor deactivation by binding in the TM region. Scanning mutagenesis of TMs revealed the helical topology of both domains, and suggested that receptor function is critically dependent on the conserved Y42 residue. In this brief article, we summarize this study and re-interpret it using a model based on crystallization of the zebrafish P2X4.1 receptor.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, National Institutes of Health, Bldg. 49, Room 6A-36, 49 Convent Drive, Bethesda, MD 20892-4510, USA.
| | | | | | | |
Collapse
|
39
|
Seil M, El Ouaaliti M, Fontanils U, Etxebarria IG, Pochet S, Dal Moro G, Marino A, Dehaye JP. Ivermectin-dependent release of IL-1beta in response to ATP by peritoneal macrophages from P2X(7)-KO mice. Purinergic Signal 2010; 6:405-16. [PMID: 21437011 DOI: 10.1007/s11302-010-9205-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 11/01/2010] [Indexed: 01/01/2023] Open
Abstract
The response to ATP of peritoneal macrophages from wild-type (WT) and P2X(7)-invalidated (KO) mice was tested. Low concentrations (1-100 μM) of ATP transiently increased the intracellular concentration of calcium ([Ca(2+)](i)) in cells from both mice. The inhibition of the polyphosphoinositide-specific phospholipase C with U73122 inhibited this response especially in WT mice suggesting that the responses coupled to P2Y receptors were potentiated by the expression of P2X(7) receptors. One millimolar ATP provoked a sustained increase in the [Ca(2+)](i) only in WT mice. The response to 10 μM ATP was potentiated and prolonged by ivermectin in both mice. One millimolar ATP increased the influx of extracellular calcium, decreased the intracellular concentration of potassium ([K(+)](i)) and stimulated the secretion of interleukin-1β (IL-1β) only in cells from WT mice. Ten micromolar ATP in combination with 3 μM ivermectin reproduced these responses both in WT and KO mice. The secretion of IL-1β was also increased by nigericin in WT mice and the secretory effect of a combination of ivermectin with ATP in KO mice was suppressed in a medium containing a high concentration of potassium. In WT mice, 150 μM BzATP stimulated the uptake of YOPRO-1. Incubation of macrophages from WT and KO mice with 10 μM ATP resulted in a small increase of YOPRO-1 uptake, which was potentiated by addition of 3 μM ivermectin. The uptake of this dye was unaffected by pannexin-1 blockers. In conclusion, prolonged stimulation of P2X(4) receptors by a combination of low concentrations of ATP plus ivermectin produced a sustained activation of the non-selective cation channel coupled to this receptor. The ensuing variations of the [K(+)](i) triggered the secretion of IL-1β. Pore formation was also triggered by activation of P2X(4) receptors. Higher concentrations of ATP elicited similar responses after binding to P2X(7) receptors. The expression of the P2X(7) receptors was also coupled to a better response to P2Y receptors.
Collapse
|
40
|
Davies JP, Robson L. Pharmacological properties and physiological function of a P2X-like current in single proximal tubule cells isolated from frog kidney. J Membr Biol 2010; 237:79-91. [PMID: 20972559 PMCID: PMC2990016 DOI: 10.1007/s00232-010-9308-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/22/2010] [Indexed: 11/06/2022]
Abstract
Although previous studies have provided evidence for the expression of P2X receptors in renal proximal tubule, only one cell line study has provided functional evidence. The current study investigated the pharmacological properties and physiological role of native P2X-like currents in single frog proximal tubule cells using the whole-cell patch-clamp technique. Extracellular ATP activated a cation conductance (P2Xf) that was also Ca2+-permeable. The agonist sequence for activation was ATP = αβ-MeATP > BzATP = 2-MeSATP, and P2Xf was inhibited by suramin, PPADS and TNP-ATP. Activation of P2Xf attenuated the rundown of a quinidine-sensitive K+ conductance, suggesting that P2Xf plays a role in K+ channel regulation. In addition, ATP/ADP apyrase and inhibitors of P2Xf inhibited regulatory volume decrease (RVD). These data are consistent with the presence of a P2X receptor that plays a role in the regulation of cell volume and K+ channels in frog renal proximal tubule cells.
Collapse
Affiliation(s)
- John P Davies
- Department of Biomedical Science, University of Sheffield, Sheffield S102TN, UK
| | | |
Collapse
|
41
|
Woehrle T, Yip L, Manohar M, Sumi Y, Yao Y, Chen Y, Junger WG. Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors. J Leukoc Biol 2010; 88:1181-9. [PMID: 20884646 DOI: 10.1189/jlb.0410211] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypertonic saline (HS) resuscitation increases T cell function and inhibits posttraumatic T cell anergy, which can reduce immunosuppression and sepsis in trauma patients. We have previously shown that HS induces the release of cellular ATP and enhances T cell function. However, the mechanism by which HS induces ATP release and the subsequent regulation of T cell function by ATP remain poorly understood. In the present study, we show that inhibition of the gap junction hemichannel pannexin-1 (Panx1) blocks ATP release in response to HS, and HS exposure triggers significant changes in the expression of all P2X-type ATP receptors in Jurkat T cells. Blocking or silencing of Panx1 or of P2X1, P2X4, or P2X7 receptors blunts HS-induced p38 MAPK activation and the stimulatory effects of HS on TCR/CD28-induced IL-2 gene transcription. Moreover, treatment with HS or agonists of P2X receptors overcomes T cell suppression induced by the anti-inflammatory cytokine IL-10. These findings indicate that Panx1 hemichannels facilitate ATP release in response to hypertonic stress and that P2X1, P2X4, and P2X7 receptor activation enhances T cell function. We conclude that HS and P2 receptor agonists promote T cell function and thus, could be used to improve T cell function in trauma patients.
Collapse
Affiliation(s)
- Tobias Woehrle
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Weinhold K, Krause-Buchholz U, Rödel G, Kasper M, Barth K. Interaction and interrelation of P2X7 and P2X4 receptor complexes in mouse lung epithelial cells. Cell Mol Life Sci 2010; 67:2631-42. [PMID: 20405163 PMCID: PMC11115700 DOI: 10.1007/s00018-010-0355-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/15/2010] [Indexed: 12/14/2022]
Abstract
P2X4 and P2X7 receptors are ATP-gated ion channels that are co-expressed in alveolar epithelial type I cells. Both receptors are localized to the plasma membrane and partly associated with lipid rafts. Here we report on our study in an alveolar epithelial cell line of the molecular organization of P2X7R and P2X4R receptors and the effect of their knockdown. Native gel electrophoresis reveals three P2X7R complexes of approximately 430, approximately 580 and approximately 760 kDa. The latter two correspond exactly in size to signals of Cav-1, the structural protein of caveolae. Interestingly knockdown of P2rx7 affects protein levels, the intracellular distribution and the supramolecular organization of Cav-1 as well as of P2X4R, which is mainly detected in a complex of approximately 430 kDa. Our data suggest upregulation of P2X4R as a compensatory mechanism of P2X7R depletion.
Collapse
Affiliation(s)
- Karina Weinhold
- Institute of Anatomy, Medical Faculty of TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | | | - Gerhard Rödel
- Institute of Genetics, Faculty of Sciences of TU Dresden, Dresden, Germany
| | - Michael Kasper
- Institute of Anatomy, Medical Faculty of TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty of TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
43
|
Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 2010; 116:3475-84. [PMID: 20660288 DOI: 10.1182/blood-2010-04-277707] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Engagement of T cells with antigen-presenting cells requires T-cell receptor (TCR) stimulation at the immune synapse. We previously reported that TCR stimulation induces the release of cellular adenosine-5'-triphosphate (ATP) that regulates T-cell activation. Here we tested the roles of pannexin-1 hemichannels, which have been implicated in ATP release, and of various P2X receptors, which serve as ATP-gated Ca(2+) channels, in events that control T-cell activation. TCR stimulation results in the translocation of P2X1 and P2X4 receptors and pannexin-1 hemichannels to the immune synapse, while P2X7 receptors remain uniformly distributed on the cell surface. Removal of extracellular ATP or inhibition, mutation, or silencing of P2X1 and P2X4 receptors inhibits Ca(2+) entry, nuclear factors of activated T cells (NFAT) activation, and induction of interleukin-2 synthesis. Inhibition of pannexin-1 hemichannels suppresses TCR-induced ATP release, Ca(2+) entry, and T-cell activation. We conclude that pannexin-1 hemichannels and P2X1 and P2X4 receptors facilitate ATP release and autocrine feedback mechanisms that control Ca(2+) entry and T-cell activation at the immune synapse.
Collapse
|
44
|
Harhun MI, Povstyan OV, Gordienko DV. Purinoreceptor-mediated current in myocytes from renal resistance arteries. Br J Pharmacol 2010; 160:987-97. [PMID: 20590593 PMCID: PMC2936003 DOI: 10.1111/j.1476-5381.2010.00714.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/31/2009] [Accepted: 02/02/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Ionotropic purinoreceptors (P2X) in renal vascular smooth muscle cells (RVSMCs) are involved in mediating the sympathetic control and paracrine regulation of renal blood flow (RBF). Activation of P2X receptors elevates [Ca(2+)](i) in RVSMCs triggering their contraction, leading to renal vasoconstriction and decrease of RBF. The goal of the present work was to characterize the P2X receptor-mediated ionic current (I(P2X)) and to identify the types of P2X receptors expressed in myocytes isolated from interlobar and arcuate arteries of rat kidney. EXPERIMENTAL APPROACH The expression of P2X receptors in isolated RVSMCs was analysed by reverse transcription (RT)-PCR. I(P2X) and membrane potential were recorded using the amphotericin B-perforated patch method. KEY RESULTS RT-PCR analysis on single RVSMCs showed the presence of genes encoding P2X1 and P2X4 receptors. Under voltage clamp conditions, the selective P2X receptor agonist alphabeta-methylene ATP (alphabeta-meATP) evoked I(P2X) similar to that induced by ATP. Under current clamp conditions, both ATP and alphabeta-meATP evoked a spike-like membrane depolarization followed by a sustained depolarization, linking P2X receptors in RVSMCs to sympathetic control of renal vascular tone. A selective antagonist of P2X1 receptors, NF279, reduced I(P2X) amplitude by approximately 65% concentration-dependently manner within the nanomolar to sub-micromolar range. The residual current was resistant to micromolar concentrations of NF279, but was inhibited by sub-millimolar to millimolar concentrations of NF279. CONCLUSIONS AND IMPLICATIONS Two types of functional P2X receptors, monomeric P2X1 and heteromeric P2X1/4 receptors, are expressed in RVSMCs. Our study has identified important targets for possible pharmacological intervention in the sympathetic control of renal circulation.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Animals
- Arteries/drug effects
- Arteries/physiology
- Kidney/blood supply
- Kinetics
- Male
- Membrane Potentials/drug effects
- Microdissection
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Organ Specificity
- Osmolar Concentration
- Patch-Clamp Techniques
- Purinergic P2 Receptor Agonists
- Purinergic P2 Receptor Antagonists
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Receptors, Purinergic P2X4
- Reverse Transcriptase Polymerase Chain Reaction
- Suramin/analogs & derivatives
- Suramin/pharmacology
Collapse
Affiliation(s)
- Maksym I Harhun
- Ion Channels and Cell Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, UK.
| | | | | |
Collapse
|
45
|
Kumar TS, Zhou SY, Joshi BV, Balasubramanian R, Yang T, Liang BT, Jacobson KA. Structure-activity relationship of (N)-Methanocarba phosphonate analogues of 5'-AMP as cardioprotective agents acting through a cardiac P2X receptor. J Med Chem 2010; 53:2562-76. [PMID: 20192270 DOI: 10.1021/jm9018542] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
P2X receptor activation protects in heart failure models. MRS2339 3, a 2-chloro-AMP derivative containing a (N)-methanocarba (bicyclo[3.1.0]hexane) system, activates this cardioprotective channel. Michaelis-Arbuzov and Wittig reactions provided phosphonate analogues of 3, expected to be stable in vivo due to the C-P bond. After chronic administration via a mini-osmotic pump (Alzet), some analogues significantly increased intact heart contractile function in calsequestrin-overexpressing mice (genetic model of heart failure) compared to vehicle-infused mice (all inactive at the vasodilatory P2Y(1) receptor). Two phosphonates, (1'S,2'R,3'S,4'R,5'S)-4'-(6-amino-2-chloropurin-9-yl)-2',3'-(dihydroxy)-1'-(phosphonomethylene)-bicyclo[3.1.0]hexane, 4 (MRS2775), and its homologue 9 (MRS2935), both 5'-saturated, containing a 2-Cl substitution, improved echocardiography-derived fractional shortening (20.25% and 19.26%, respectively, versus 13.78% in controls), while unsaturated 5'-extended phosphonates, all 2-H analogues, and a CH(3)-phosphonate were inactive. Thus, chronic administration of nucleotidase-resistant phosphonates conferred a beneficial effect, likely via cardiac P2X receptor activation. Thus, we have greatly expanded the range of carbocyclic nucleotide analogues that represent potential candidates for the treatment of heart failure.
Collapse
Affiliation(s)
- T Santhosh Kumar
- Molecular Recognition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-0810, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Stojilkovic SS, He ML, Koshimizu TA, Balik A, Zemkova H. Signaling by purinergic receptors and channels in the pituitary gland. Mol Cell Endocrinol 2010; 314:184-91. [PMID: 19467293 PMCID: PMC2815212 DOI: 10.1016/j.mce.2009.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/14/2009] [Accepted: 05/17/2009] [Indexed: 10/20/2022]
Abstract
Adenosine 5'-triphosphate is frequently released by cells and acts as an agonist for G protein-coupled P2Y receptors and ligand-gated P2X cationic channels in numerous tissues. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors. In the pituitary gland, adenosine 5'-triphosphate is released from the endings of magnocellular hypothalamic neurons and by anterior pituitary cells through pathway(s) that are still not well characterized. This gland also expresses several members of each family of purinergic receptors. P2X and adenosine receptors are co-expressed in the somata and nerve terminals of vasopressin-releasing neurons as well as in some secretory pituitary cells. P2X receptors stimulate electrical activity and modulate InsP(3)-dependent calcium release from intracellular stores, whereas adenosine receptors terminate electrical activity. Calcium-mobilizing P2Y receptors are expressed in pituicytes, folliculo-stellate cells and some secretory cells of the anterior pituitary.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | | | | | |
Collapse
|
47
|
Brown DA, Yule DI. Protein kinase A regulation of P2X(4) receptors: requirement for a specific motif in the C-terminus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:275-87. [PMID: 20026202 DOI: 10.1016/j.bbamcr.2009.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
The P2X purinergic receptor sub-family of ligand-gated ion channels are subject to protein kinase modulation. We have previously demonstrated that P2X(4)R signaling can be positively regulated by increasing intracellular cAMP levels. The molecular mechanism underlying this effect was, however, unknown. The present study initially addressed whether protein kinase A (PKA) activation was required. Subsequently a mutational approach was utilized to determine which region of the receptor was required for this potentiation. In both DT-40 3KO and HEK-293 cells transiently expressing P2X(4)R, forskolin treatment enhanced ATP-mediated signaling. Specific PKA inhibitors prevented the forskolin-induced enhancement of ATP-mediated inward currents in P2X(4)R expressing HEK-293 cells. To define which region of the P2X(4)R was required for the potentiation, mutations were generated in the cytoplasmic C-terminal tail. It was determined that a limited region of the C-terminus, consisting of a non-canonical tyrosine based sorting motif, was required for the effects of PKA. Of note, this region does not harbor any recognizable PKA phosphorylation motifs, and no direct phosphorylation of P2X(4)R was detected, suggesting that PKA phosphorylation of an accessory protein interacts with the endocytosis motif in the C-terminus of the P2X(4)R. In support of this notion, using Total Internal Reflection Fluorescence Microscopy (TIRF)\ P2X(4)-EGFP was shown to accumulate at/near the plasma membrane following forskolin treatment. In addition, disrupting the endocytosis machinery using a dominant-negative dynamin construct also prevented the PKA-mediated enhancement of ATP-stimulated Ca(2+) signals. Our results are consistent with a novel mechanism of P2XR regulation, whereby PKA activity, without directly phosphorylating P2X(4)R, markedly enhances ATP-stimulated P2X(4)R currents and hence cytosolic Ca(2+) signals. This may occur at least in part, by altering the trafficking of a population of P2X(4)R present at the plasma membrane.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
48
|
Chong JH, Zheng GG, Zhu XF, Guo Y, Wang L, Ma CH, Liu SY, Xu LL, Lin YM, Wu KF. Abnormal expression of P2X family receptors in Chinese pediatric acute leukemias. Biochem Biophys Res Commun 2009; 391:498-504. [PMID: 19919827 DOI: 10.1016/j.bbrc.2009.11.087] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Nucleotides are new players in intercellular communication network. P2X family receptors are ATP-gated plasma membrane ion channels with diverse biological functions. Their distribution patterns and significance in pediatric leukemias have not been established. Here we investigated the expression of P2X receptors in BMMC samples from Chinese pediatric acute leukemias. Real-time PCR and Western blot results showed that P2X1, P2X4, P2X5 and P2X7 receptors were simultaneously over expressed in leukemias compared with controls, whereas P2X2, P2X3 and P2X6 were absent or marginally expressed in both groups. It was worth noting that the co-expression feature of them, especially between P2X4 and P2X7, could be observed and the highest expression of P2X7 was detected in relapsed patients. Moreover, concomitant decrease of P2X4, P2X5 and P2X7 expressions was observed at CR stage in a follow-up study. Functional P2X7 was also verified. These results suggested that P2X1, P2X4, P2X5 and P2X7 were hematopoiesis-related P2X receptors, and their signaling, especially for P2X7, might play important roles in pediatric leukemias. P2X receptors might co-operatively contribute to the malignant phenotype in human pediatric leukemias.
Collapse
Affiliation(s)
- Jing-Hui Chong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stojilkovic SS. Purinergic regulation of hypothalamopituitary functions. Trends Endocrinol Metab 2009; 20:460-8. [PMID: 19800813 PMCID: PMC2766266 DOI: 10.1016/j.tem.2009.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The hypothalamus controls the release of hormones by the pituitary and is involved in control of food and water intake, sexual behavior, reproduction and daily cycles in physiological state and behavior, temperature regulation and emotional responses. Adenosine-5'-triphosphate (ATP) and its metabolic products contribute to these functions, acting as agonists for adenosine and P2Y receptors and two-transmembrane domain P2X receptor channels. This review summarizes the recent findings on purinergic receptor expression and their roles in signaling and cellular function in secretory and supporting cells of the hypothalamopituitary system. ATP secretion by these tissues, the enzymes involved in ATP hydrolysis, and the relevance of this pathway for sequential activation of receptors and termination of signaling are also discussed.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| |
Collapse
|
50
|
Nicke A, Kuan YH, Masin M, Rettinger J, Marquez-Klaka B, Bender O, Górecki DC, Murrell-Lagnado RD, Soto F. A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice. J Biol Chem 2009; 284:25813-22. [PMID: 19546214 DOI: 10.1074/jbc.m109.033134] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-activated P2X7 receptor channel is involved in immune function and inflammatory pain and represents an important drug target. Here we describe a new P2X7 splice variant (P2X7(k)), containing an alternative intracellular N terminus and first transmembrane domain encoded by a novel exon 1 in the rodent P2rx7 gene. Whole cell patch clamp recordings of the rat isoform expressed in HEK293 cells revealed an 8-fold higher sensitivity to the agonist Bz-ATP and much slower deactivation kinetics when compared with the P2X7(a) receptor. Permeability measurements in Xenopus oocytes show a high permeability for N-methyl-D-glucamine immediately upon activation, suggesting that the P2X7(k) channel is constitutively dilated upon opening. The rates of agonist-induced dye uptake and membrane blebbing in HEK cells were also increased. PCR analyses and biochemical analysis by SDS-PAGE and BN-PAGE indicate that the P2X7(k) variant escapes gene deletion in one of the available P2X7(-/-) mice strains and is strongly expressed in the spleen. Taken together, we describe a novel P2X7 isoform with distinct functional properties that contributes to the diversity of P2X7 receptor signaling. Its presence in one of the P2X7(-/-) strains has important implications for our understanding of the role of this receptor in health and disease.
Collapse
Affiliation(s)
- Annette Nicke
- Department of Neurochemistry, Max Planck Institute (MPI) for Brain Research, Deutschordenstrasse 46, Frankfurt 60528, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|