1
|
de Campos VS, Calaza KC, Adesse D. Implications of TORCH Diseases in Retinal Development-Special Focus on Congenital Toxoplasmosis. Front Cell Infect Microbiol 2020; 10:585727. [PMID: 33194824 PMCID: PMC7649341 DOI: 10.3389/fcimb.2020.585727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
There are certain critical periods during pregnancy when the fetus is at high risk for exposure to teratogens. Some microorganisms, including Toxoplasma gondii, are known to exhibit teratogenic effects, interfering with fetal development and causing irreversible disturbances. T. gondii is an obligate intracellular parasite and the etiological agent of Toxoplasmosis, a zoonosis that affects one third of the world's population. Although congenital infection can cause severe fetal damage, the injury extension depends on the gestational period of infection, among other factors, like parasite genotype and host immunity. This parasite invades the Central Nervous System (CNS), forming tissue cysts, and can interfere with neurodevelopment, leading to frequent neurological abnormalities associated with T. gondii infection. Therefore, T. gondii is included in the TORCH complex of infectious diseases that may lead to neurological malformations (Toxoplasmosis, Others, Rubella, Cytomegalovirus, and Herpes). The retina is part of CNS, as it is derived from the diencephalon. Except for astrocytes and microglia, retinal cells originate from multipotent neural progenitors. After cell cycle exit, cells migrate to specific layers, undergo morphological and neurochemical differentiation, form synapses and establish their circuits. The retina is organized in nuclear layers intercalated by plexus, responsible for translating and preprocessing light stimuli and for sending this information to the brain visual nuclei for image perception. Ocular toxoplasmosis (OT) is a very debilitating condition and may present high severity in areas in which virulent strains are found. However, little is known about the effect of congenital infection on the biology of retinal progenitors/ immature cells and how this infection may affect the development of this tissue. In this context, this study reviews the effects that congenital infections may cause to the developing retina and the cellular and molecular aspects of these diseases, with special focus on congenital OT.
Collapse
Affiliation(s)
- Viviane Souza de Campos
- Laboratório de Neurobiologia da Retina, Instituto de Biologia, Universidade Federal Fluminense, Niteroi, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Karin C. Calaza
- Laboratório de Neurobiologia da Retina, Instituto de Biologia, Universidade Federal Fluminense, Niteroi, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Talreja D, Cashman SM, Dasari B, Kumar B, Kumar-Singh R. G-quartet oligonucleotide mediated delivery of functional X-linked inhibitor of apoptosis protein into retinal cells following intravitreal injection. Exp Eye Res 2018; 175:20-31. [PMID: 29864441 DOI: 10.1016/j.exer.2018.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
There is currently no efficient method available for the delivery of full length functional proteins into the cytoplasm of retinal cells in vivo. Historically, the most successful approach for the treatment of retinal diseases has been intravitreal injection of antibodies or recombinant proteins, but this approach is not yet utilized for the delivery of proteins that require intracellular access for a therapeutic effect. Here we describe a platform for the delivery of functional proteins into ganglion cells, photoreceptors and retinal pigment epithelium via intravitreal injection. A nucleolin binding aptamer, AS1411, was biotinylated and complexed with traptavidin and utilized as a platform for the delivery of GFP or X-linked inhibitor of apoptosis (XIAP) proteins by intravitreal injection in BALB/c mice. Retinal sections were analyzed for uptake of proteins in the retina. Apoptosis was induced by intravitreal injection of N-methyl-D-aspartate (NMDA). Retinas were harvested for analysis of TUNEL and caspase 3/7 activity. Intravitreal injection of AS1411-directed GFP or XIAP complexes enabled delivery of these proteins into ganglion cells, photoreceptors and retinal pigment epithelium in vivo. AS1411-XIAP complexes conferred significant protection to cells in the outer and inner nuclear layers following NMDA induced apoptosis. A concomitant decrease in activity of Caspase 3/7 was observed in eyes injected with the AS1411-XIAP complex. In conclusion, AS1411 can be used as a platform for the delivery of therapeutic proteins into retinal cells. This approach can potentially be utilized to introduce a large variety of therapeutically relevant proteins that are previously well characterized to maintain the structural integrity and function of retina, thus, preventing vision loss due to ocular trauma or inherited retinal degeneration.
Collapse
Affiliation(s)
- Deepa Talreja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Bhanu Dasari
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
3
|
Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum. J Neurosci 2018; 38:2000-2014. [PMID: 29363581 DOI: 10.1523/jneurosci.1962-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 01/11/2023] Open
Abstract
Postembryonic brain development is sensitive to environmental input and sensory experience, but the mechanisms underlying healthy adaptive brain growth are poorly understood. Here, we tested the importance of visual experience on larval zebrafish (Danio rerio) postembryonic development of the optic tectum (OT), a midbrain structure involved in visually guided behavior. We first characterized postembryonic neurogenic growth in OT, in which new neurons are generated along the caudal tectal surface and contribute appositionally to anatomical growth. Restricting visual experience during development by rearing larvae in dim light impaired OT anatomical and neurogenic growth, specifically by reducing the survival of new neurons in the medial periventricular gray zone. Neuronal survival in the OT was reduced only when visual experience was restricted for the first 5 d following new neuron generation, suggesting that tectal neurons exhibit an early sensitive period in which visual experience protects these cells from subsequent neuronal loss. The effect of dim rearing on neuronal survival was mimicked by treatment with an NMDA receptor antagonist early, but not later, in a new neuron's life. Both dim rearing and antagonist treatment reduced BDNF production in the OT, and supplementing larvae with exogenous BDNF during dim rearing prevented neuronal loss, suggesting that visual experience protects new tectal neurons through neural activity-dependent BDNF expression. Collectively, we present evidence for a sensitive period of neurogenic adaptive growth in the larval zebrafish OT that relies on visual experience-dependent mechanisms.SIGNIFICANCE STATEMENT Early brain development is shaped by environmental factors via sensory input; however, this form of experience-dependent neuroplasticity is traditionally studied as structural and functional changes within preexisting neurons. Here, we found that restricting visual experience affects development of the larval zebrafish optic tectum, a midbrain structure involved in visually guided behavior, by limiting the survival of newly generated neurons. We found that new tectal neurons exhibit a sensitive period soon after cell birth in which adequate visual experience, likely mediated by neuronal activity driving BDNF production within the tectum, would protect them from subsequent neuronal loss over the following week. Collectively, we present evidence for neurogenic adaptive tectal growth under different environmental lighting conditions.
Collapse
|
4
|
Ishida A, Misumi S, Ueda Y, Shimizu Y, Cha-Gyun J, Tamakoshi K, Ishida K, Hida H. Early constraint-induced movement therapy promotes functional recovery and neuronal plasticity in a subcortical hemorrhage model rat. Behav Brain Res 2015; 284:158-66. [PMID: 25700666 DOI: 10.1016/j.bbr.2015.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 01/15/2023]
Abstract
Constraint-induced movement therapy (CIMT) promotes functional recovery of impaired forelimbs after hemiplegic strokes, including intracerebral hemorrhage (ICH). We used a rat model of subcortical hemorrhage to compare the effects of delivering early or late CIMT after ICH. The rat model was made by injecting collagenase into the globus pallidus near the internal capsule, and then forcing rats to use the affected forelimb for 7 days starting either 1 day (early CIMT) or 17 days (late CIMT) after the lesion. Recovery of forelimb function in the skilled reaching test and the ladder stepping test was found after early-CIMT, while no significant recovery was shown after late CIMT or in the non-CIMT controls. Early CIMT was associated with greater numbers of ΔFosB-positive cells in the ipsi-lesional sensorimotor cortex layers II-III and V. Additionally, we found expression of the growth-related genes brain-derived neurotrophic factor (BDNF) and growth-related protein 43 (GAP-43), and abundant dendritic arborization of pyramidal neurons in the sensorimotor area. Similar results were not detected in the contra-lesional cortex. In contrast to early CIMT, late CIMT failed to induce any changes in plasticity. We conclude that CIMT induces molecular and morphological plasticity in the ipsi-lesional sensorimotor cortex and facilitates better functional recovery when initiated immediately after hemorrhage.
Collapse
Affiliation(s)
- Akimasa Ishida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya, Aichi 467-8601, Japan; Department of Physical Therapy, Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| | - Sachiyo Misumi
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya, Aichi 467-8601, Japan
| | - Yoshitomo Ueda
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya, Aichi 467-8601, Japan
| | - Yuko Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya, Aichi 467-8601, Japan
| | - Jung Cha-Gyun
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya, Aichi 467-8601, Japan
| | - Keigo Tamakoshi
- Department of Physical Therapy, Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| | - Kazuto Ishida
- Department of Physical Therapy, Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya, Aichi 467-8601, Japan.
| |
Collapse
|
5
|
The dorsal motor nucleus of the vagus (DMNV) in sudden infant death syndrome (SIDS): pathways leading to apoptosis. Respir Physiol Neurobiol 2012; 185:203-10. [PMID: 22975482 DOI: 10.1016/j.resp.2012.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/08/2012] [Accepted: 09/04/2012] [Indexed: 12/20/2022]
Abstract
Sudden infant death syndrome (SIDS) remains the commonest cause of death in the post-neonatal period in the developed world. A leading hypothesis is that an abnormality in the brainstem of infants who succumb to SIDS, either causes or predisposes to failure to respond appropriately to an exogenous stressor. Neuronal apoptosis can lead to loss of cardiorespiratory reflexes, compromise of the infant's ability to respond to stressors such as hypoxia, and ultimately a sleep-related death. The dorsal motor nucleus of the vagus (DMNV) is a medullary autonomic nucleus where abnormalities have regularly been identified in SIDS research. This review collates neurochemical findings documented over the last 30 years, including data from our laboratory focusing on neuronal apoptosis and the DMNV, and provides potential therapeutic interventions targeting neurotransmitters, growth factors and/or genes.
Collapse
|
6
|
Hypoxia-induced activation of N-methyl-D-aspartate receptors causes retinal ganglion cell death in the neonatal retina. J Neuropathol Exp Neurol 2012; 71:330-47. [PMID: 22437343 DOI: 10.1097/nen.0b013e31824deb21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
It is well established that hypoxia causes excess accumulation of glutamate in developing neural tissues. This study aimed to elucidate the mechanism by which glutamate can cause retinal ganglion cell (RGC) death through the N-methyl-D-aspartate (NMDA) receptors (NR) in the developing retina. One-day-old Wistar rats were exposed to hypoxia for 2 hours and then killed at different time points. Normal age-matched rats were used as controls. NR1, NR2A-D, and NR3A messenger RNA and protein expression showed significant increases over control values, notably at early time points (3 hours to 7 days) after the hypoxic exposure, and immunoexpression of NR1, NR2A-D and NR3A on retinal ganglion cells (RGCs) was enhanced in hypoxic rats and this was confirmed in cultured hypoxic RGCs. Ca(2+) influx in cultured RGCs was increased after hypoxic exposure, and the intracellular Ca(2+) concentration was suppressed by MK-801. Mitochondrial permeability transition pore opening, mitochondrial/cytosolic cytochrome c, and cytosolic caspase-3 expression levels were significantly increased in the hypoxic RGCs. These increases were reversed by MK-801, suggesting that the NMDA receptor subunits in the retina respond rapidly to the hypoxia-induced glutamate overload that leads to the cascade of events that result in RGC death.
Collapse
|
7
|
Overexpression of neurotrophin-3 stimulates a second wave of dopaminergic amacrine cell genesis after birth in the mouse retina. J Neurosci 2011; 31:12663-73. [PMID: 21880927 DOI: 10.1523/jneurosci.1100-11.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dopaminergic amacrine (DA) cells play multiple and important roles in retinal function. Neurotrophins are known to modulate the number and morphology of DA cells, but the underlying regulatory mechanisms are unclear. Here, we investigate how neurotrophin-3 (NT-3) regulates DA cell density in the mouse retina. We demonstrate that overexpression of NT-3 upregulates DA cell number and leads to a consequent increase in the density of DA cell dendrites. To examine the mechanisms of DA cell density increase, we further investigate the effect of NT-3 overexpression on retinal apoptosis and mitosis during development. We find that NT-3 does not affect the well known wave of retinal cell apoptosis that normally occurs during the first 2 weeks after birth. Instead, overexpression of NT-3 promotes additional mitosis of DA cells at postnatal day 4, but does not affect cell mitosis before birth, the peak period of amacrine cell genesis in wild-type retinas. We next show that retinal explants cultured from birth to day 7 without extra NT-3 produced by lens exhibit similar number of DA cells as in wild type, further supporting the notion that postnatal overexpression of lens-derived NT-3 affects DA cell number. Moreover, the additional mitosis after birth in NT-3-overexpressing mice does not occur in calretinin-positive amacrine cells or PKC-positive rod ON bipolar cells. Thus, the NT-3-triggered wave of cell mitosis after birth is specific for the retinal DA cells.
Collapse
|
8
|
Mattson MP. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 2009; 1144:97-112. [PMID: 19076369 DOI: 10.1196/annals.1418.005] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamate's role as a neurotransmitter at synapses has been known for 40 years, but glutamate has since been shown to regulate neurogenesis, neurite outgrowth, synaptogenesis, and neuron survival in the developing and adult mammalian nervous system. Cell-surface glutamate receptors are coupled to Ca(2+) influx and release from endoplasmic reticulum stores, which causes rapid (kinase- and protease-mediated) and delayed (transcription-dependent) responses that change the structure and function of neurons. Neurotrophic factors and glutamate interact to regulate developmental and adult neuroplasticity. For example, glutamate stimulates the production of brain-derived neurotrophic factor (BDNF), which, in turn, modifies neuronal glutamate sensitivity, Ca(2+) homeostasis, and plasticity. Neurotrophic factors may modify glutamate signaling directly, by changing the expression of glutamate receptor subunits and Ca(2+)-regulating proteins, and also indirectly by inducing the production of antioxidant enzymes, energy-regulating proteins, and antiapoptotic Bcl-2 family members. Excessive activation of glutamate receptors, under conditions of oxidative and metabolic stress, may contribute to neuronal dysfunction and degeneration in diseases ranging from stroke and Alzheimer's disease to psychiatric disorders. By enhancing neurotrophic factor signaling, environmental factors such as exercise and dietary energy restriction, and chemicals such as antidepressants may optimize glutamatergic signaling and protect against neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
9
|
Fujieda H, Sasaki H. Expression of brain-derived neurotrophic factor in cholinergic and dopaminergic amacrine cells in the rat retina and the effects of constant light rearing. Exp Eye Res 2007; 86:335-43. [PMID: 18093585 DOI: 10.1016/j.exer.2007.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 10/26/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates many aspects of neuronal development, including survival, axonal and dendritic growth and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF in retinal development, the retinal cell types expressing BDNF remains poorly defined. The goal of the present study was to determine the localization of BDNF in the mammalian retina, with special focus on the subtypes of amacrine cells, and to characterize, at the cellular level, the effects of constant light exposure during early postnatal period on retinal expression of BDNF. Retinas from 3-week-old rats reared in a normal light cycle or constant light were subjected to double immunofluorescence staining using antibodies to BDNF and retinal cell markers. BDNF immunoreactivity was localized to ganglion cells, cholinergic amacrine cells and dopaminergic amacrine cells, but not to AII amacrine cells regardless of rearing conditions. Approximately 75% of BDNF-positive cells in the inner nuclear layer were cholinergic amacrine cells in animals reared in a normal lighting condition. While BDNF immunoreactivity in ganglion cells and cholinergic amacrine cells was significantly increased by constant light rearing, which in dopaminergic amacrine cells was apparently unaltered. The overall structure of the retina and the density of ganglion cells, cholinergic amacrine cells and AII amacrine cells were unaffected by rearing conditions, whereas the density of dopaminergic amacrine cells was significantly increased by constant light rearing. The present results indicate that cholinergic amacrine cells are the primary source of BDNF in the inner nuclear layer of the rat retina and provide the first evidence that cholinergic amacrine cells may be involved in the visual activity-dependent regulation of retinal development through the production of BDNF. The present data also suggest that the production or survival of dopaminergic amacrine cells is regulated by early visual experience.
Collapse
Affiliation(s)
- Hiroki Fujieda
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | | |
Collapse
|
10
|
de Rivero Vaccari JC, Casey GP, Aleem S, Park WM, Corriveau RA. NMDA receptors promote survival in somatosensory relay nuclei by inhibiting Bax-dependent developmental cell death. Proc Natl Acad Sci U S A 2006; 103:16971-6. [PMID: 17077143 PMCID: PMC1636563 DOI: 10.1073/pnas.0608068103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Naturally occurring cell death is a universal feature of developing nervous systems that plays an essential role in determining adult brain function. Yet little is known about the decisions that select a subset of CNS neurons for survival and cause others to die. We report that postnatal day 0 NMDA receptor subunit 1 (NMDAR1) knockout mice display an approximately 2-fold increase in cell death in the brainstem trigeminal complex (BSTC), including all four nuclei that receive somatosensory inputs from the face (principalis, oralis, interpolaris, and caudalis). Treatment with the NMDA receptor antagonist dizocilpine maleate (MK-801) for 24 h before birth also caused an increase in cell death that reached statistical significance in two of the four nuclei (oralis and interpolaris). The neonatal sensitivity to NMDA receptor hypofunction in the BSTC, and in its main thalamic target, the ventrobasal nucleus (VB), coincides with the peak of naturally occurring cell death and trigeminothalamic synaptogenesis. At embryonic day 17.5, before the onset of these events, NMDAR1 knockout does not affect cell survival in either the BSTC or the VB. Immunostaining for active caspase-3 and the neuronal marker Hu specifically confirms the presence of dying neurons in the BSTC and the VB of NMDAR1 knockout neonates. Finally, genetic deletion of Bax rescues these structures from the requirement for NMDA receptors to limit naturally occurring cell death. Taken together, the results indicate that NMDA receptors play a survival role for somatosensory relay neurons during synaptogenesis by inhibiting Bax-dependent developmental cell death.
Collapse
Affiliation(s)
| | - Gregory P. Casey
- *Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Salman Aleem
- *Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Won-Mee Park
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118; and
| | - Roderick A. Corriveau
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614
- To whom correspondence should be sent at the present address:
Coriell Institute for Medical Research, 403 Haddon Avenue, Camden, NJ 08103. E-mail:
| |
Collapse
|
11
|
Acosta ML, Chua J, Kalloniatis M. Functional activation of glutamate ionotropic receptors in the developing mouse retina. J Comp Neurol 2006; 500:923-41. [PMID: 17177257 DOI: 10.1002/cne.21225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ionotropic glutamate receptors have been associated with early development of the visual process by regulating cell differentiation, cell motility, and synaptic contacts. We determined the expression of functional ionotropic glutamate receptors during development of the mouse retina by assessing 1-amino-4-guanidobutane (agmatine; AGB) immunolabelling after application of a range of glutamate analogs. Colocalization of AGB with calretinin and islet-1 allowed the identification of functional receptors in neurochemically defined neurons. Activation with kainate (KA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and N-methyl-D-aspartate (NMDA) resulted in AGB entry into neurons consistent with that found previous receptor subunit localization studies in the developing retina. Temporal analysis revealed that application of 50 microM KA activated receptors as early as embryonic day 18 in the ventricular zone and in the ganglion cell layer, whereas 30 muM AMPA activated cells predominantly in the ganglion cell layer. Cholinergic amacrine cells showed functional KA and AMPA receptors upon their insertion into the conventional amacrine cell layer from postnatal day 1 (P1). OFF cone bipolar cells showed functional KA receptors from P6, at a developmental age when they are known to make contact with ganglion cells. NMDA activation led to diffuse AGB labeling at birth among cells in the ganglion cell layer, whereas, at P1, regularly spaced cholinergic amacrine cells in the conventional amacrine cell layer started to be responsive to NMDA. Non-NMDA receptors were first to show functional activation in the developing retina, and cholinergic amacrine cells displayed functional ionotropic glutamate receptors after reaching their final destination.
Collapse
Affiliation(s)
- Monica L Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|