1
|
Portales AE, Mustafá ER, McCarthy CI, Cornejo MP, Couto PM, Gironacci MM, Caramelo JJ, Perelló M, Raingo J. ACE2 internalization induced by a SARS-CoV-2 recombinant protein is modulated by angiotensin II type 1 and bradykinin 2 receptors. Life Sci 2022; 293:120284. [PMID: 35038454 PMCID: PMC8758573 DOI: 10.1016/j.lfs.2021.120284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
AIMS Angiotensin-converting enzyme 2 (ACE2) is a key regulator of the renin-angiotensin system (RAS) recently identified as the membrane receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we aim to study whether two receptors from RAS, the angiotensin receptor type 1 (AT1R) and the bradykinin 2 receptor (B2R) modulate ACE2 internalization induced by a recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein. Also, we investigated the impact of ACE2 coexpression on AT1R and B2R functionality. MATERIALS AND METHODS To study ACE2 internalization, we assessed the distribution of green fluorescent protein (GFP) signal in HEK293T cells coexpressing GFP-tagged ACE2 and AT1R, or B2R, or AT1R plus B2R in presence of RBD alone or in combination with AT1R or B2R ligands. To estimate ACE2 internalization, we classified GFP signal distribution as plasma membrane uniform GFP (PMU-GFP), plasma membrane clustered GFP (PMC-GFP) or internalized GFP and calculated its relative frequency. Additionally, we investigated the effect of ACE2 coexpression on AT1R and B2R inhibitory action on voltage-gated calcium channels (CaV2.2) currents by patch-clamp technique. KEY FINDINGS RBD induced ACE2-GFP internalization in a time-dependent manner. RBD-induced ACE2-GFP internalization was increased by angiotensin II and reduced by telmisartan in cells coexpressing AT1R. RBD-induced ACE2-GFP internalization was strongly inhibited by B2R co-expression. This effect was mildly modified by bradykinin and rescued by angiotensin II in presence of AT1R. ACE2 coexpression impacted on B2R- and AT1R-mediated inhibition of CaV2.2 currents. SIGNIFICANCE Our work contributes to understand the role of RAS modulators in the susceptibility to SARS-CoV-2 infection and severity of COVID-19.
Collapse
Affiliation(s)
- Andrea Estefanía Portales
- Laboratorio de Electrofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Emilio Román Mustafá
- Laboratorio de Electrofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Clara Inés McCarthy
- Laboratorio de Electrofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - María Paula Cornejo
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Paula Monserrat Couto
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mariela Mercedes Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Argentina
| | - Julio Javier Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mario Perelló
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratorio de Electrofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina..
| |
Collapse
|
2
|
Packer M, McMurray JJV. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the renin-angiotensin system for the treatment of heart failure. Lancet 2017; 389:1831-1840. [PMID: 27919443 DOI: 10.1016/s0140-6736(16)30969-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The magnitude of the clinical benefits produced by inhibitors of the renin-angiotensin system in heart failure has been modest, possibly because of the ability of renin-angiotensin activity to escape from suppression during long-term treatment. Efforts to intensify pharmacological blockade by use of dual inhibitors that interfere with the renin-angiotensin system at multiple sites have not yielded consistent incremental clinical benefits, but have been associated with serious adverse reactions. By contrast, potentiation of endogenous compensatory vasoactive peptides can act to enhance the survival effects of inhibitors of the renin-angiotensin system, as evidenced by trials that have compared angiotensin-converting enzyme inhibitors with drugs that inhibit both the renin-angiotensin system and neprilysin. Several endogenous vasoactive peptides act as adaptive mechanisms, and their augmentation could help to broaden the benefits of renin-angiotensin system inhibitors for patients with heart failure.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA.
| | - John J V McMurray
- British Heart Foundation Cardiovascular Research Center, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Nascimento IC, Glaser T, Nery AA, Pillat MM, Pesquero JB, Ulrich H. Kinin-B1 and B2 receptor activity in proliferation and neural phenotype determination of mouse embryonic stem cells. Cytometry A 2015; 87:989-1000. [PMID: 26243460 DOI: 10.1002/cyto.a.22726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The kinins bradykinin and des-arg(9) -bradykinin cleaved from kininogen precursors by kallikreins exert their biological actions by stimulating kinin-B2 and B1 receptors, respectively. In vitro models of neural differentiation such as P19 embryonal carcinoma cells and neural progenitor cells have suggested the involvement of B2 receptors in neural differentiation and phenotype determination; however, the involvement of B1 receptors in these processes has not been established. Here, we show that B1 and B2 receptors are differentially expressed in mouse embryonic E14Tg2A stem cells undergoing neural differentiation. Proliferation and differentiation assays, performed in the presence of receptor subtype-selective agonists and antagonists, revealed that B1 receptor activity is required for the proliferation of embryonic and differentiating cells as well as for neuronal maturation at later stages of differentiation, while the B2 receptor acts on neural phenotype choice, promoting neurogenesis over gliogenesis. Besides the elucidation of bradykinin functions in an in vitro model reflecting early embryogenesis and neurogenesis, this study contributes to the understanding of B1 receptor functions in this process.
Collapse
Affiliation(s)
- Isis C Nascimento
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Arthur A Nery
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Liu NJ, Schnell S, Wessendorf MW, Gintzler AR. Sex, pain, and opioids: interdependent influences of sex and pain modality on dynorphin-mediated antinociception in rats. J Pharmacol Exp Ther 2013; 344:522-30. [PMID: 23230215 PMCID: PMC11047259 DOI: 10.1124/jpet.112.199851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/07/2012] [Indexed: 11/22/2022] Open
Abstract
The role of dynorphin A (1-17; Dyn) and its associated kappa opioid receptor (KOR) in nociception represents a longstanding scientific conundrum: Dyn and KOR (Dyn/KOR) have variously been reported to inhibit, facilitate, or have no effect on pain. We investigated whether interactions between sex and pain type (which are usually ignored) influenced Dyn/KOR-mediated antinociception. Blockade of the spinal α(2)-noradrenergic receptor (α(2)-NAR) using yohimbine elicited comparable spinal Dyn release in females and males. Nevertheless, the yohimbine-induced antinociception exhibited sexual dimorphism that depended on the pain test used: in the intraperitoneal acetic acid-induced writhing test, yohimbine produced antinociception only in females, whereas in the intraplantar formalin-induced paw flinch test, antinociception was observed only in males. In females and males, both intrathecal Dyn antibodies and spinal KOR blockade eliminated the yohimbine-induced antinociception, indicating that Dyn/KOR mediated it. However, despite the conditional nature of spinal Dyn/KOR-mediated yohimbine antinociception, both intraplantar formalin and intraperitoneal acetic acid activated spinal Dyn neurons that expressed α(2)-NARs. Moreover, Dyn terminals apposed KOR-expressing spinal nociceptive neurons in both sexes. This similar organization suggests that the sexually dimorphic interdependent effects of sex and pain type may result from the presence of nonfunctional (silent) KORs on nociceptive spinal neurons that are responsive to intraplantar formalin (in females) versus intraperitoneal acetic acid (in males). Our findings that spinal Dyn/KOR-mediated antinociception depends on interactions between sex and pain type underscore the importance of using both sexes and multiple pain models when investigating Dyn/KOR antinociception.
Collapse
MESH Headings
- Adrenergic alpha-2 Receptor Antagonists/pharmacology
- Animals
- Dynorphins/biosynthesis
- Dynorphins/metabolism
- Female
- Injections, Spinal
- Male
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Nociceptive Pain/drug therapy
- Nociceptive Pain/etiology
- Nociceptive Pain/metabolism
- Pain Measurement/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-2/biosynthesis
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Opioid, kappa/biosynthesis
- Receptors, Opioid, kappa/metabolism
- Sex Characteristics
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Yohimbine/pharmacology
Collapse
Affiliation(s)
- Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
5
|
Zaika O, Zhang J, Shapiro MS. Functional role of M-type (KCNQ) K⁺ channels in adrenergic control of cardiomyocyte contraction rate by sympathetic neurons. J Physiol 2011; 589:2559-68. [PMID: 21486761 DOI: 10.1113/jphysiol.2010.204768] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
M-type (KCNQ) K⁺ channels are known to regulate excitability and firing properties of sympathetic neurons (SNs), but their role in regulating neurotransmitter release is unclear, requiring further study. We sought to use a physiological preparation in which SNs innervate primary cardiomyocytes to evaluate the direct role of M-channels in the release of noradrenaline (NA) from SNs. Co-cultures of rat SNs and mouse cardiomyocytes were prepared, and the contraction rate (CR) of the cardiomyocyte syncytium monitored by video microscopy. We excited the SNs with nicotine, acting on nicotinic acetylcholine receptors, and monitored the increase in CR in the presence or absence of the specific M-channel opener retigabine, or agonists of bradykinin B2 or purinergic P2Y receptors on the SNs. The maximal adrenergic effect on the CR was determined by application of isoproterenol (isoprenaline). To isolate the actions of B2 or P2Y receptor stimulation to the neurons, we prepared cardiomyocytes from B2 receptor or P2Y2 receptor knock-out mice, respectively. We found that co-application of retigabine strongly decreased the nicotine-induced increase in CR. Conversely, co-application of bradykinin or the P2Y-receptor agonist UTP augmented the nicotine-induced increase in CR to about half of the level produced by isoproterenol. All effects on the CR were wholly blocked by propranolol. Our data support the role of M-type K⁺ channels in the control of NA release by SNs at functional adrenergic synapses on cardiomyocytes.We conclude that physiological receptor agonists control the heart rate via the regulation of M-current in SNs.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
6
|
Liu NJ, Schnell SA, Schulz S, Wessendorf MW, Gintzler AR. Regulation of spinal dynorphin 1-17 release by endogenous pituitary adenylyl cyclase-activating polypeptide in the male rat: relevance of excitation via disinhibition. J Pharmacol Exp Ther 2010; 336:328-35. [PMID: 20974701 DOI: 10.1124/jpet.110.173039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids inhibit release of primary afferent transmitters but it is unclear whether the converse occurs. To test the hypothesis that primary afferent transmitters influence opioid-ergic tone, we studied the functional and anatomical relationships between pituitary adenylyl cyclase-activating polypeptide (PACAP) and dynorphin 1-17 (Dyn) in spinal cord. We found that activation of the PACAP-specific receptor PAC(1) (PAC(1)R) inhibited, whereas PAC(1)R blockade augmented, spinal release of Dyn. It is noteworthy that in the formalin-induced pain model PAC(1)R blockade (via PACAP6-38) also resulted in antinociception that was abolished by spinal κ-opioid receptor blockade. These findings indicate that Dyn release is tonically inhibited by PACAP and that blocking this inhibition, which increases the spinal release of Dyn, results in antinociception. Consistent with this conclusion, we found in the spinal dorsal horn that Dyn-immunoreactive neurons 1) expressed PAC(1)R and 2) were apposed by PACAP terminals. Present results, in combination with the previous demonstration that the release of spinal Dyn is tonically inhibited by opioid- and nociceptin/orphanin FQ-coupled pathways (J Pharmacol Exp Ther 298:1213-1220, 2001), indicate that spinal Dyn-ergic neurons integrate multiple inhibitory inputs, the interruption of any one of which (i.e., disinhibition) is sufficient to enhance spinal Dyn release and generate antinociception. Gaining a better understanding of the role of primary afferent neurotransmitters in negatively modulating the spinal release of Dyn and the physiological use of disinhibition to increase spinal Dyn activity could suggest novel clinically useful approaches for harnessing endogenous Dyn for pain control.
Collapse
Affiliation(s)
- Nai-Jiang Liu
- Department of Biochemistry, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | | | | | | | | |
Collapse
|
7
|
Kosenburger K, Schicker KW, Drobny H, Boehm S. Differential fading of inhibitory and excitatory B2 bradykinin receptor responses in rat sympathetic neurons: a role for protein kinase C. J Neurochem 2009; 110:1977-88. [PMID: 19656259 DOI: 10.1111/j.1471-4159.2009.06303.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through inhibitory and excitatory effects on sympathetic neurons, B(2) bradykinin receptors contribute to protective and noxious cardiovascular mechanisms. Presynaptic inhibition of sympathetic transmitter release involves an inhibition of Ca(V)2 channels, neuronal excitation an inhibition of K(V)7 channels. To investigate which of these mechanisms prevail over time, the respective currents were determined. The inhibition of Ca(2+) currents by bradykinin reached a maximum of 50%, started to fade within the first minute, and became attenuated significantly after > or = 4 min. The inhibition of K(+) currents reached a maximum of 85%, started to fade after > 3 min, and became attenuated significantly after > or = 7 min. Blocking Ca(2+)-independent protein kinase C (PKC) enhanced the inhibition of Ca(2+) currents by bradykinin and delayed its fading, left the inhibition of K(+) currents and its fading unaltered, and enhanced the reduction of noradrenaline release and slowed its fading. Conversely, direct activation of PKC abolished the inhibition of noradrenaline release and largely attenuated the inhibition of Ca(2+) currents. These results show that the inhibitory effects of bradykinin in sympathetic neurons are outweighed over time by its excitatory actions because of more rapid, PKC-dependent fading of the inhibitory response.
Collapse
Affiliation(s)
- Kristina Kosenburger
- Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
8
|
Kubista H, Kosenburger K, Mahlknecht P, Drobny H, Boehm S. Inhibition of transmitter release from rat sympathetic neurons via presynaptic M(1) muscarinic acetylcholine receptors. Br J Pharmacol 2009; 156:1342-52. [PMID: 19309359 DOI: 10.1111/j.1476-5381.2009.00136.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE M(2), M(3) and/or M(4) muscarinic acetylcholine receptors have been reported to mediate presynaptic inhibition in sympathetic neurons. M(1) receptors mediate an inhibition of K(v)7, Ca(V)1 and Ca(V)2.2 channels. These effects cause increases and decreases in transmitter release, respectively, but presynaptic M(1) receptors are generally considered facilitatory. Here, we searched for inhibitory presynaptic M(1) receptors. EXPERIMENTAL APPROACH In primary cultures of rat superior cervical ganglion neurons, Ca(2+) currents were recorded via the perforated patch-clamp technique, and the release of [(3)H]-noradrenaline was determined. KEY RESULTS The muscarinic agonist oxotremorine M (OxoM) transiently enhanced (3)H outflow and reduced electrically evoked release, once the stimulant effect had faded. The stimulant effect was enhanced by pertussis toxin (PTX) and was abolished by blocking M(1) receptors, by opening K(v)7 channels and by preventing action potential propagation. The inhibitory effect was not altered by preventing action potentials or by opening K(v)7 channels, but was reduced by PTX and omega-conotoxin GVIA. The inhibition remaining after PTX treatment was abolished by blockage of M(1) receptors or inhibition of phospholipase C. When [(3)H]-noradrenaline release was triggered independently of voltage-activated Ca(2+) channels (VACCs), OxoM failed to cause any inhibition. The inhibition of Ca(2+) currents by OxoM was also reduced by omega-conotoxin and PTX and was abolished by M(1) antagonism in PTX-treated neurons. CONCLUSIONS AND IMPLICATIONS These results demonstrate that M(1), in addition to M(2), M(3) and M(4), receptors mediate presynaptic inhibition in sympathetic neurons using phospholipase C to close VACCs.
Collapse
Affiliation(s)
- H Kubista
- Centre of Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
9
|
Hernandez CC, Zaika O, Tolstykh GP, Shapiro MS. Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. J Physiol 2008; 586:1811-21. [PMID: 18238808 DOI: 10.1113/jphysiol.2007.148304] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neural M-type (KCNQ/Kv7) K(+) channels control somatic excitability, bursting and neurotransmitter release throughout the nervous system. Their activity is regulated by multiple signalling pathways. In superior cervical ganglion sympathetic neurons, muscarinic M(1), angiotensin II AT(1), bradykinin B(2) and purinergic P2Y agonists suppress M current (I(M)). Probes of PLC activity show agonists of all four receptors to induce robust PIP(2) hydrolysis. We have grouped these receptors into two related modes of action. One mode involves depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)) in the membrane, whose interaction with the channels is thought necessary for their function. The other involves IP(3)-mediated intracellular Ca(2+) signals that stimulate PIP(2) synthesis, preventing its depletion, and suppress I(M) via calmodulin. Carbon-fibre amperometry can evaluate the effect of M channel activity on release of neurotransmitter. Consistent with the dominant role of M current in control of neuronal discharge, M channel openers, or blockers, reduced or augmented the evoked release of noradrenaline neurotransmitter from superior cervical ganglion (SCG) neurons, respectively. We seek to localize the subdomains on the channels critical to their regulation by PIP(2). Based on single-channel recordings from chimeras between high-PIP(2) affinity KCNQ3 and low-PIP(2) affinity KCNQ4 channels, we focus on a 57-residue domain within the carboxy-terminus that is a possible PIP(2) binding site. Homology modelling of this domain using the published structure of IRK1 channels as a template predicts a structure very similar to an analogous region in IRK1 channels, and shows a cluster of basic residues in the KCNQ2 domain to correspond to those implicated in PIP(2) regulation of Kir channels. We discuss some important issues dealing with these topics.
Collapse
Affiliation(s)
- Ciria C Hernandez
- University of Texas Health Science Center at San Antonio, Department of Physiology, MS 7756, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
10
|
Hansen HH, Waroux O, Seutin V, Jentsch TJ, Aznar S, Mikkelsen JD. Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol 2008; 586:1823-32. [PMID: 18174210 DOI: 10.1113/jphysiol.2007.149450] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuronal Kv7 channels (also termed KCNQ channels) are the molecular correlate of the M-current. The Kv7 channels activate at rather negative membrane potentials (< or = 60 mV), thereby 'fine-tuning' the resting membrane potential. The Kv7 channels are widely expressed in the brain with the Kv7.2, Kv7.3 and Kv7.5 channels being the most abundant. The Kv7.4 subunit has the most restricted brain regional expression being present in discrete nuclei of brainstem only. Kv7 channels are expressed at different subcellular locations, being on both somatodendritic, axonal and terminal sites. This complex subcellular distribution of Kv7 channels enables them to participate in both pre- and postsynaptic modulation of basal and stimulated excitatory neurotransmission. Activation of neuronal Kv7 channels limits repetitive firing thereby potentially limiting the generation of long bursts, with subsequent inhibition of monoaminergic neurotransmitter release. In this review, we focus on the influence of Kv7 channels on dopaminergic and serotonergic neurotransmission. The data suggest a novel action of Kv7 channel openers which could translate into having therapeutic value in the treatment of disease states characterized by overactivity of dopaminergic (e.g. schizophrenia and drug abuse) and serotonergic neurotransmission (e.g. anxiety).
Collapse
Affiliation(s)
- Henrik H Hansen
- Department of Translational Neurobiology, NeuroSearch A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark.
| | | | | | | | | | | |
Collapse
|
11
|
Hagenacker T, Ledwig D, Büsselberg D. Feedback mechanisms in the regulation of intracellular calcium ([Ca2+]i) in the peripheral nociceptive system: role of TRPV-1 and pain related receptors. Cell Calcium 2007; 43:215-27. [PMID: 17673288 DOI: 10.1016/j.ceca.2007.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/17/2007] [Accepted: 05/30/2007] [Indexed: 11/21/2022]
Abstract
Multimodal stimuli like heat, cold, bacterial or mechanical events are able to elicit pain, which is necessary to guarantee survival. However, the control of pain is of major clinical importance. The perception and transduction of pain is differentially modulated in the peripheral and central nervous system (CNS): while peripheral structures modulate these signals, the perception of pain occurs in the CNS. In recent years major advances have been made in the understanding of the processes which are involved in pain sensation. For the peripheral pain reception, the importance of specific pain receptors of the transition receptor pore (TRP)-family (e.g. the TRPV-1 receptor) has been analyzed. These receptors/channels are localized at the cell membrane of nociceptive neurones as well as in membranes of intracellular calcium stores like the endoplasmic reticulum. While the associated channel conducts different ions, a major proportion is calcium. Therefore, this review focuses on (1) the modulations of intracellular calcium ([Ca2+]i) initiated by the activation of pain receptors and (2) the consequences of [Ca2+]i changes for the processing of pain signals at the peripheral side. The possible interference of TRPV-1 induced [Ca2+]i modulations to the function of other membrane receptors and channels, like voltage gated calcium, sodium or potassium channels, or co-expressed CB1-receptors will be discussed. The latter interactions are of specific interest since the analgetic properties of endo- and exo-cannabinoids are mediated by CB1 receptors and their activation significantly modulates the calcium induced release of pain related transmitters. Furthermore, multiple cross links between different pain modulating intracellular pathways and their dependence on [Ca2+]i modulations will be illuminated. Overall, this review will summarize new insights resulting in the understanding of the prominent influence of [Ca2+]i for processes which are involved in pain sensation.
Collapse
Affiliation(s)
- T Hagenacker
- Universitätsklinikum Essen, Institut für Physiologie, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
12
|
Kubista H, Boehm S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 2006; 112:213-42. [PMID: 16730801 DOI: 10.1016/j.pharmthera.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The release of noradrenaline from nerve terminals is modulated by a variety of presynaptic receptors. These receptors belong to one of the following three receptor superfamilies: transmitter-gated ion channels, G protein-coupled receptors (GPCR), and membrane receptors with intracellular enzymatic activities. For representatives of each of these three superfamilies, receptor activation has been reported to cause either an enhancement or a reduction of noradrenaline release. As these receptor classes display greatly diverging structures and functions, a multitude of different molecular mechanisms are involved in the regulation of noradrenaline release via presynaptic receptors. This review gives a short overview of the presynaptic receptors on noradrenergic nerve terminals and summarizes the events involved in vesicle exocytosis in order to finally delineate the most important signaling cascades that mediate the modulation via presynaptic receptors. In addition, the interactions between the various presynaptic receptors are described and the underlying molecular mechanisms are elucidated. Together, these presynaptic signaling mechanisms form a sophisticated network that precisely adapts the amount of noradrenaline being released to a given situation.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
13
|
Lechner SG, Hussl S, Schicker KW, Drobny H, Boehm S. Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels. Mol Pharmacol 2005; 68:1387-96. [PMID: 16099842 DOI: 10.1124/mol.105.014886] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Presynaptic inhibition of transmitter release is commonly mediated by a direct interaction between G protein betagamma subunits and voltage-activated Ca2+ channels. To search for an alternative pathway, the mechanisms by which presynaptic bradykinin receptors mediate an inhibition of noradrenaline release from rat superior cervical ganglion neurons were investigated. The peptide reduced noradrenaline release triggered by K+-depolarization but not that evoked by ATP, with Ca2+ channels being blocked by Cd2+. Bradykinin also reduced Ca2+ current amplitudes measured at neuronal somata, and this effect was pertussis toxin-insensitive, voltage-independent, and developed slowly within 1 min. The inhibition of Ca2+ currents was abolished by a phospholipase C inhibitor, but it was not altered by a phospholipase A2 inhibitor, by the depletion of intracellular Ca2+ stores, or by the inactivation of protein kinase C or Rho proteins. In whole-cell recordings, the reduction of Ca2+ currents was irreversible but became reversible when 4 mM ATP or 0.2 mM dioctanoyl phosphatidylinositol-4,5-bisphosphate was included in the pipette solution. In contrast, the effect of bradykinin was entirely reversible in perforated-patch recordings but became irreversible when the resynthesis of phosphatidylinositol-4,5-bisphosphate was blocked. Thus, the inhibition of Ca2+ currents by bradykinin involved a consumption of phosphatidylinositol-4,5-bisphosphate by phospholipase C but no downstream effectors of this enzyme. The reduction of noradrenaline release by bradykinin was also abolished by the inhibition of phospholipase C or of the resynthesis of phosphatidylinositol-4,5-bisphosphate. These results show that the presynaptic inhibition was mediated by a closure of voltage-gated Ca2+ channels through depletion of membrane phosphatidylinositol bisphosphates via phospholipase C.
Collapse
Affiliation(s)
- Stefan G Lechner
- Department of Pharmacology, Center of Biomolecular, Medicine and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|