1
|
Krokowski D, Jobava R, Szkop KJ, Chen CW, Fu X, Venus S, Guan BJ, Wu J, Gao Z, Banaszuk W, Tchorzewski M, Mu T, Ropelewski P, Merrick WC, Mao Y, Sevval AI, Miranda H, Qian SB, Manifava M, Ktistakis NT, Vourekas A, Jankowsky E, Topisirovic I, Larsson O, Hatzoglou M. Stress-induced perturbations in intracellular amino acids reprogram mRNA translation in osmoadaptation independently of the ISR. Cell Rep 2022; 40:111092. [PMID: 35858571 PMCID: PMC9491157 DOI: 10.1016/j.celrep.2022.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.
Collapse
Affiliation(s)
- Dawid Krokowski
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Raul Jobava
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Krzysztof J Szkop
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xu Fu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wioleta Banaszuk
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marek Tchorzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland; EcoTech-Complex Centre, Maria Curie-Skłodowska University, Lublin, Poland
| | - Tingwei Mu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Phil Ropelewski
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - William C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Aksoylu Inci Sevval
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden
| | - Helen Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ivan Topisirovic
- The Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada; Department of Biochemistry and Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Herman BA, Ferguson KM, Fernandez JVB, Kauffman S, Spicher JT, King RJ, Halterman JA. NFAT5 is differentially expressed in Sprague-Dawley rat tissues in response to high salt and high fructose diets. Genet Mol Biol 2019; 42:452-464. [PMID: 30816906 PMCID: PMC6726159 DOI: 10.1590/1678-4685-gmb-2018-0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/24/2018] [Indexed: 12/31/2022] Open
Abstract
Current diets contain an increasing amount of salt and high fructose corn syrup,
but it remains unclear as to how dietary salt and fructose affect organ function
at the molecular level. This study aimed to test the hypothesis that consumption
of high salt and fructose diets would increase tissue-specific expression of two
critical osmotically-regulated genes, nuclear factor of activated T-cells 5
(NFAT5) and aldose reductase (AR). Fifty
Sprague-Dawley rats were placed on a control, 4% NaCl, 8% NaCl, or 64% fructose
diet for eight weeks. Fourteen different tissue samples were harvested and
snap-frozen, followed by RNA purification, cDNA synthesis, and
NFAT5 and AR gene expression
quantification by real-time PCR.Our findings demonstrate that
NFAT5 and AR expression are up-regulated
in the kidney medulla, liver, brain, and adipose tissue following consumption of
a high salt diet. NFAT5 expression is also up-regulated in the
kidney cortex following consumption of a 64% fructose diet. These findings
highlight the kidney medulla, liver, brain, and adipose tissue as being
“salt-responsive” tissues and reveal that a high fructose diet can lead to
enhanced NFAT5 expression in the kidney cortex. Further
characterization of signaling mechanisms involved could help elucidate how these
diets affect organ function long term.
Collapse
Affiliation(s)
- Braden A Herman
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Kaylee M Ferguson
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Jared V B Fernandez
- Master's in Biomedicine Program, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Samantha Kauffman
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Jason T Spicher
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Rachel J King
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Julia A Halterman
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, USA.,Master's in Biomedicine Program, Eastern Mennonite University, Harrisonburg, VA, USA
| |
Collapse
|
3
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Abstract
High extracellular NaCl is known to change expression of numerous genes, many of which are regulated by the osmoprotective transcription factor nuclear factor of activated T cells-5 (NFAT5). In the present study we employed RNA-Seq to provide a comprehensive, unbiased account of genes regulated by high NaCl in mouse embryonic fibroblast cells (MEFs). To identify genes regulated by NFAT5 we compared wild-type MEFs (WT-MEFs) to MEFs in which mutation of the NFAT5 gene inhibits its transcriptional activity (Null-MEFs). In WT-MEFs adding NaCl to raise osmolality from 300 to 500 mosmol/kg for 24 h increases expression of 167 genes and reduces expression of 412. Raising osmolality through multiple passages (adapted cells) increases expression of 196 genes and reduces expression of 528. In Null-MEFs, after 24 h of high NaCl, expression of 217 genes increase and 428 decrease, while in adapted Null-MEFs 143 increase and 622 decrease. Fewer than 10% of genes are regulated in common between WT- and null-MEFs, indicating a profound difference in regulation of high-NaCl induced genes induced by NFAT5 compared with those induced in the absence of NFAT5. Based on our findings we suggest a mechanism for this phenomenon, which had previously been unexplained. The NFAT5 DNA-binding motif (osmotic response element) is overrepresented in the vicinity of genes that NFAT5 upregulates, but not genes that it downregulates. We used Gene Ontology and manual curation to determine the function of the genes targeted by NFAT5, revealing many novel consequences of NFAT5 transcriptional activity.
Collapse
Affiliation(s)
- Yuichiro Izumi
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maurice B Burg
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joan D Ferraris
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Krokowski D, Jobava R, Guan BJ, Farabaugh K, Wu J, Majumder M, Bianchi MG, Snider MD, Bussolati O, Hatzoglou M. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem 2015; 290:17822-17837. [PMID: 26041779 DOI: 10.1074/jbc.m114.636217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 02/04/2023] Open
Abstract
Cells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume. In contrast, stress-induced phosphorylation of the α subunit of the translation initiation factor eIF2 (eIF2α) can promote apoptosis. Here we show that the response to mild hyperosmotic stress involves regulation of the phosphorylation of eIF2α by increased levels of GADD34, a regulatory subunit of protein phosphatase 1 (PP1). The induction of GADD34 was dependent on transcriptional control by the c-Jun-binding cAMP response element in the GADD34 gene promoter and posttranscriptional stabilization of its mRNA. This mechanism differs from the regulation of GADD34 expression by other stresses that involve activating transcription factor 4 (ATF4). ATF4 was not translated during hyperosmotic stress despite an increase in eIF2α phosphorylation. The SNAT2-mediated increase in amino acid uptake was enhanced by increased GADD34 levels in a manner involving decreased eIF2α phosphorylation. It is proposed that the induction of the SNAT2/GADD34 axis enhances cell survival by promoting the immediate adaptive response to stress.
Collapse
Affiliation(s)
- Dawid Krokowski
- Departments of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106.
| | - Raul Jobava
- Departments of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Bo-Jhih Guan
- Departments of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Kenneth Farabaugh
- Departments of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Jing Wu
- Departments of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Mithu Majumder
- Departments of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Massimiliano G Bianchi
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 43100 Parma, Italy
| | - Martin D Snider
- Departments of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Ovidio Bussolati
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 43100 Parma, Italy
| | - Maria Hatzoglou
- Departments of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106.
| |
Collapse
|
6
|
Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet 2014; 10:e1004784. [PMID: 25393412 PMCID: PMC4230888 DOI: 10.1371/journal.pgen.1004784] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022] Open
Abstract
Organisms across the tree of life use a variety of mechanisms to respond to stress-inducing fluctuations in osmotic conditions. Cellular response mechanisms and phenotypes associated with osmoadaptation also play important roles in bacterial virulence, human health, agricultural production and many other biological systems. To improve understanding of osmoadaptive strategies, we have generated 59 high-quality draft genomes for the haloarchaea (a euryarchaeal clade whose members thrive in hypersaline environments and routinely experience drastic changes in environmental salinity) and analyzed these new genomes in combination with those from 21 previously sequenced haloarchaeal isolates. We propose a generalized model for haloarchaeal management of cytoplasmic osmolarity in response to osmotic shifts, where potassium accumulation and sodium expulsion during osmotic upshock are accomplished via secondary transport using the proton gradient as an energy source, and potassium loss during downshock is via a combination of secondary transport and non-specific ion loss through mechanosensitive channels. We also propose new mechanisms for magnesium and chloride accumulation. We describe the expansion and differentiation of haloarchaeal general transcription factor families, including two novel expansions of the TATA-binding protein family, and discuss their potential for enabling rapid adaptation to environmental fluxes. We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. The combination of broad (17 genera) and deep (≥5 species in four genera) sampling of a phenotypically unified clade has enabled us to uncover both highly conserved and specialized features of osmoadaptation. Finally, we demonstrate the broad utility of such datasets, for metagenomics, improvements to automated gene annotation and investigations of evolutionary processes. The ability to adjust to changing osmotic conditions (osmoadaptation) is crucial to the survival of organisms across the tree of life. However, significant gaps still exist in our understanding of this important phenomenon. To help fill some of these gaps, we have produced high-quality draft genomes for 59 osmoadaptation “experts” (extreme halophiles of the euryarchaeal family Halobacteriaceae). We describe the dispersal of osmoadaptive protein families across the haloarchaeal evolutionary tree. We use this data to suggest a generalized model for haloarchaeal ion transport in response to changing osmotic conditions, including proposed new mechanisms for magnesium and chloride accumulation. We describe the evolutionary expansion and differentiation of haloarchaeal general transcription factor families and discuss their potential for enabling rapid adaptation to environmental fluxes. Lastly, we challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. This result highlights the power of our dataset for making evolutionary inferences, a feature which will make it useful to the broader evolutionary community. We distribute our genomic dataset through a user-friendly graphical interface.
Collapse
|
7
|
Wang S, Linde MH, Munde M, Carvalho VD, Wilson WD, Poon GMK. Mechanistic heterogeneity in site recognition by the structurally homologous DNA-binding domains of the ETS family transcription factors Ets-1 and PU.1. J Biol Chem 2014; 289:21605-16. [PMID: 24952944 DOI: 10.1074/jbc.m114.575340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a "dry" mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1 · DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages.
Collapse
Affiliation(s)
- Shuo Wang
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Miles H Linde
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| | - Manoj Munde
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Victor D Carvalho
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| | - W David Wilson
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Gregory M K Poon
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| |
Collapse
|
8
|
Liu F, Turtzo LC, Li J, Regard J, Worley P, Zeevi N, McCullough LD. Loss of vascular early response gene reduces edema formation after experimental stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2012; 4:12. [PMID: 22681709 PMCID: PMC3403842 DOI: 10.1186/2040-7378-4-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/08/2012] [Indexed: 11/24/2022]
Abstract
Vascular Early Response Gene (Verge) is an immediate early gene (IEG) that is up-regulated in endothelial cells in response to a number of stressors, including ischemic stroke. Endothelial cell lines that stably express Verge show enhanced permeability. Increased Verge expression has also been associated with blood brain barrier breakdown. In this study we investigated the role of Verge in ischemic injury induced by middle cerebral artery occlusion (MCAO) in both Verge knockout (KO) and wild type (WT) mice. Verge KO mice had significantly less cerebral edema formation after MCAO compared to WT mice. However, stroke outcome (infarct size and neurological deficit scores) evaluated at either 24 or 72 hours after stroke showed no differences between the two genotypes. Verge deletion leads to decreased edema formation after ischemia; however acute stroke outcomes were unchanged.
Collapse
Affiliation(s)
- Fudong Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Arroyo JA, Garcia-Jones P, Graham A, Teng CC, Battaglia FC, Galan HL. Placental TonEBP/NFAT5 osmolyte regulation in an ovine model of intrauterine growth restriction. Biol Reprod 2012; 86:94. [PMID: 22190709 DOI: 10.1095/biolreprod.111.094797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
TonEBP/NFAT5 (the tonicity-responsive enhancer binding protein/nuclear factor of activated T cells) modulates cellular response to osmotic changes by accumulating inositol and sorbitol inside the cells. Our objective was to assess placental osmolytes, TonEBP/NFAT5 RNA and protein expression, and signaling molecules across gestation between control and intrauterine growth restriction (IUGR) ovine pregnancies. Pregnant sheep were placed in hyperthermic conditions to induce IUGR. Placental tissues were collected at 55, 95, and 130 days gestational age (dGA) to measure inositol, sorbitol, TonEBP/NFAT5 (NFAT5), sodium-dependent myo-inositol transporter (SMIT; official symbol SLC5A3), aldose reductase (AR), and NADPH (official symbol DE-CR1). Placental weight was reduced in IUGR compared to controls at 95 and 130 dGA. Osmolyte concentrations were similar between control and IUGR placentas, but both groups demonstrated a significant decrease in inositol concentration and an increase in sorbitol concentration with advancing gestation. Cytosolic NFAT5 protein decreased significantly from 55 to 95 dGA in both groups, and nuclear NFAT5 protein increased only at 130 dGA in the IUGR group, but no differences were seen between groups for either cytosolic or nuclear NFAT5 protein concentrations. DE-CR1 concentrations were similar between groups and increased significantly with advancing gestational age. AR was lowest at 55dGA, and SLC5A3 increased with advancing gestational age. We conclude that both placental osmolytes inositol and sorbitol (and their corresponding proteins SLC5A3 and AR) change with gestational age and are regulated, at least in part, by NFAT5 and DE-CR1 (NADPH). The inverse relationship between each osmolyte across gestation (e.g., inositol higher in early gestation and sorbitol higher in late gestation) may reflect nutritional needs that change across gestation.
Collapse
Affiliation(s)
- Juan A Arroyo
- Department of Obstetrics and Gynecology, University of Colorado Denver and Health Sciences Center, Aurora, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Sharma RP, Chase KA. Increasing neuronal 'stemness': chromatin relaxation and the expression of reprogramming genes in post-mitotic neurons. Med Hypotheses 2012; 78:553-4. [PMID: 22326495 DOI: 10.1016/j.mehy.2011.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/27/2011] [Indexed: 12/23/2022]
|
11
|
Korohoda W, Kucia M, Wybieralska E, Wianecka-Skoczeń M, Waligórska A, Drukała J, Madeja Z. Solute-dependent activation of cell motility in strongly hypertonic solutions in Dictyostelium discoideum, human melanoma HTB-140 cells and walker 256 carcinosarcoma cells. Cell Mol Biol Lett 2011; 16:412-30. [PMID: 21614489 PMCID: PMC6275904 DOI: 10.2478/s11658-011-0015-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/19/2011] [Indexed: 11/22/2022] Open
Abstract
Published data concerning the effects of hypertonicity on cell motility have often been controversial. The interpretation of results often rests on the premise that cell responses result from cell dehydration, i.e. osmotic effects. The results of induced hypertonicity on cell movement of Dictyostelium discoideum amoebae and human melanoma HTB-140 cells reported here show that: i) hypertonic solutions of identical osmolarity will either inhibit or stimulate cell movement depending on specific solutes (Na(+) or K(+), sorbitol or saccharose); ii) inhibition of cell motility by hypertonic solutions containing Na(+) ions or carbohydrates can be reversed by the addition of calcium ions; iii) various cell types react differently to the same solutions, and iv) cells can adapt to hypertonic solutions. Various hypertonic solutions are now broadly used in medicine and to study modulation of gene expression. The observations reported suggest the need to examine whether the other responses of cells to hypertonicity can also be based on the solute-dependent cell responses besides cell dehydration due to the osmotic effects.
Collapse
Affiliation(s)
- Włodzimierz Korohoda
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Chronic fetal hypoxia produces selective brain injury associated with altered nitric oxide synthases. Am J Obstet Gynecol 2011; 204:254.e16-28. [PMID: 21272843 DOI: 10.1016/j.ajog.2010.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/18/2010] [Accepted: 11/09/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the impact of chronic hypoxia on the nitric oxide synthase isoenzymes in specific brain structures. STUDY DESIGN Time-mated pregnant guinea pigs were exposed to 10.5% molecular oxygen for 14 days (animals with chronic fetal hypoxia; HPX) or room air (control animals; NMX); L-N6-(1-iminoethyl)-lysine (L-NIL; an inducible nitric oxide synthase inhibitor, 1 mg/kg/d) was administered to HPX group for 14 days (L-NIL + HPX). Fetal brains were harvested at term. Multilabeled immunofluorescence was used to generate a brain injury map. Laser capture microdissection and quantitative polymerase chain reaction were applied; cell injury markers, apoptosis activation, neuron loss, total nitric oxide, and the levels of individual nitric oxide synthase isoenzymes were quantified. RESULTS Chronic hypoxia causes selective fetal brain injury rather than global. Injury is associated with differentially affected nitric oxide synthases in both neurons and glial cells, with inducible macrophage-type nitric oxide synthase up-regulated at all injury sites. L-NIL attenuated the injury, despite continued hypoxia. CONCLUSION These studies demonstrate that chronic hypoxia selectively injures the fetal brain in part by the differential regulation of nitric oxide synthase isoenzymes in an anatomic- and cell-specific manner.
Collapse
|
13
|
Godmann M, Kosan C, Behr R. Krüppel-like factor 4 is widely expressed in the mouse male and female reproductive tract and responds as an immediate early gene to activation of the protein kinase A in TM4 Sertoli cells. Reproduction 2010; 139:771-82. [PMID: 20051481 DOI: 10.1530/rep-09-0531] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor critically involved in cell proliferation, differentiation, and carcinogenesis. Recently, KLF4 has also been used for the generation of induced pluripotent stem cells. In this study, we analyzed Klf4 expression in different mouse tissues using northern blot analysis and immunohistochemistry. Focusing on the male and female reproductive tract, we showed for the first time that KLF4 is expressed in the epithelia of the murine uterus and the vagina. In the male reproductive tract, we detected KLF4 in the epithelia of the epididymis, ductus deferens, coagulating gland, and the penis. As KLF4 is strongly inducible by FSH signaling in Sertoli cells and as this transcription factor is also involved in Sertoli cell development, we employed the mouse Sertoli cell line TM4 as a model system to investigate i) the induction kinetics of Klf4 upon activation of the cAMP/protein kinase A pathway by forskolin and ii) the effects of Klf4 induction on TM4 cell cycle progression. Interestingly, Klf4 mRNA and protein were rapidly but transiently induced, reaching peak levels after 90-120 min and declining to basal levels within 4 h. Compared with the inducible cAMP early repressor, an immediate early response gene, the induction kinetics of Klf4 is much faster. In conclusion, Klf4 is an immediate early gene in TM4 cells and its expression in several epithelia of the male and female reproductive tract suggests an important role of Klf4 in mouse reproductive functions.
Collapse
Affiliation(s)
- M Godmann
- Institute of Anatomy, Developmental Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | |
Collapse
|
14
|
Kwon MS, Lim SW, Kwon HM. Hypertonic Stress in the Kidney: A Necessary Evil. Physiology (Bethesda) 2009; 24:186-91. [DOI: 10.1152/physiol.00005.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interstitium of the renal medulla is hypertonic, imposing deleterious effects on local cells. At the same time, the hypertonicity provides osmotic gradient for water reabsorption and is a local signal for tissue-specific gene expression and differentiation of the renal medulla, which is a critical organ for water homeostasis.
Collapse
Affiliation(s)
- Min Seong Kwon
- Department of Medicine, University of Maryland, Baltimore, Maryland
| | - Sun Woo Lim
- Department of Medicine, University of Maryland, Baltimore, Maryland
| | - H. Moo Kwon
- Department of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
15
|
Dijkmans T, van Hooijdonk L, Schouten T, Kamphorst J, Fitzsimons C, Vreugdenhil E. Identification of new Nerve Growth Factor-responsive immediate-early genes. Brain Res 2009; 1249:19-33. [DOI: 10.1016/j.brainres.2008.10.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 09/16/2008] [Accepted: 10/11/2008] [Indexed: 12/16/2022]
|
16
|
Sheen MR, Kim JA, Lim SW, Jung JY, Han KH, Jeon US, Park SH, Kim J, Kwon HM. Interstitial tonicity controls TonEBP expression in the renal medulla. Kidney Int 2008; 75:518-25. [PMID: 19052532 DOI: 10.1038/ki.2008.601] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells in the hyperosmotic kidney medulla, express a transcriptional activator termed tonicity responsive enhancer binding protein (TonEBP). Genes targeted by TonEBP protect kidney cells from the deleterious effects of hyperosmolality by inducing the expression of organic osmolytes and molecular chaperones, and other genes that mediate urine concentration such as aquaporin-2 and urea transporters. We tested here the effect of hypertonicity and hyperosmotic salt in the renal medullary interstitium on the expression TonEBP. When massive water diuresis was induced in rats the medullary sodium concentrations did not change, neither did TonEBP expression. In these animals the medullary tonicity was unchanged despite the production of dilute urine. On the other hand, treatment with the loop diurectic furosemide resulted in a dose-dependent decrease in the medullary sodium concentration causing a reduction in interstitial tonicity. Here, TonEBP expression was blunted in the outer and inner medulla which was due, in part, to decreased mRNA abundance. As expected, the expression of TonEBP target genes in the renal medulla also decreased in response to furosemide. Hence TonEBP expression in the renal medulla is stimulated by interstitial hypertonicity.
Collapse
Affiliation(s)
- Mee R Sheen
- Department of Medicine, University of Maryland, Baltimore, Maryland 21201,, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Selective tonicity-induced expression of the neutral amino-acid transporter SNAT2 in oligodendrocytes in rat brain following systemic hypertonicity. Neuroscience 2008; 153:95-107. [DOI: 10.1016/j.neuroscience.2008.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/20/2007] [Accepted: 01/18/2008] [Indexed: 12/22/2022]
|