1
|
De La Fuente DC, Tamburini C, Stonelake E, Andrews R, Hall J, Owen MJ, Linden DEJ, Pocklington A, Li M. Impaired oxysterol-liver X receptor signaling underlies aberrant cortical neurogenesis in a stem cell model of neurodevelopmental disorder. Cell Rep 2024; 43:113946. [PMID: 38483902 DOI: 10.1016/j.celrep.2024.113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
The mechanisms by which genomic risks contribute to the onset of neuropsychiatric conditions remain a key challenge and a prerequisite for successful development of effective therapies. 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. Using stem cell models, we show that 15q11.2 deletion (15q11.2del) and CYFIP1 loss of function (CYFIP1-LoF) lead to premature neuronal differentiation, while CYFIP1 gain of function (CYFIP1-GoF) favors neural progenitor maintenance. CYFIP1 dosage changes led to dysregulated cholesterol metabolism and altered levels of 24S,25-epoxycholesterol, which can mimic the 15q11.2del and CYFIP1-LoF phenotypes by promoting cortical neuronal differentiation and can restore the impaired neuronal differentiation of CYFIP1-GoF neural progenitors. Moreover, the neurogenic activity of 24S,25-epoxycholesterol is lost following genetic deletion of liver X receptor (LXRβ), while compound deletion of LXRβ in CYFIP1-/- background rescued their premature neurogenesis. This work delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.
Collapse
Affiliation(s)
| | - Claudia Tamburini
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | | | - Robert Andrews
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK; Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK; Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - David E J Linden
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK; Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Andrew Pocklington
- Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK; Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK; School of Bioscience, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Colón Ortiz C, Eroglu C. Astrocyte signaling and interactions in Multiple Sclerosis. Curr Opin Cell Biol 2024; 86:102307. [PMID: 38145604 PMCID: PMC10922437 DOI: 10.1016/j.ceb.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Multiple Sclerosis (MS) is a common cause of impairment in working-aged adults. MS is characterized by neuroinflammation and infiltration of peripheral immune cells to the brain, which cause myelin loss and death of oligodendrocytes and neurons. Many studies on MS have focused on the peripheral immune sources of demyelination and repair. However, recent studies revealed that a glial cell type, the astrocytes, undergo robust morphological and transcriptomic changes that contribute significantly to demyelination and myelin repair. Here, we discuss recent findings elucidating signaling modalities that astrocytes acquire or lose in MS and how these changes alter the interactions of astrocytes with other nervous system cell types.
Collapse
Affiliation(s)
- Crystal Colón Ortiz
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Nguyen TP, Wang W, Sternisha AC, Corley CD, Wang HYL, Wang X, Ortiz F, Lim SK, Abdullah KG, Parada LF, Williams NS, McBrayer SK, McDonald JG, De Brabander JK, Nijhawan D. Selective and brain-penetrant lanosterol synthase inhibitors target glioma stem-like cells by inducing 24(S),25-epoxycholesterol production. Cell Chem Biol 2023; 30:214-229.e18. [PMID: 36758549 PMCID: PMC10008516 DOI: 10.1016/j.chembiol.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Glioblastoma (GBM) is an aggressive adult brain cancer with few treatment options due in part to the challenges of identifying brain-penetrant drugs. Here, we investigated the mechanism of MM0299, a tetracyclic dicarboximide with anti-glioblastoma activity. MM0299 inhibits lanosterol synthase (LSS) and diverts sterol flux away from cholesterol into a "shunt" pathway that culminates in 24(S),25-epoxycholesterol (EPC). EPC synthesis following MM0299 treatment is both necessary and sufficient to block the growth of mouse and human glioma stem-like cells by depleting cellular cholesterol. MM0299 exhibits superior selectivity for LSS over other sterol biosynthetic enzymes. Critical for its application in the brain, we report an MM0299 derivative that is orally bioavailable, brain-penetrant, and induces the production of EPC in orthotopic GBM tumors but not normal mouse brain. These studies have implications for the development of an LSS inhibitor to treat GBM or other neurologic indications.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wentian Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex C Sternisha
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase D Corley
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hua-Yu Leo Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francisco Ortiz
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang-Kyun Lim
- Department of Development Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Luis F Parada
- Department of Development Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Deepak Nijhawan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Ladurner A, Schwarz PF, Dirsch VM. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat Prod Rep 2021; 38:757-781. [PMID: 33118578 DOI: 10.1039/d0np00047g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 1994 to 2020 Retinoic acid receptor-related orphan receptors (RORs) belong to a subfamily of the nuclear receptor superfamily and possess prominent roles in circadian rhythm, metabolism, inflammation, and cancer. They have been subject of research for over two decades and represent attractive but challenging drug targets. Natural products were among the first identified ligands of RORs and continue to be of interest to this day. This review focuses on ligands and indirect modulators of RORs from natural sources and explores their roles in a therapeutic context.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Patrik F Schwarz
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: From physiological tuners to pharmacological opportunities. Br J Pharmacol 2020; 178:3089-3103. [PMID: 32335907 DOI: 10.1111/bph.15073] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oxysterols are oxygenated forms of cholesterol generated via autooxidation by free radicals and ROS, or formed enzymically by a variety of enzymes such as those involved in the synthesis of bile acids. Although found at very low concentrations in vivo, these metabolites play key roles in health and disease, particularly in development and regulating immune cell responses, by binding to effector proteins such as LXRα, RORγ and Insig and directly or indirectly regulating transcriptional programmes that affect cell metabolism and function. In this review, we summarise the routes by which oxysterols can be generated and subsequently modified to other oxysterol metabolites and highlight their diverse and profound biological functions and opportunities to alter their levels using pharmacological approaches. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michael J Rogers
- Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Mohamed A, Viveiros A, Williams K, Posse de Chaves E. Aβ inhibits SREBP-2 activation through Akt inhibition. J Lipid Res 2017; 59:1-13. [PMID: 29122977 PMCID: PMC5748492 DOI: 10.1194/jlr.m076703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/21/2017] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that oligomeric amyloid β42 (oAβ42) inhibits the mevalonate pathway impairing cholesterol synthesis and protein prenylation. Enzymes of the mevalonate pathway are regulated by the transcription factor SREBP-2. Here, we show that in several neuronal types challenged with oAβ42, SREBP-2 activation is reduced. Moreover, SREBP-2 activation is also decreased in the brain cortex of the Alzheimer's disease (AD) mouse model, TgCRND8, suggesting that SREBP-2 may be affected in vivo early in the disease. We demonstrate that oAβ42 does not affect enzymatic cleavage of SREBP-2 per se, but may impair SREBP-2 transport from the endoplasmic reticulum (ER) to the Golgi. Trafficking of SREBP-2 from the ER to the Golgi requires protein kinase B (Akt) activation. oAβ42 significantly reduces Akt phosphorylation and this decrease is responsible for the decline in SREBP-2 activation. Overexpression of constitutively active Akt prevents the effect of oAβ42 on SREBP-2 and the downstream inhibition of cholesterol synthesis and protein prenylation. Our work provides a novel mechanistic link between Aβ and the mevalonate pathway, which will impact the views on issues related to cholesterol, isoprenoids, and statins in AD. We also identify SREBP-2 as an indirect target of Akt in neurons, which may play a role in the cross-talk between AD and diabetes.
Collapse
Affiliation(s)
- Amany Mohamed
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa Viveiros
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kathleen Williams
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Posse de Chaves
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Simultaneous determination of oxysterols, cholesterol and 25-hydroxy-vitamin D3 in human plasma by LC-UV-MS. PLoS One 2015; 10:e0123771. [PMID: 25875771 PMCID: PMC4395275 DOI: 10.1371/journal.pone.0123771] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background Oxysterols are promising biomarkers of neurodegenerative diseases that are linked with cholesterol and vitamin D metabolism. There is an unmet need for methods capable of sensitive, and simultaneous quantitation of multiple oxysterols, vitamin D and cholesterol pathway biomarkers. Methods A method for simultaneous determination of 5 major oxysterols, 25-hydroxy vitamin D3 and cholesterol in human plasma was developed. Total oxysterols were prepared by room temperature saponification followed by solid phase extraction from plasma spiked with deuterated internal standards. Oxysterols were resolved by reverse phase HPLC using a methanol/water/0.1% formic acid gradient. Oxysterols and 25-hydroxy vitamin D3 were detected with atmospheric pressure chemical ionization mass spectrometry in positive ion mode; in-series photodiode array detection at 204nm was used for cholesterol. Method validation studies were performed. Oxysterol levels in 220 plasma samples from healthy control subjects, multiple sclerosis and other neurological disorders patients were quantitated. Results Our method quantitated 5 oxysterols, cholesterol and 25-hydroxy vitamin D3 from 200 μL plasma in 35 minutes. Recoveries were >85% for all analytes and internal standards. The limits of detection were 3-10 ng/mL for oxysterols and 25-hydroxy vitamin D3 and 1 μg/mL for simultaneous detection of cholesterol. Analytical imprecision was <10 %CV for 24(S)-, 25-, 27-, 7α-hydroxycholesterol (HC) and cholesterol and ≤15 % for 7-keto-cholesterol. Multiple Sclerosis and other neurological disorder patients had lower 27-hydroxycholesterol levels compared to controls whereas 7α-hydroxycholesterol was lower specifically in Multiple Sclerosis. Conclusion The method is suitable for measuring plasma oxysterols levels in human health and disease. Analysis of human plasma indicates that the oxysterol, bile acid precursors 7α-hydroxycholesterol and 27-hydroxycholesterol are lower in Multiple Sclerosis and may serve as potential biomarkers of disease.
Collapse
|
8
|
Linsenbardt AJ, Taylor A, Emnett CM, Doherty JJ, Krishnan K, Covey DF, Paul SM, Zorumski CF, Mennerick S. Different oxysterols have opposing actions at N-methyl-D-aspartate receptors. Neuropharmacology 2014; 85:232-42. [PMID: 24878244 DOI: 10.1016/j.neuropharm.2014.05.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Oxysterols have emerged as important biomarkers in disease and as signaling molecules. We recently showed that the oxysterol 24(S)-hydroxycholesterol, the major brain cholesterol metabolite, potently and selectively enhances NMDA receptor function at a site distinct from other modulators. Here we further characterize the pharmacological mechanisms of 24(S)-hydroxycholesterol and its synthetic analog SGE201. We describe an oxysterol antagonist of this positive allosteric modulation, 25-hydroxycholesterol. We found that 24(S)-hydroxycholesterol and SGE201 primarily increased the efficacy of NMDAR agonists but did not directly gate the channel or increase functional receptor number. Rather than binding to a direct aqueous-accessible site, oxysterols may partition into the plasma membrane to access the NMDAR, likely explaining slow onset and offset kinetics of modulation. Interestingly, oxysterols were ineffective when applied to the cytosolic face of inside-out membrane patches or through a whole-cell pipette solution, suggesting a non-intracellular site. We also found that another natural oxysterol, 25-hydroxycholesterol, although exhibiting slight potentiation on its own, non-competitively and enantioselectively antagonized the effects of 24(S)-hydroxycholesterol analogs. In summary, we suggest two novel allosteric sites on NMDARs that separately modulate channel gating, but together oppose each other.
Collapse
Affiliation(s)
- Andrew J Linsenbardt
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda Taylor
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine M Emnett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas F Covey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Paul
- Sage Therapeutics, Cambridge, MA 02142, USA; Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Wang Y, Karu K, Meljon A, Turton J, Yau JL, Seckl JR, Wang Y, Griffiths WJ. 24S,25-Epoxycholesterol in mouse and rat brain. Biochem Biophys Res Commun 2014; 449:229-34. [PMID: 24832732 PMCID: PMC4053837 DOI: 10.1016/j.bbrc.2014.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 11/17/2022]
Abstract
24S,25-Epoxycholesterol identified and quantified in rodent brain. Knock out of Cyp27a1 leads to a decrease in 24S,25-epoxycholesterol. Knock out of Cyp7b1 leads to an increase in 24S,25-epoxycholesterol. 24S,25-Epoxycholesterol is metabolised by Cyp7b1 but not Cyp27a1.
24S,25-Epoxycholesterol is formed in a shunt of the mevalonate pathway that produces cholesterol. It is one of the most potent known activators of the liver X receptors and can inhibit sterol regulatory element-binding protein processing. Until recently analysis of 24S,25-epoxycholesterol at high sensitivity has been precluded by its thermal lability and lack of a strong chromophore. Here we report on the analysis of 24S,25-epoxycholesterol in rodent brain where its level was determined to be of the order of 0.4–1.4 μg/g wet weight in both adult mouse and rat. For comparison the level of 24S-hydroxycholesterol in brain of both rodents was of the order of 20 μg/g, while that of cholesterol in mouse was 10–20 mg/g. By exploiting knockout mice for the enzyme oxysterol 7α-hydroxylase (Cyp7b1) we show that this enzymes is important for the subsequent metabolism of the 24S,25-epoxide.
Collapse
Affiliation(s)
- Yuchen Wang
- Clinical Laboratory, Jinan Infectious Disease Hospital, Shandong University, Jinan, Shandong, China.
| | - Kersti Karu
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Anna Meljon
- Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - John Turton
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Joyce L Yau
- Endocrinology Unit, BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jonathan R Seckl
- Endocrinology Unit, BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Yuqin Wang
- Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - William J Griffiths
- Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
10
|
Pannu PS, Allahverdian S, Francis GA. Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocrinol 2013; 368:99-107. [PMID: 22884520 DOI: 10.1016/j.mce.2012.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 12/31/2022]
Abstract
Cell cholesterol metabolism is a tightly regulated process, dependent in part on activation of nuclear liver X receptors (LXRs) to increase expression of genes mediating removal of excess cholesterol from cells in the reverse cholesterol transport pathway. LXRs are thought to be activated predominantly by oxysterols generated enzymatically from cholesterol in different cell organelles. Defects resulting in slowed release of cholesterol from late endosomes and lysosomes or reduction in sterol-27-hydroxylase activity lead to specific blocks in oxysterol production and impaired LXR-dependent gene activation. This block does not appear to be compensated by oxysterol production in other cell compartments. The purpose of this review is to summarize current knowledge about oxysterol-dependent activation by LXR of genes involved in reverse cholesterol transport, and what these defects of cell cholesterol homeostasis can teach us about the critical pathways of oxysterol generation for expression of LXR-dependent genes.
Collapse
Affiliation(s)
- Parveer S Pannu
- Department of Medicine, UBC James Hogg Research Centre, Institute of Heart and Lung Health at St. Paul's Hospital, Vancouver, BC, Canada V6Z 1Y6.
| | | | | |
Collapse
|
11
|
García-Cáceres C, Fuente-Martín E, Argente J, Chowen JA. Emerging role of glial cells in the control of body weight. Mol Metab 2012; 1:37-46. [PMID: 24024117 DOI: 10.1016/j.molmet.2012.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/18/2022] Open
Abstract
Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly advancing field.
Collapse
Affiliation(s)
- Cristina García-Cáceres
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany ; CIBER de Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Brown AJ. Cholesterol versus other sterols: How do they compare as physiological regulators of cholesterol homeostasis? EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew J. Brown
- BABS, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Oxysterols and their cellular effectors. Biomolecules 2012; 2:76-103. [PMID: 24970128 PMCID: PMC4030866 DOI: 10.3390/biom2010076] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022] Open
Abstract
Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.
Collapse
|
14
|
Zerenturk EJ, Kristiana I, Gill S, Brown AJ. The endogenous regulator 24(S),25-epoxycholesterol inhibits cholesterol synthesis at DHCR24 (Seladin-1). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:1269-77. [PMID: 22178193 DOI: 10.1016/j.bbalip.2011.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/25/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022]
Abstract
The oxysterol 24(S),25-epoxycholesterol (24,25EC) can affect cholesterol metabolism at multiple points. Previously, we proposed that 24,25EC has an especially significant role in fine-tuning cholesterol synthesis, since it parallels cholesterol production, and without it, acute cholesterol synthesis is exaggerated. 24,25EC is structurally similar to desmosterol, a substrate for the enzyme 3β-hydroxysterol ∆(24)-reductase (DHCR24, also called Seladin-1) which catalyzes a final step in cholesterol synthesis. In this study, we reveal a novel mode by which 24,25EC can regulate cholesterol synthesis, by interfering with DHCR24, resulting in the rapid accumulation of the substrate desmosterol, at the expense of cholesterol. This effect was independent of DHCR24 protein levels, and was observed in multiple mammalian cell-lines, including those of hepatic and neuronal origin. Conversely, overexpression of DHCR24 blunted the inhibition by 24,25EC. We also determined that the specificity of this effect was restricted to certain side-chain oxysterols, notably those oxygenated at C-25. Importantly, endogenous levels of 24,25EC, manipulated by genetic and pharmacological methods, were sufficient to reduce DHCR24 activity. Together, our work introduces a novel role for 24,25EC in cholesterol homeostasis, through its rapid inhibition of cholesterol synthesis at DHCR24. Also, our work provides new insights into a little studied area, the post-transcriptional regulation of DHCR24, an important enzyme in human health and disease.
Collapse
Affiliation(s)
- Eser J Zerenturk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
15
|
Vascellari S, Banni S, Vacca C, Vetrugno V, Cardone F, Di Bari MA, La Colla P, Pani A. Accumulation and aberrant composition of cholesteryl esters in Scrapie-infected N2a cells and C57BL/6 mouse brains. Lipids Health Dis 2011; 10:132. [PMID: 21816038 PMCID: PMC3162549 DOI: 10.1186/1476-511x-10-132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/04/2011] [Indexed: 01/28/2023] Open
Abstract
Objective Cholesterol changes have been described in prion-cell models and in experimental rodent scrapie; yet, the pattern of this association is still controversial. Methods To shed light on the matter, we analysed and compared cholesterol variations in ScN2a cells and in brains of Scrapie-infected C57Bl/6 mice, using two different methods: a fluorimetric-enzymatic cholesterol assay, and high performance liquid chromatography-mass spectroscopy (HPLC-MS). Results Compared to uninfected controls, similar cholesterol metabolism anomalies were observed in infected cells and brains by both methods; however, only HPLC-MS revealed statistically significant cholesterol variations, particularly in the cholesteryl esters (CE) fraction. HPLC-MS analyses also revealed different fatty acid composition of the CE fraction in cells and brains. In N2a cells, their profile reflected that of serum, while in normal brains cholesteryl-linoleate only was found at detectable levels. Following prion infection, most CE species were increased in the CE pool of ScN2a cells, whereas a conspicuous amount of cholesteryl-arachidonate only was found to contribute to the cerebral increase of CE. Of interest, oral pravastatin administration to Scrapie-infected mice, was associated with a significant reduction of cerebral free cholesterol (FC) along with a concomitant further increase of the CE pool, which included increased amounts of both cholesteryl-linoleate and cholesteryl-arachidonate. Conclusion Although mechanistic studies are needed to establish the pathophysiological relevance of changes in cerebral CE concentrations, to the best of our knowledge this is the first report to provide evidence of increased cholesterol esterification in brains of prion-infected mice, untreated and treated with pravastatin.
Collapse
Affiliation(s)
- Sarah Vascellari
- Department of Biomedical Science and Technology, University of Cagliari, 09042-Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
17
|
Mast cell death induced by 24(S),25-epoxycholesterol. Exp Cell Res 2010; 316:3272-81. [DOI: 10.1016/j.yexcr.2010.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 11/23/2022]
|
18
|
Chang TY, Chang CCY, Bryleva E, Rogers MA, Murphy SR. Neuronal cholesterol esterification by ACAT1 in Alzheimer's disease. IUBMB Life 2010; 62:261-7. [PMID: 20101629 DOI: 10.1002/iub.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cholesterol has been implicated in various neurodegenerative diseases. Here we review the connection between cholesterol and Alzheimer's disease (AD), focusing on a recent study that links neuronal cholesterol esterification with biosynthesis of 24(S)-hydroxycholesterol and the fate of human amyloid precursor protein in a mouse model of AD. We also briefly evaluate the potential of ACAT1 as a drug target for AD.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
19
|
A second class of nuclear receptors for oxysterols: Regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:917-23. [PMID: 20211758 DOI: 10.1016/j.bbalip.2010.02.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022]
Abstract
The retinoic acid receptor-related orphan receptors alpha and gamma (RORalpha [NR1F1] and RORgamma [NR1F3]) are members of the nuclear hormone receptor superfamily. These 2 receptors regulate many physiological processes including development, metabolism and immunity. We recently found that certain oxysterols, namely the 7-substituted oxysterols, bound to the ligand binding domains (LBDs) of RORalpha and RORgamma with high affinity, altered the LBD conformation and reduced coactivator binding resulting in suppression of the constitutive transcriptional activity of these two receptors. Here, we show that another oxysterol, 24S-hydroxycholesterol (24S-OHC), is also a high affinity ligand for RORalpha and RORgamma (K(i) approximately 25 nM). 24S-OHC is also known as cerebrosterol due to its high level in the brain where it plays an essential role as an intermediate in cholesterol elimination from the CNS. 24S-OHC functions as a RORalpha/gamma inverse agonist suppressing the constitutive transcriptional activity of these receptors in cotransfection assays. Additionally, 24S-OHC suppressed the expression of several RORalpha target genes including BMAL1 and REV-ERBalpha in a ROR-dependent manner. We also demonstrate that 24S-OHC decreases the ability of RORalpha to recruit the coactivator SRC-2 when bound to the BMAL1 promoter. We also noted that 24(S), 25-epoxycholesterol selectively suppressed the activity of RORgamma. These data indicate that RORalpha and RORgamma may serve as sensors of oxsterols. Thus, RORalpha and RORgamma display an overlapping ligand preference with another class of oxysterol nuclear receptors, the liver X receptors (LXRalpha [NR1H3] and LXRbeta [NR1H2]).
Collapse
|
20
|
Garenc C, Julien P, Levy E. Oxysterols in biological systems: The gastrointestinal tract, liver, vascular wall and central nervous system. Free Radic Res 2009; 44:47-73. [DOI: 10.3109/10715760903321804] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Griffiths WJ, Wang Y. Analysis of neurosterols by GC-MS and LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2778-805. [PMID: 19560986 DOI: 10.1016/j.jchromb.2009.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/07/2009] [Accepted: 05/09/2009] [Indexed: 10/20/2022]
Abstract
The term neurosteroid was coined by Baulieu and colleagues in Paris towards the end of the last century to describe steroids which are synthesised in the central or peripheral nervous system [E.E. Baulieu, Psychoneuroendocrinology 23 (1998) 963-87]. This definition was restricted to side-chain "shortened" steroids with 21 carbon atoms or less, and excluded sterols and their carboxylic acids with an intact side-chain. By analogy, we now use the term neurosterol to describe C(27) sterols synthesised in the nervous system. In this review we discuss the biological importance of neurosterols, and how they are extracted, isolated, and analysed by GC-MS and LC-MS/MS, from brain and relevant body fluids. We present applications of methodology employed for analysis of specific sterols and comment on the relative merits of the methods employed. Finally, the importance of future in-depth "sterolomic" investigations of brain is highlighted.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Mass Spectrometry, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | | |
Collapse
|
22
|
24(S),25-Epoxycholesterol: A messenger for cholesterol homeostasis. Int J Biochem Cell Biol 2009; 41:744-7. [DOI: 10.1016/j.biocel.2008.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 11/23/2022]
|
23
|
Nieweg K, Schaller H, Pfrieger FW. Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 2009; 109:125-34. [DOI: 10.1111/j.1471-4159.2009.05917.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Wang Y, Sousa KM, Bodin K, Theofilopoulos S, Sacchetti P, Hornshaw M, Woffendin G, Karu K, Sjövall J, Arenas E, Griffiths WJ. Targeted lipidomic analysis of oxysterols in the embryonic central nervous system. MOLECULAR BIOSYSTEMS 2009; 5:529-41. [PMID: 19381367 DOI: 10.1039/b819502a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study two regions of embryonic (E11) mouse central nervous system (CNS) have been profiled for their unesterified sterol content. Using high-performance liquid chromatography (HPLC)-mass spectrometry (MS) and tandem mass spectrometry (MS(n)) low levels of oxysterols (estimated 2-165 ng g(-1) wet weight) were identified in cortex (Ctx) and spinal cord (Sc). The identified oxysterols include 7 alpha-, 7 beta-, 22R-, 24S-, 25- and 27-hydroxycholesterol; 24,25- and 24,27-dihydroxycholesterol; and 24S,25-epoxycholesterol. Of these, 24S-hydroxycholesterol is biosynthesised exclusively in brain. In comparison to adult mouse where the 24S-hydroxycholesterol level is about 40 microg g(-1) in brain the level of 24S-hydroxycholesterol reported here (estimated 26 ng g(-1) in Ctx and 13 ng g(-1) in Sc) is extremely low. Interestingly, the level of 24S,25-epoxycholesterol in both CNS regions (estimated 165 ng g(-1) in Ctx and 91 ng g(-1) in Sc) is somewhat higher than the levels of the hydroxycholesterols. This oxysterol is formed in parallel to cholesterol via a shunt of the mevalonate pathway and its comparatively high abundance may be a reflection of a high rate of cholesterol synthesis at this stage of development. Levels of cholesterol (estimated 1.25 mg g(-1) in Ctx and 1.15 mg g(-1) in Sc) and its precursors were determined by gas chromatography-mass spectrometry (GC-MS). In both CNS regions cholesterol levels were found to be lower than those reported in the adult, but in relation to cholesterol the levels of cholesterol precursors were higher than found in adult indicating a high rate of cholesterol synthesis. In summary, our data provide evidence for the presence of endogenous oxysterols in two brain regions of the developing CNS. Moreover, while most of the enzymes involved in hydroxysterol synthesis are minimally active at E11, our results suggest that the mevalonate pathway is significantly active, opening up the possibility for a function of 24S,25-epoxycholesterol during brain development.
Collapse
Affiliation(s)
- Yuqin Wang
- Institute of Mass Spectrometry, School of Medicine, Grove Building, Swansea University, Singleton Park, Swansea, UKSA2 8PP
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Oxysterols are naturally occurring oxidized derivatives of cholesterol, or by-products of cholesterol biosynthesis, with multiple biologic functions. These compounds display cytotoxic, pro-apoptotic, and pro-inflammatory activities and may play a role in the pathology of atherosclerosis. Their functions as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol are well established. During the past decade, however, novel physiologic activities of oxysterols have emerged. They are now thought to act as endogenous regulators of gene expression in lipid metabolism. Recently, new intracellular oxysterol receptors have been identified and novel functions of oxysterols in cell signaling discovered, evoking novel interest in these compounds in several branches of biomedical research.
Collapse
Affiliation(s)
- Vesa M. Olkkonen
- National Public Health Institute and FIMM, Institute for Molecular Medicine Finland, Biomedicum, Helsinki, Finland
| |
Collapse
|
26
|
Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 2008; 104:1145-66. [DOI: 10.1111/j.1471-4159.2007.05099.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|