1
|
Peters F, Höfs W, Lee H, Brodesser S, Kruse K, Drexler HC, Hu J, Raker VK, Lukas D, von Stebut E, Krönke M, Niessen CM, Wickström SA. Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment. J Cell Biol 2025; 224:e202403083. [PMID: 39879198 PMCID: PMC11778283 DOI: 10.1083/jcb.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis. Deletion of CerS4 prevents the proper development of the adult hair follicle bulge stem cell (HFSC) compartment due to altered differentiation trajectories. Mechanistically, HFSC differentiation defects arise from an imbalance of key ceramides and their derivate sphingolipids, resulting in hyperactivation of noncanonical Wnt signaling. This impaired HFSC compartment establishment leads to disruption of hair follicle architecture and skin barrier function, ultimately triggering a T helper cell 2-dominated immune infiltration resembling human atopic dermatitis. This work uncovers a fundamental role for a cell state-specific sphingolipid profile in stem cell homeostasis and in maintaining an intact skin barrier.
Collapse
Affiliation(s)
- Franziska Peters
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Windie Höfs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hunki Lee
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Brodesser
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Jiali Hu
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Verena K. Raker
- Department of Dermatology, University of Münster, Münster, Germany
| | - Dominika Lukas
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sara A. Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Tian JL, Huang CW, Eslami F, Mannino MP, Mai RL, Hart GW. Regulation of Primary Cilium Length by O-GlcNAc during Neuronal Development in a Human Neuron Model. Cells 2023; 12:1520. [PMID: 37296641 PMCID: PMC10252524 DOI: 10.3390/cells12111520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The primary cilium plays critical roles in the homeostasis and development of neurons. Recent studies demonstrate that cilium length is regulated by the metabolic state of cells, as dictated by processes such as glucose flux and O-GlcNAcylation (OGN). The study of cilium length regulation during neuron development, however, has been an area left largely unexplored. This project aims to elucidate the roles of O-GlcNAc in neuronal development through its regulation of the primary cilium. Here, we present findings suggesting that OGN levels negatively regulate cilium length on differentiated cortical neurons derived from human-induced pluripotent stem cells. In neurons, cilium length increased significantly during maturation (after day 35), while OGN levels began to drop. Long-term perturbation of OGN via drugs, which inhibit or promote its cycling, during neuron development also have varying effects. Diminishing OGN levels increases cilium length until day 25, when neural stem cells expand and undergo early neurogenesis, before causing cell cycle exit defects and multinucleation. Elevating OGN levels induces greater primary cilia assembly but ultimately results in the development of premature neurons, which have higher insulin sensitivity. These results indicate that OGN levels and primary cilium length are jointly critical in proper neuron development and function. Understanding the interplays between these two nutrient sensors, O-GlcNAc and the primary cilium, during neuron development is important in paving connections between dysfunctional nutrient-sensing and early neurological disorders.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chia-Wei Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Farzad Eslami
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Michael Philip Mannino
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rebecca Lee Mai
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biology, University of Georgia, Athens, GA 30602, USA
| | - Gerald W. Hart
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Duzan A, Reinken D, McGomery TL, Ferencz NM, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:120-129. [PMID: 36805391 DOI: 10.1016/j.joim.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Ashraf Duzan
- School of Pharmacy, Wingate University, Wingate, NC 28174, USA; Applied Science and Technology Department, North Carolina State University of Agriculture and Technology, Greensboro, NC 27411, USA.
| | - Desiree Reinken
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | - Jacob M Plummer
- Collage of Arts and Science, Department of Chemistry and Physics, Wingate University, Wingate, NC 28174, USA
| | - Mufeed M Basti
- Applied Science and Technology Department, North Carolina State University of Agriculture and Technology, Greensboro, NC 27411, USA.
| |
Collapse
|
4
|
Custodia A, Romaus-Sanjurjo D, Aramburu-Núñez M, Álvarez-Rafael D, Vázquez-Vázquez L, Camino-Castiñeiras J, Leira Y, Pías-Peleteiro JM, Aldrey JM, Sobrino T, Ouro A. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2022; 23:8082. [PMID: 35897658 PMCID: PMC9331765 DOI: 10.3390/ijms23158082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer's disease (AD) is considered the most prevalent neurodegenerative disease and the leading cause of dementia worldwide. Sphingolipids, such as ceramide or sphingosine 1-phosphate, are bioactive molecules implicated in structural and signaling functions. Metabolic dysfunction in the highly conserved pathways to produce sphingolipids may lead to or be a consequence of an underlying disease. Recent studies on transcriptomics and sphingolipidomics have observed alterations in sphingolipid metabolism of both enzymes and metabolites involved in their synthesis in several neurodegenerative diseases, including AD. In this review, we highlight the most relevant findings related to ceramide and neurodegeneration, with a special focus on AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomás Sobrino
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| | - Alberto Ouro
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| |
Collapse
|
5
|
Gardeta SR, García-Cuesta EM, D’Agostino G, Soler Palacios B, Quijada-Freire A, Lucas P, Bernardino de la Serna J, Gonzalez-Riano C, Barbas C, Rodríguez-Frade JM, Mellado M. Sphingomyelin Depletion Inhibits CXCR4 Dynamics and CXCL12-Mediated Directed Cell Migration in Human T Cells. Front Immunol 2022; 13:925559. [PMID: 35903108 PMCID: PMC9315926 DOI: 10.3389/fimmu.2022.925559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Sphingolipids, ceramides and cholesterol are integral components of cellular membranes, and they also play important roles in signal transduction by regulating the dynamics of membrane receptors through their effects on membrane fluidity. Here, we combined biochemical and functional assays with single-particle tracking analysis of diffusion in the plasma membrane to demonstrate that the local lipid environment regulates CXCR4 organization and function and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration. Our data underscore a critical role for the local lipid composition at the cell membrane in regulating the lateral mobility of chemokine receptors, and their ability to dynamically increase receptor density at the leading edge to promote efficient cell migration.
Collapse
Affiliation(s)
- Sofía R. Gardeta
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M. García-Cuesta
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gianluca D’Agostino
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Blanca Soler Palacios
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adriana Quijada-Freire
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pilar Lucas
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Central Laser Facility, Rutherford Appleton Laboratory, Medical Research Council-Research Complex at Harwell, Science and Technology Facilities Council, Harwell, United Kingdom
- National Institute for Health and Care Research Imperial Biomedical Research Center, London, United Kingdom
| | - Carolina Gonzalez-Riano
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Centro de Estudios Universitarios Universities, Madrid, Spain
| | - Coral Barbas
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Centro de Estudios Universitarios Universities, Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario Mellado
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
- *Correspondence: Mario Mellado,
| |
Collapse
|
6
|
Wilson C, Moyano AL, Cáceres A. Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Front Cell Dev Biol 2022; 10:878142. [PMID: 35517494 PMCID: PMC9062071 DOI: 10.3389/fcell.2022.878142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as “the establishment of polarity,” newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
Collapse
|
7
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
8
|
Yanardag S, Pugacheva EN. Primary Cilium Is Involved in Stem Cell Differentiation and Renewal through the Regulation of Multiple Signaling Pathways. Cells 2021; 10:1428. [PMID: 34201019 PMCID: PMC8226522 DOI: 10.3390/cells10061428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Signaling networks guide stem cells during their lineage specification and terminal differentiation. Primary cilium, an antenna-like protrusion, directly or indirectly plays a significant role in this guidance. All stem cells characterized so far have primary cilia. They serve as entry- or check-points for various signaling events by controlling the signal transduction and stability. Thus, defects in the primary cilia formation or dynamics cause developmental and health problems, including but not limited to obesity, cardiovascular and renal anomalies, hearing and vision loss, and even cancers. In this review, we focus on the recent findings of how primary cilium controls various signaling pathways during stem cell differentiation and identify potential gaps in the field for future research.
Collapse
Affiliation(s)
- Sila Yanardag
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Elena N. Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
9
|
Canals D, Salamone S, Santacreu BJ, Nemeth E, Aguilar D, Hernandez-Corbacho MJ, Adada M, Staquicini DI, Arap W, Pasqualini R, Haley J, Obeid LM, Hannun YA. Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy. FASEB J 2020; 34:7610-7630. [PMID: 32307766 PMCID: PMC8265206 DOI: 10.1096/fj.202000205r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | - Mohamad Adada
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - John Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Northport VA Hospital
- Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Biochemistry, Stony Brook University
- Stony Brook Cancer Center, Stony Brook, NY, United States
| |
Collapse
|
10
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
11
|
Wang G, Bieberich E. Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul 2018; 70:51-64. [PMID: 30287225 PMCID: PMC6251739 DOI: 10.1016/j.jbior.2018.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 04/14/2023]
Abstract
For many decades, research on sphingolipids associated with neurodegenerative disease focused on alterations in glycosphingolipids, particularly glycosylceramides (cerebrosides), sulfatides, and gangliosides. This seemed quite natural since many of these glycolipids are constituents of myelin and accumulated in lipid storage diseases (sphingolipidoses) resulting from enzyme deficiencies in glycolipid metabolism. With the advent of recognizing ceramide and its derivative, sphingosine-1-phosphate (S1P), as key players in lipid cell signaling and regulation of cell death and survival, research focus shifted toward these two sphingolipids. Ceramide and S1P are invoked in a plethora of cell biological processes participating in neurodegeneration such as ER stress, autophagy, dysregulation of protein and lipid transport, exosome secretion and neurotoxic protein spreading, neuroinflammation, and mitochondrial dysfunction. Hence, it is timely to discuss various functions of ceramide and S1P in neurodegenerative disease and to define sphingolipid metabolism and cell signaling pathways as potential targets for therapy.
Collapse
Affiliation(s)
- Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
13
|
Spassieva S, Bieberich E. Lysosphingolipids and sphingolipidoses: Psychosine in Krabbe's disease. J Neurosci Res 2017; 94:974-81. [PMID: 27638582 DOI: 10.1002/jnr.23888] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Until recently, lipids were considered inert building blocks of cellular membranes. This changed three decades ago when lipids were found to regulate cell polarity and vesicle transport, and the "lipid raft" concept took shape. The lipid-driven membrane anisotropy in form of "rafts" that associate with proteins led to the view that organized complexes of lipids and proteins regulate various cell functions. Disturbance of this organization can lead to cellular, tissue, and organ malfunction. Sphingolipidoses, lysosomal storage diseases that are caused by enzyme deficiencies in the sphingolipid degradation pathway, were found to be particularly detrimental to the brain. These enzyme deficiencies result in accumulation of sphingolipid metabolites in lysosomes, although it is not yet clear how this accumulation affects the organization of lipids in cellular membranes. Krabbe's disease (KD), or globoid cell leukodystrophy, was one of the first sphingolipidosis for which the raft concept offered a potential mechanism. KD is caused by mutations in the enzyme β-galactocerebrosidase; however, elevation of its substrate, galactosylceramide, is not observed or considered detrimental. Instead, it was found that a byproduct of galactosylceramide metabolism, the lysosphingolipid psychosine, is accumulated. The "psychosine hypothesis" has been refined by showing that psychosine disrupts lipid rafts and vesicular transport critical for the function of glia and neurons. The role of psychosine in KD is an example of how the disruption of sphingolipid metabolism can lead to elevation of a toxic lysosphingolipid, resulting in disruption of cellular membrane organization and neurotoxicity. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefka Spassieva
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Geogia.
| |
Collapse
|
14
|
Miller LG, Young JA, Ray SK, Wang G, Purohit S, Banik NL, Dasgupta S. Sphingosine Toxicity in EAE and MS: Evidence for Ceramide Generation via Serine-Palmitoyltransferase Activation. Neurochem Res 2017; 42:2755-2768. [PMID: 28474276 DOI: 10.1007/s11064-017-2280-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/07/2017] [Accepted: 04/22/2017] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder characterized by massive neurodegeneration and profound axonal loss. Since myelin is enriched with sphingolipids and some of them display toxicity, biological function of sphingolipids in demyelination has been investigated in MS brain tissues. An elevation of sphingosine with a decrease in monoglycosylceramide and psychosine (myelin markers) was observed in MS white matter and plaque compared to normal brain tissue. This indicated that sphingosine toxicity might mediate oligodendrocyte degeneration. To explain the source of sphingosine accumulation, total sphingolipid profile was investigated in Lewis rats after inducing experimental autoimmune encephalomyelitis (EAE) and also in human oligodendrocytes in culture. An intermittent increase in ceramide followed by sphingosine accumulation in EAE spinal cord along with a stimulation of serine-palmitoyltransferase (SPT) activity was observed. Apoptosis was identified in the lumbar spinal cord, the most prominent demyelinating area, in the EAE rats. TNFα and IFNγ stimulation of oligodendrocytes in culture also led to an accumulation of ceramide with an elevation of sphingosine. Ceramide elevation was drastically blocked by myriocin, an inhibitor of SPT, and also by FTY720. Myriocin treatment also protected oligodendrocytes from cytokine mediated apoptosis or programmed cell death. Hence, we propose that sphingosine toxicity may contribute to demyelination in both EAE and MS, and the intermittent ceramide accumulation in EAE may, at least partly, be mediated via SPT activation, which is a novel observation that has not been previously reported.
Collapse
Affiliation(s)
- Lawrence G Miller
- Department of Neurology and Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Jennifer A Young
- Department of Neurology and Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Guanghu Wang
- Institute of Molecular Medicine and Genetics, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Somsankar Dasgupta
- Institute of Molecular Medicine and Genetics, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
|
16
|
Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015; 19:1725-42. [DOI: 10.1517/14728222.2015.1071794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Gulbins E, Walter S, Becker KA, Halmer R, Liu Y, Reichel M, Edwards MJ, Müller CP, Fassbender K, Kornhuber J. A central role for the acid sphingomyelinase/ceramide system in neurogenesis and major depression. J Neurochem 2015; 134:183-92. [DOI: 10.1111/jnc.13145] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/15/2015] [Accepted: 04/09/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Erich Gulbins
- Department of Surgery; University of Cincinnati; Cincinnati Ohio USA
- Department of Molecular Biology; University of Duisburg-Essen; Essen Germany
| | - Silke Walter
- Department of Neurology; University Hospital of the Saarland; Homburg/Saar Germany
| | - Katrin Anne Becker
- Department of Molecular Biology; University of Duisburg-Essen; Essen Germany
| | - Ramona Halmer
- Department of Neurology; University Hospital of the Saarland; Homburg/Saar Germany
| | - Yang Liu
- Department of Neurology; University Hospital of the Saarland; Homburg/Saar Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen; Erlangen Germany
| | | | - Christian P. Müller
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen; Erlangen Germany
| | - Klaus Fassbender
- Department of Neurology; University Hospital of the Saarland; Homburg/Saar Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen; Erlangen Germany
| |
Collapse
|
18
|
Bradley E, Dasgupta S, Jiang X, Zhao X, Zhu G, He Q, Dinkins M, Bieberich E, Wang G. Critical role of Spns2, a sphingosine-1-phosphate transporter, in lung cancer cell survival and migration. PLoS One 2014; 9:e110119. [PMID: 25330231 PMCID: PMC4203763 DOI: 10.1371/journal.pone.0110119] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/08/2014] [Indexed: 11/21/2022] Open
Abstract
The sphingosine-1-phosphate (S1P) transporter Spns2 regulates myocardial precursor migration in zebrafish and lymphocyte trafficking in mice. However, its function in cancer has not been investigated. We show here that ectopic Spns2 expression induced apoptosis and its knockdown enhanced cell migration in non-small cell lung cancer (NSCLC) cells. Metabolically, Spns2 expression increased the extracellular S1P level while its knockdown the intracellular. Pharmacological inhibition of S1P synthesis abolished the augmented cell migration mediated by Spns2 knockdown, indicating that intracellular S1P plays a key role in this process. Cell signaling studies indicated that Spns2 expression impaired GSK-3β and Stat3 mediated pro-survival pathways. Conversely, these pathways were activated by Spns2 knockdown, which explains the increased cell migration since they are also crucial for migration. Alterations of Spns2 were found to affect several enzymes involved in S1P metabolism, including sphingosine kinases, S1P phosphatases, and S1P lyase 1. Genetically, Spns2 mRNA level was found to be reduced in advanced lung cancer (LC) patients as quantified by using a small scale qPCR array. These data show for the first time that Spns2 plays key roles in regulating the cellular functions in NSCLC cells, and that its down-regulation is a potential risk factor for LC.
Collapse
Affiliation(s)
- Eric Bradley
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xue Jiang
- Shengjing Hospital, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiaying Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Gu Zhu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Qian He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Michael Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
19
|
He Q, Wang G, Wakade S, Dasgupta S, Dinkins M, Kong JN, Spassieva SD, Bieberich E. Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide. Mol Biol Cell 2014; 25:1715-29. [PMID: 24694597 PMCID: PMC4038499 DOI: 10.1091/mbc.e13-12-0730] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human embryonic stem and induced pluripotent stem cell–derived neuroprogenitors (NPs) develop primary cilia. Ciliogenesis depends on the sphingolipid ceramide and its interaction with atypical PKC, both of which distribute to the primary cilium and the apicolateral cell membrane in NP rosettes. We show here that human embryonic stem (ES) and induced pluripotent stem cell–derived neuroprogenitors (NPs) develop primary cilia. Ciliogenesis depends on the sphingolipid ceramide and its interaction with atypical PKC (aPKC), both of which distribute to the primary cilium and the apicolateral cell membrane in NP rosettes. Neural differentiation of human ES cells to NPs is concurrent with a threefold elevation of ceramide—in particular, saturated, long-chain C16:0 ceramide (N-palmitoyl sphingosine) and nonsaturated, very long chain C24:1 ceramide (N-nervonoyl sphingosine). Decreasing ceramide levels by inhibiting ceramide synthase or neutral sphingomyelinase 2 leads to translocation of membrane-bound aPKC to the cytosol, concurrent with its activation and the phosphorylation of its substrate Aurora kinase A (AurA). Inhibition of aPKC, AurA, or a downstream target of AurA, HDAC6, restores ciliogenesis in ceramide-depleted cells. Of importance, addition of exogenous C24:1 ceramide reestablishes membrane association of aPKC, restores primary cilia, and accelerates neural process formation. Taken together, these results suggest that ceramide prevents activation of HDAC6 by cytosolic aPKC and AurA, which promotes acetylation of tubulin in primary cilia and, potentially, neural processes. This is the first report on the critical role of ceramide generated by nSMase2 in stem cell ciliogenesis and differentiation.
Collapse
Affiliation(s)
- Qian He
- Program in Developmental Neurobiology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Guanghu Wang
- Program in Developmental Neurobiology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Sushama Wakade
- Program in Developmental Neurobiology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Somsankar Dasgupta
- Program in Developmental Neurobiology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Michael Dinkins
- Program in Developmental Neurobiology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Ji Na Kong
- Program in Developmental Neurobiology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Stefka D Spassieva
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Erhard Bieberich
- Program in Developmental Neurobiology, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| |
Collapse
|
20
|
Don AS, Lim XY, Couttas TA. Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 2014; 4:315-53. [PMID: 24970218 PMCID: PMC4030989 DOI: 10.3390/biom4010315] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.
Collapse
Affiliation(s)
- Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xin Y Lim
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
21
|
Bradley E, Bieberich E, Mivechi NF, Tangpisuthipongsa D, Wang G. Regulation of embryonic stem cell pluripotency by heat shock protein 90. Stem Cells 2013; 30:1624-33. [PMID: 22696450 DOI: 10.1002/stem.1143] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deciphering the molecular basis of stem cell pluripotency is fundamental to the understanding of stem cell biology, early embryonic development, and to the clinical application of regenerative medicine. We report here that the molecular chaperone heat shock protein 90 (Hsp90) is essential for mouse embryonic stem cell (ESC) pluripotency through regulating multiple pluripotency factors, including Oct4, Nanog, and signal transducer and activator of transcription 3. Inhibition of Hsp90 by either 17-N-Allylamino-17-demethoxygeldanamycin or miRNA led to ESC differentiation. Overexpression of Hsp90β partially rescued the phenotype; in particular, the levels of Oct4 and Nanog were restored. Notably, Hsp90 associated with Oct4 and Nanog in the same cellular complex and protected them from degradation by the ubiquitin proteasome pathway, suggesting that Oct4 and Nanog are potential novel Hsp90 client proteins. In addition, Hsp90 inhibition reduced the mRNA level of Oct4, but not that of Nanog, indicating that Hsp90 participates in Oct4 mRNA processing or maturation. Hsp90 inhibition also increased expression of some protein markers for mesodermal lineages, implying that Hsp90 suppresses mesodermal differentiation from ESCs. These findings support a new role for Hsp90 in maintaining ESC pluripotency by sustaining the level of multiple pluripotency factors, particularly Oct4 and Nanog.
Collapse
Affiliation(s)
- Eric Bradley
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
22
|
Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol Cell Biol 2012; 32:3242-52. [PMID: 22688512 DOI: 10.1128/mcb.00121-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-regulated kinase (ERK) activation. In addition, SMS1/SMS2 double-knockout cells had heightened sensitivity to CXCL12, which was significantly suppressed upon transfection with the SMS1 or SMS2 gene or when they were treated with exogenous sphingomyelin but not when they were treated with the SMS substrate ceramide. Notably, SMS deficiency facilitated relocalization of CXCR4 to lipid rafts, which form platforms for the regulation and transduction of receptor-mediated signaling. Furthermore, we found that SMS deficiency potentiated CXCR4 dimerization, which is required for signal transduction. This dimerization was significantly repressed by sphingomyelin treatment. Collectively, our data indicate that SMS-derived sphingomyelin lowers responsiveness to CXCL12, thereby reducing migration induced by this chemokine. Our findings provide the first direct evidence for an involvement of SMS-generated sphingomyelin in the regulation of cell migration.
Collapse
|
23
|
Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 2012; 287:21384-95. [PMID: 22532571 DOI: 10.1074/jbc.m112.340513] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease.
Collapse
Affiliation(s)
- Guanghu Wang
- Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Car H, Zendzian-Piotrowska M, Prokopiuk S, Fiedorowicz A, Sadowska A, Kurek K, Sawicka D. Ceramide profiles in the brain of rats with diabetes induced by streptozotocin. FEBS J 2012; 279:1943-52. [PMID: 22429392 DOI: 10.1111/j.1742-4658.2012.08575.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes is associated with disturbances of brain activity and cognitive impairment. We hypothesize that ceramides may constitute an important contribution to diabetes-linked neuro-dysfunction. In our study we used rats injected with streptozotocin (STZ) as a model of severe hyperglycemia. Using the gas-liquid chromatography technique we found a significant increase of ceramide content in brains and a decrease in plasma of diabetic rats. The inhibitor of serine palmitoyltransferase, myriocin, reduced ceramide generation in hyperglycemic brains, although injected alone it exerted a paradoxical effect of ceramide upregulation. Myriocin had no impact on ceramide concentration in the plasma of either control or diabetic rats. The level of ceramide saturated fatty acids was elevated whereas the level of ceramide poly-unsaturated fatty acids was downregulated in brains of all experimental groups. The concentration of ceramide mono-unsaturated fatty acids remained unchanged. The pattern of individual ceramide species was altered depending on treatment. We noted an STZ-evoked increase of brain ceramide C16:0, C18:0 and C20:0 and a strong decline in ceramide C18:2 fatty acid levels. Some changes of brain ceramide pattern were modified by myriocin. We found a decreased amount of total ceramide-ω-6 fatty acids in STZ-treated rat brains and no changes in ceramide-ω-3 concentration. We conclude that ceramides may be important mediators of diabetes-accompanied brain dysfunction.
Collapse
Affiliation(s)
- Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Poland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bieberich E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 2012; 37:1208-29. [PMID: 22246226 DOI: 10.1007/s11064-011-0698-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 01/20/2023]
Abstract
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called "bioactive lipids". Pioneering work in Dr. Robert Ledeen's laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
26
|
Dechecchi MC, Nicolis E, Mazzi P, Cioffi F, Bezzerri V, Lampronti I, Huang S, Wiszniewski L, Gambari R, Scupoli MT, Berton G, Cabrini G. Modulators of Sphingolipid Metabolism Reduce Lung Inflammation. Am J Respir Cell Mol Biol 2011; 45:825-33. [DOI: 10.1165/rcmb.2010-0457oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 2011; 71:528-53. [PMID: 21557504 DOI: 10.1002/dneu.20850] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, NY 10065, USA
| | | | | |
Collapse
|
28
|
Ceramide in stem cell differentiation and embryo development: novel functions of a topological cell-signaling lipid and the concept of ceramide compartments. J Lipids 2010; 2011:610306. [PMID: 21490805 PMCID: PMC3066852 DOI: 10.1155/2011/610306] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/29/2010] [Indexed: 11/27/2022] Open
Abstract
In the last two decades, the view on the function of ceramide as a sole metabolic precursor for other sphingolipids has completely changed. A plethora of studies has shown that ceramide is an important lipid cell-signaling factor regulating apoptosis in a variety of cell types. With the advent of new stem cell technologies and knockout mice for specific steps in ceramide biosynthesis, this view is about to change again. Recent studies suggest that ceramide is a critical cell-signaling factor for stem cell differentiation and cell polarity, two processes at the core of embryo development. This paper discusses studies on ceramide using in vitro differentiated stem cells, embryo cultures, and knockout mice with the goal of linking specific developmental stages to exciting and novel functions of this lipid. Particular attention is devoted to the concept of ceramide as a topological cell-signaling lipid: a lipid that forms distinct structures (membrane domains and vesicles termed “sphingosome”), which confines ceramide-induced cell signaling pathways to localized and even polarized compartments.
Collapse
|
29
|
Bieberich E. There is more to a lipid than just being a fat: sphingolipid-guided differentiation of oligodendroglial lineage from embryonic stem cells. Neurochem Res 2010; 36:1601-11. [PMID: 21136155 DOI: 10.1007/s11064-010-0338-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 12/16/2022]
Abstract
Dr. Robert K. Yu's research showed for the first time that the composition of glycosphingolipids is tightly regulated during embryo development. Studies in our group showed that the glycosphingolipid precursor ceramide is also critical for stem cell differentiation and apoptosis. Our new studies suggest that ceramide and its derivative, sphingosine-1-phosphate (S1P), act synergistically on embryonic stem (ES) cell differentiation. When using neural precursor cells (NPCs) derived from ES cells for transplantation, residual pluripotent stem (rPS) cells pose a significant risk of tumor formation after stem cell transplantation. We show here that rPS cells did not express the S1P receptor S1P1, which left them vulnerable to ceramide or ceramide analog (N-oleoyl serinol or S18)-induced apoptosis. In contrast, ES cell-derived NPCs expressed S1P1 and were protected in the presence of S1P or its pro-drug analog FTY720. Consistent with previous studies, FTY720-treated NPCs differentiated predominantly toward oligodendroglial lineage as tested by the expression of the oligodendrocyte precursor cell (OPC) markers Olig2 and O4. As the consequence, a combined administration of S18 and FTY720 to differentiating ES cells eliminated rPS cells and promoted oligodendroglial differentiation. In addition, we show that this combination promoted differentiation of ES cell-derived NPCs toward oligodendroglial lineage in vivo after transplantation into mouse brain.
Collapse
Affiliation(s)
- Erhard Bieberich
- Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia/Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
30
|
Tamehiro N, Mujawar Z, Zhou S, Zhuang DZ, Hornemann T, von Eckardstein A, Fitzgerald ML. Cell polarity factor Par3 binds SPTLC1 and modulates monocyte serine palmitoyltransferase activity and chemotaxis. J Biol Chem 2009; 284:24881-90. [PMID: 19592499 DOI: 10.1074/jbc.m109.014365] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated sphingolipids have been associated with increased cardiovascular disease. Conversely, atherosclerosis is reduced in mice by blocking de novo synthesis of sphingolipids catalyzed by serine palmitoyltransferase (SPT). The SPT enzyme is composed of the SPTLC1 and -2 subunits, and here we describe a novel protein-protein interaction between SPTLC1 and the PDZ protein Par3 (partitioning defective protein 3). Mammalian SPTLC1 orthologs have a highly conserved C terminus that conforms to a type II PDZ protein interaction motif, and by screening PDZ domain protein arrays with an SPTLC1 C-terminal peptide, we found it bound the third PDZ domain of Par3. Overlay and immunoprecipitation assays confirmed this interaction and indicate Par3 is able to associate with the SPTLC1/2 holoenzyme by binding the C-terminal SPTLC1 PDZ motif. The physiologic existence of the SPTLC1/2-Par3 complex was detected in mouse liver and macrophages, and short interfering RNA inhibition of Par3 in human THP-1 monocytes significantly reduced SPT activity and de novo ceramide synthesis by nearly 40%. Given monocyte recruitment into inflamed vessels is thought to promote atherosclerosis, and because Par3 and sphingolipids have been associated with polarized cell migration, we tested whether the ability of THP-1 monocytes to migrate toward MCP-1 (monocyte chemoattractant protein 1) depended upon Par3 and SPTLC1 expression. Knockdown of Par3 significantly reduced MCP1-induced chemotaxis of THP-1 monocytes, as did knockdown of SPTLC1, and this Par3 effect depended upon SPT activity and was blunted by ceramide treatment. In conclusion, protein arrays were used to identify a novel SPTLC1-Par3 interaction that associates with increased monocyte serine palmitoyltransferase activity and chemotaxis toward inflammatory signals.
Collapse
Affiliation(s)
- Norimasa Tamehiro
- Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang G, Krishnamurthy K, Bieberich E. Regulation of primary cilia formation by ceramide. J Lipid Res 2009; 50:2103-10. [PMID: 19372594 DOI: 10.1194/jlr.m900097-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The primary cilium is an important sensory organelle, the regulation of which is not fully understood. We found that in polarized Madin-Darby Canine Kidney cells, the sphingolipid ceramide is specifically distributed to a cis-Golgi compartment at the base of the primary cilium. This compartment immunostained for the centrosome marker gamma-tubulin, the Rho type GTPase cell division cycle 42 (Cdc42), and atypical protein kinase Czeta/lambda (aPKC), a kinase activated by ceramide and associated with a polarity protein complex consisting of partitioning defective (Par)6 and Cdc42. Inhibition of ceramide biosynthesis with Fumonisin B1 prevented codistribution of aPKC and Cdc42 in the centrosomal/pericentriolar compartment and severely impaired ciliogenesis. Cilium formation and codistribution of aPKC and Cdc42 were restored by incubation with N-acetyl or N-palmitoyl sphingosine (C2 or C16 ceramide), or the ceramide analog N-oleoyl serinol (S18). Cilium formation was also restored by the glycogen synthase kinase-3beta (GSK-3beta) inhibitor indirubin-3-monoxime, suggesting that regulation of ciliogenesis depends on the inhibition of GSK-3beta by ceramide-activated aPKC. Consistently, inhibition of aPKC with a pseudosubstrate inhibitor prevented restoration of ciliogenesis by C2 ceramide or S18. Our data show for the first time that ceramide is required for primary cilium formation.
Collapse
Affiliation(s)
- Guanghu Wang
- Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
32
|
Wang G, Krishnamurthy K, Umapathy NS, Verin AD, Bieberich E. The carboxyl-terminal domain of atypical protein kinase Czeta binds to ceramide and regulates junction formation in epithelial cells. J Biol Chem 2009; 284:14469-75. [PMID: 19304661 DOI: 10.1074/jbc.m808909200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Atypical protein kinase Cs (PKCs) (aPKCzeta and lambda/iota) have emerged as important binding partners for ceramide, a membrane-resident cell signaling lipid that is involved in the regulation of apoptosis as well as cell polarity. Using ceramide overlay assays with proteolytic fragments of PKCzeta and vesicle binding assays with ectopically expressed protein, we show that a protein fragment comprising the carboxyl-terminal 20-kDa sequence of PKCzeta (C20zeta, amino acids 405-592) bound to C16:0 ceramide. This sequence is not identical to the C1 domain (amino acids 131-180), which has been suggested to serve as a potential ceramide binding domain. Using immunocytochemistry, we found that a C20zeta protein fragment ectopically expressed in two epithelial cell types (neural progenitors and Madin-Darby canine kidney cells) co-distributed with ceramide. Stable expression of C20zeta-EGFP in Madin-Darby canine kidney cells disrupted the formation of adherens and tight junctions and impaired the epithelium integrity by reducing transepithelial electrical resistance. Disruption of cell adhesion and loss of transepithelial electrical resistance was prevented by incubation with C16:0 ceramide. Our results show, for the first time, that there is a novel ceramide binding domain (C20zeta) in the carboxyl terminus of aPKC. Our results also show that the interaction of ceramide with this binding domain is essential for cell-to-cell contacts in epithelia. Therefore, ceramide interaction with the C20zeta binding domain is a potential mechanism by which ceramide and aPKC regulate the formation of junctional complexes in epithelial cells.
Collapse
Affiliation(s)
- Guanghu Wang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|