1
|
Rieder AS, Ramires Júnior OV, Prauchner GRK, Wyse ATS. Effects of methylphenidate on mitochondrial dynamics and bioenergetics in the prefrontal cortex of juvenile rats are sex-dependent. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111057. [PMID: 38880464 DOI: 10.1016/j.pnpbp.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Methylphenidate (MPH) is a central nervous system stimulant drug and a first order prescription in the treatment of Attention Deficit Hyperactivity Disorder (ADHD). Although MPH biochemistry in neurodevelopment is not completely understood, studies showed it alters energy metabolism in rat brains. ADHD prevalence during neurodevelopment is related to males and the investigation has been mainly done in these subjects, therefore, little is known about MPH action in females and, consequently, about sexual dimorphism. In the present study we evaluated markers of mitochondrial dynamics (DRP1 and MFN2, fission and fusion, respectively), biogenesis (mtTFA) and bioenergetics (respiratory chain complexes) in prefrontal cortex of male and female juvenile rats submitted to exposure to MPH to better understand MPH effect during postnatal neurodevelopment. ATP and oxidative stress levels were also evaluated. Wistar rats received intraperitoneal injection of MPH (2.0 mg/kg) or control (saline), once a day, from 15th to 45th day of age. Results showed that MPH increased DRP1 and decreased MFN2, as well as increased mtTFA in prefrontal cortex of male rats. In female, MPH decreased NRF1 and increased Parkin, which are mitochondrial regulatory proteins. Respiratory chain complexes (complex I, SDH, complexes III and IV), ATP production and oxidative stress parameters were altered and shown to be sex-dependent. Taken together, results suggest that chronic MPH exposure at an early age in healthy animals changes mitochondrial dynamics, biogenesis and bioenergetics differently depending on the sex of the subjects.
Collapse
Affiliation(s)
- Alessandra Schmitt Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Osmar Vieira Ramires Júnior
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Bohid S, Ali LK, Romero-Leguizamón CR, Langkilde AE, Dos Santos AB, Kohlmeier KA. Sex-dependent effects of monomeric α-synuclein on calcium and cell death of lateral hypothalamic mouse neurons are altered by orexin. Mol Cell Neurosci 2024; 129:103934. [PMID: 38701995 DOI: 10.1016/j.mcn.2024.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/25/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
Parkinson's Disease (PD) patients experience sleeping disorders in addition to the disease-defining symptomology of movement dysfunctions. The prevalence of PD is sex-based and presence of sleeping disorders in PD also shows sex bias with a stronger phenotype in males. In addition to loss of dopamine-containing neurons in the striatum, arousal-related, orexin-containing neurons in the lateral hypothalamus (LH) are lost in PD, which could contribute to state-related disorders. As orexin has been shown to be involved in sleeping disorders and to have neuroprotective effects, we asked whether orexin could protect sleep-related LH neurons from damage putatively from the protein α-synuclein (α-syn), which is found at high levels in the PD brain and that we have shown is associated with putatively excitotoxic rises in intracellular calcium in brainstem sleep-controlling nuclei, especially in males. Accordingly, we monitored intracellular calcium transients induced by α-syn and whether concurrent exposure to orexin affected those transients in LH cells of the mouse brain slice using calcium imaging. Further, we used an assay of cell death to determine whether LH cell viability was influenced when α-syn and orexin were co-applied when compared to exposure to α-syn alone. We found that excitatory calcium events induced by α-syn were reduced in amplitude and frequency when orexin was co-applied, and when data were evaluated by sex, this effect was found to be greater in females. In addition, α-syn exposure was associated with cell death that was higher in males, and interestingly, reduced cell death was noted when orexin was present, which did not show a sex bias. We interpret our findings to indicate that orexin is protective to α-syn-mediated damage to hypothalamic neurons, and the actions of orexin on α-syn-induced cellular effects differ between sexes, which could underlie sex-based differences in sleeping disorders in PD.
Collapse
Affiliation(s)
- Sara Bohid
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lara Kamal Ali
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cesar Ramon Romero-Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Annette E Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Altair Brito Dos Santos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj D. Molecular insights into the potential effects of selective estrogen receptor β agonists in Alzheimer's and Parkinson's diseases. Cell Biochem Funct 2024; 42:e4014. [PMID: 38616346 DOI: 10.1002/cbf.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERβ is often considered to be safer. In this review, we explore the role of ERβ in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aβ) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERβ activation and the process underlying ERβ's neuroprotective mechanisms in AD and PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
4
|
Bovenzi R, Conti M, Degoli GR, Cerroni R, Artusi CA, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Pregnancy, fertile life factors, and associated clinical course in PRKN early-onset Parkinson's disease. Neurol Sci 2024; 45:591-599. [PMID: 37658959 PMCID: PMC10791711 DOI: 10.1007/s10072-023-07029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION As the most common cause of autosomal recessive early onset Parkinson's disease (EOPD), parkin type Parkinson's disease (PRKN-PD) may affect female patients in childbearing age. Accordingly, issues related to fertility must be adequately addressed. Here, we landscaped fertile life factors and pregnancy course of a PRKN-PD cohort, including both novel cases directly observed at our center and published ones. METHODS Six patients with confirmed PRKN-PD were examined by a structured interview on reproductive factors and associated modifications of PD disturbances, including one case followed up throughout pregnancy which was described in greater detail. Six studies reporting fertile life factors of nine PRKN-PD patients were reviewed collecting homogeneous data on fertile life and pregnancy course. RESULTS PRKN-PD female patients experienced motor fluctuations with the menstrual cycle, pregnancy, and puerperium, which suggests a role for sex hormones in PD clinical burden. In some cases, abortion and miscarriages occurred during the organogenesis phase in patients receiving oral antiparkinsonian therapy; however, levodopa/benserazide monotherapy resulted to be the safest choice in pregnancy. CONCLUSION Collectively these data disclose the importance of pre-conception counseling in childbearing age PRKN-PD patients and EOPD in general.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Matteo Conti
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Giulia Rebecca Degoli
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Rocco Cerroni
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Mariangela Pierantozzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy.
| |
Collapse
|
5
|
Zolotarev YA, Shram SI, Dadayan AK, Dolotov OV, Markov DD, Nagaev IY, Kudrin VS, Narkevich VB, Sokolov OY, Kost NV. HLDF-6 peptides exhibit neuroprotective effects in the experimental model of preclinical Parkinson's disease. Neuropeptides 2022; 96:102287. [PMID: 36280440 DOI: 10.1016/j.npep.2022.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
The mechanisms of the neuroprotective action of the hexapeptides HLDF-6 encoded by the amino acid sequence 41-46 of Human Leukemia Differentiation Factor and its homoserine derivative HLDF-6H were studied in an experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model of Parkinson's disease (PD). C57Bl/6 mice received two intraperitoneal injections of 18 mg/kg MPTP-HCl, with an interval of 2 hours. MPTP-induced motor dysfunction was assessed using horizontal grid test. Our data show that chronic intranasal administration of peptides (3 weeks, 300 μg/kg/day) restored normal levels of dopamine and improved its turnover rates in the striatum. Furthermore, peptide administration increased serum estradiol levels and led to a significant improvement in motor functions in MPTP-treated mice. Additionally, peptide treatment increased the levels of mRNA encoding neurotrophin BDNF, but normalized the levels of mRNA encoding the inflammatory mediators TGFβ1, IL1β and IFNγ in the brain. Collectively, our behavioral and biochemical studies demonstrate that HLDF-6 peptides have a therapeutic potential for treating PD. We propose that HLDF-6 peptides may exert their neuroprotective mechanism, at least in part, by normalizing estradiol levels and modulating the expression of key factors involved in neurotrophic support and neuroinflammation.
Collapse
Affiliation(s)
- Yurii A Zolotarev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia.
| | - Stanislav I Shram
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Aleksandr K Dadayan
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Oleg V Dolotov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy D Markov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Igor Yu Nagaev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | | | | | | | | |
Collapse
|
6
|
Arabia G, De Martino A, Moro E. Sex and gender differences in movement disorders: Parkinson's disease, essential tremor, dystonia and chorea. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:101-128. [PMID: 36038202 DOI: 10.1016/bs.irn.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sex and gender-based differences in epidemiology, clinical features and therapeutical responses are emerging in several movement disorders, even though they are still not widely recognized. In this chapter, we summarize the most relevant evidence concerning these differences in Parkinson's disease, essential tremor, dystonia and chorea. Indeed, both sex-related biological (hormonal levels fluctuations) and gender-related variables (socio-cultural and environmental factors) may differently impact symptoms manifestation and severity, phenotype and disease progression of movement disorders on men and women. Moreover, sex differences in treatment responses should be taken into account in any therapeutical planning. Physicians need to be aware of these major differences between men and women that will eventually have a major impact on better tailoring prevention, treatment, or even delaying progression of the most common movement disorders.
Collapse
Affiliation(s)
- Gennarina Arabia
- Magna Graecia University, Movement Disorders Center, Neurology Unit, Catanzaro, Italy.
| | - Antonio De Martino
- Magna Graecia University, Movement Disorders Center, Neurology Unit, Catanzaro, Italy
| | - Elena Moro
- Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
7
|
Bazan IS, Kim SJ, Ardito TA, Zhang Y, Shan P, Sauler M, Lee PJ. Sex differences and altered mitophagy in experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2022; 322:L761-L769. [PMID: 35137625 PMCID: PMC9076415 DOI: 10.1152/ajplung.00019.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a debilitating condition characterized by increased pulmonary arterial pressures and remodeling of pulmonary arteries, leading to right heart failure. Women have a higher prevalence of PH, whereas men have more severe disease and poorer outcomes. Animal models also show female-predominant disease. Despite the known sex differences in PH, little is known about how pathogenesis differs between the sexes. There is growing evidence of mitochondrial dysfunction, as well as altered mitophagy in PH. We hypothesized that sexual dimorphism contributes to mitochondrial dysfunction and altered mitophagy in PH. Using mouse lung endothelial cells, we exposed both wild-type and Parkin-/- cells to hypoxia and measured the effects on mitochondrial function and mitophagy-associated proteins. Our results show that females have more Parkin expression at baseline as well as increased mitochondrial respiratory capacity when exposed to oxidative stress. Inhibition of Parkin increased metabolic activity but reduced cell proliferation but to different degrees depending on sex, with results differing by sex. Our findings demonstrate sexual dimorphism in mitophagy-associated proteins and in mitochondrial respiration, which may help shed light on how the pathogenesis of PH may differ between the sexes.
Collapse
Affiliation(s)
- Isabel S Bazan
- Section of Pulmonary, Critical Care & Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - So-Jin Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
- Section of Pulmonary and Critical Care Medicine, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Taylor A Ardito
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Yi Zhang
- Section of Pulmonary, Critical Care & Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Peiying Shan
- Section of Pulmonary, Critical Care & Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Maor Sauler
- Section of Pulmonary, Critical Care & Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
- Section of Pulmonary and Critical Care Medicine, Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
8
|
Isenbrandt A, Morissette M, Bourque M, Lamontagne-Proulx J, Coulombe K, Soulet D, Di Paolo T. Effect of sex and gonadectomy on brain MPTP toxicity and response to dutasteride treatment in mice. Neuropharmacology 2021; 201:108784. [PMID: 34555366 DOI: 10.1016/j.neuropharm.2021.108784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023]
Abstract
The main neuropathological feature of Parkinson's disease (PD) is degeneration of dopamine (DA) neurons in the substantia nigra (SN); PD prevalence is higher in men, suggesting a role of sex hormones in neuroprotection. This study sought the effects of sex hormones in the brain in a mouse model of PD and modulation of steroid metabolism/synthesis with the 5α-reductase inhibitor dutasteride shown to protect 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) male mice. Male and female mice were gonadectomized (GDX) or SHAM operated. They were treated with vehicle or dutasteride (5 mg/kg) for 10 days and administered a low dose of MPTP (5.5 mg/kg) or saline on the 5th day to model early PD; brains were collected thereafter. Striatal measures of the active metabolite 1-methyl-4-phenylpyridinium (MPP+) contents showed no difference supporting an effect of the experimental conditions investigated. In SHAM MPTP male mice loss of striatal DA and metabolites, DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding in the striatum and SN was prevented by dutasteride treatment; these changes were inversely correlated with glial fibrillary acidic protein (GFAP, an astrogliosis marker) levels. In SHAM female mice MPTP treatment had little or no effect on striatal and SN DA markers and GFAP levels whereas GDX male and female mice showed a similar loss of striatal DA markers and increase of GFAP. No effect of dutasteride treatment was observed in GDX male and female mice. In conclusion, sex differences in mice MPTP toxicity and response to dutasteride were observed that were lost upon gonadectomy implicating neuroinflammation.
Collapse
Affiliation(s)
- Amandine Isenbrandt
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Jérôme Lamontagne-Proulx
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada.
| |
Collapse
|
9
|
Female reproductive factors and the risk of Parkinson’s disease: a nationwide cohort study. Eur J Epidemiol 2020; 35:871-878. [DOI: 10.1007/s10654-020-00672-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
|
10
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
11
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
12
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
13
|
Female Sex and Brain-Selective Estrogen Benefit α-Synuclein Tetramerization and the PD-like Motor Syndrome in 3K Transgenic Mice. J Neurosci 2019; 39:7628-7640. [PMID: 31405930 DOI: 10.1523/jneurosci.0313-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Many studies report a higher risk for Parkinson's disease (PD) and younger age of onset in men. This, and the fact that the neuropathological process underlying PD symptoms may begin before menopause, suggests that estrogen-based hormone therapy could modify this higher risk in males. However, the effects of female sex or estrogen on α-synuclein (αS) homeostasis and related PD neuropathology remain unknown. Here, we used an αS tetramer-abrogating mouse model of PD (3K) that amplifies the familial E46K PD mutation to investigate the effects of female sex and brain-selective estrogen treatment on αS tetramerization and solubility, formation of vesicle-rich αS+ aggregates, dopaminergic and cortical fiber integrity, and associated motor deficits. In male 3K mice, the motor phenotype became apparent at ∼10 weeks and increased to age 6 months, paralleled by PD-like neuropathology, whereas 3K females showed a significant delay in onset. At 6 months, this beneficial phenotypic effect in 3K females was associated with a higher αS tetramer-to-monomer ratio and less decrease in dopaminergic and cortical fiber length and quantity. Brain-selective estrogen treatment in symptomatic 3K mice significantly increased the tetramer-to-monomer ratio, turnover by autophagy of aggregate-prone monomers, and neurite complexity of surviving DAergic and cortical neurons, in parallel with benefits in motor performance. Our findings support an upstream role for αS tetramer loss in PD phenotypes and a role for estrogen in mitigating PD-like neuropathology in vivo Brain-selective estrogen therapy may be useful in delaying or reducing PD symptoms in men and postmenopausal women.SIGNIFICANCE STATEMENT The mechanisms responsible for the male-to-female preponderance in Parkinson's disease (PD) are not well understood yet important for treatment efficacy. We previously showed that abrogating native α-synuclein (αS) tetramers produces a close PD model, including dopaminergic and cortical fiber loss and a progressive motor disorder responsive to l-DOPA. Here, we analyzed sex and use 10b-17β-dihydroxyestra-1,4-dien-3-one treatment of symptomatic 3K males, and demonstrate that the beneficial effects of female sex on PD-like neuropathology can be reinstated by elevating estrogen in the male brain. The study provides evidence that 17β-estradiol restores the tetramer-to-monomer ratio by autophagy turnover of excess αS monomers, vesicle and fiber integrity in brain regions critically involved in motor behavior. These data provide the basis for understanding sex differences in αS homeostasis and the development of therapeutic approaches to treating men and postmenopausal women with PD.
Collapse
|
14
|
Sex-specific neuroprotection by inhibition of the Y-chromosome gene, SRY, in experimental Parkinson's disease. Proc Natl Acad Sci U S A 2019; 116:16577-16582. [PMID: 31371505 DOI: 10.1073/pnas.1900406116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder caused by the loss of midbrain dopamine (DA) neurons. While the cause of DA cell loss in PD is unknown, male sex is a strong risk factor. Aside from the protective actions of sex hormones in females, emerging evidence suggests that sex-chromosome genes contribute to the male bias in PD. We previously showed that the Y-chromosome gene, SRY, directly regulates adult brain function in males independent of gonadal hormone influence. SRY protein colocalizes with DA neurons in the male substantia nigra, where it regulates DA biosynthesis and voluntary movement. Here we demonstrate that nigral SRY expression is highly and persistently up-regulated in animal and human cell culture models of PD. Remarkably, lowering nigral SRY expression with antisense oligonucleotides in male rats diminished motor deficits and nigral DA cell loss in 6-hydroxydopamine (6-OHDA)-induced and rotenone-induced rat models of PD. The protective effect of the SRY antisense oligonucleotides was associated with male-specific attenuation of DNA damage, mitochondrial degradation, and neuroinflammation in the toxin-induced rat models of PD. Moreover, reducing nigral SRY expression diminished or removed the male bias in nigrostriatal degeneration, mitochondrial degradation, DNA damage, and neuroinflammation in the 6-OHDA rat model of PD, suggesting that SRY directly contributes to the sex differences in PD. These findings demonstrate that SRY directs a previously unrecognized male-specific mechanism of DA cell death and suggests that suppressing nigral Sry synthesis represents a sex-specific strategy to slow or prevent DA cell loss in PD.
Collapse
|
15
|
Giatti S, Garcia-Segura LM, Barreto GE, Melcangi RC. Neuroactive steroids, neurosteroidogenesis and sex. Prog Neurobiol 2018; 176:1-17. [PMID: 29981391 DOI: 10.1016/j.pneurobio.2018.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
The nervous system is a target and a source of steroids. Neuroactive steroids are steroids that target neurons and glial cells. They include hormonal steroids originated in the peripheral glands, steroids locally synthesized by the neurons and glial cells (neurosteroids) and synthetic steroids, some of them used in clinical practice. Here we review the mechanisms of synthesis, metabolism and action of neuroactive steroids, including the role of epigenetic modifications and the mitochondria in their sex specific actions. We examine sex differences in neuroactive steroid levels under physiological conditions and their role in the establishment of sex dimorphic structures in the nervous system and sex differences in its function. In addition, particular attention is paid to neuroactive steroids under pathological conditions, analyzing how pathology alters their levels and their role as neuroprotective factors, considering the influence of sex in both cases.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
16
|
Jurado-Coronel JC, Cabezas R, Ávila Rodríguez MF, Echeverria V, García-Segura LM, Barreto GE. Sex differences in Parkinson's disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front Neuroendocrinol 2018; 50:18-30. [PMID: 28974386 DOI: 10.1016/j.yfrne.2017.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder. Sex is an important factor in the development of PD, as reflected by the fact that it is more common in men than in women by an approximate ratio of 2:1. Our hypothesis is that differences in PD among men and women are highly determined by sex-dependent differences in the nigrostriatal dopaminergic system, which arise from environmental, hormonal and genetic influences. Sex hormones, specifically estrogens, influence PD pathogenesis and might play an important role in PD differences between men and women. The objective of this review was to discuss the PD physiopathology and point out sex differences in nigrostriatal degeneration, symptoms, genetics, responsiveness to treatments and biochemical and molecular mechanisms among patients suffering from this disease. Finally, we discuss the role estrogens may have on PD sex differences.
Collapse
Affiliation(s)
- Juan Camilo Jurado-Coronel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción, 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - Luis Miguel García-Segura
- Instituto Cajal, CSIC, Madrid, Spain; CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
18
|
Cheng HY, Hung SH, Chu PJ. Rescue from Sexually Dimorphic Neuronal Cell Death by Estradiol and PI3 Kinase Activity. Cell Mol Neurobiol 2016; 36:767-75. [PMID: 26369912 DOI: 10.1007/s10571-015-0259-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Responses of primary hippocampal and cortical neurons derived from male and female rats to cellular stressors were studied. It is demonstrated that 17β-estradiol (E2), a potent neuroprotectant, protected the female neurons but had no effects on the male neurons from CoCl2- and glutamate-induced toxicity. Agonists of the estrogen receptor (ER) subtypes ERα and ERβ, DPN and PPT, respectively, had similar effects to E2. By contrast, effects of E2 were abolished by the ER antagonist ICI-182780, further corroborating the neuroprotective role of ERs. In male neurons, CoCl2 predominately activated the apoptosis-inducing factor (AIF)-dependent pathway and AIF translocation from the cytosol to the nucleus. In comparison, CoCl2 activated the caspase pathway and cytochrome c release in female neurons. The inhibitors of these pathways, namely DiQ for AIF and zVAD for caspase, specifically rescued CoCl2-induced cell death in male and female neurons, respectively. When zVAD and ICI-182780, and E2 were applied in combination, it was demonstrated E2 acted on the caspase pathway leading to female-specific neuroprotection. Furthermore, the PI3 kinase (PI3K) inhibitor blocked the rescue effects of DiQ and zVAD on the male and female neurons, respectively, suggesting that PI3K is a common upstream regulator for both pathways. The present study suggested that both sex-specific and nonspecific mechanisms played a role in neuronal responses to stressors and protective reagents.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Shin-Hui Hung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Po-Ju Chu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2014; 16:17-29. [PMID: 25423896 DOI: 10.1038/nrn3856] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hormones regulate homeostasis by communicating through the bloodstream to the body's organs, including the brain. As homeostatic regulators of brain function, some hormones exert neuroprotective actions. This is the case for the ovarian hormone 17β-oestradiol, which signals through oestrogen receptors (ERs) that are widely distributed in the male and female brain. Recent discoveries have shown that oestradiol is not only a reproductive hormone but also a brain-derived neuroprotective factor in males and females and that ERs coordinate multiple signalling mechanisms that protect the brain from neurodegenerative diseases, affective disorders and cognitive decline.
Collapse
Affiliation(s)
- Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, E-28040 Madrid, Spain
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain
| |
Collapse
|
20
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
21
|
Sprenger FS, Seppi K, Wolf E, Poewe W. Perimenstrual Fluctuations in Two Siblings With Early-Onset Parkinson's Disease. Mov Disord Clin Pract 2014; 1:125-127. [PMID: 30363847 DOI: 10.1002/mdc3.12036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Klaus Seppi
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Elisabeth Wolf
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Werner Poewe
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| |
Collapse
|
22
|
Smith KM, Dahodwala N. Sex differences in Parkinson's disease and other movement disorders. Exp Neurol 2014; 259:44-56. [PMID: 24681088 DOI: 10.1016/j.expneurol.2014.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 12/29/2022]
Abstract
Movement disorders including Parkinson's disease (PD), Huntington's disease (HD), chorea, tics, and Tourette's syndrome (TS) display sex differences in disease susceptibility, disease pathogenesis, and clinical presentation. PD is more common in males than in females. Epidemiologic studies suggest that exposure to endogenous and exogenous estrogen contributes to these sex differences. There is extensive evidence that estrogen prevents dopaminergic neuron depletion induced by neurotoxins in PD animal models and therefore is neuroprotective. Estrogen may also decrease the efficacy of other neuroprotective substances such as caffeine in females but not males. Sex chromosomes can exert effects independent of sex steroid hormones on the development and maintenance of the dopamine system. As a result of hormone, chromosome and other unknown effects, there are sexual dimorphisms in the basal ganglia, and at the molecular levels in dopaminergic neurons that may lead to distinct mechanisms of pathogenesis in males and females. In this review, we summarize the evidence that estrogen and selective estrogen receptor modulators are neuroprotective in PD and discuss potential mechanisms of action. We also briefly review how sex differences in basal ganglia function and dopaminergic pathways may impact HD, chorea, and tics/Tourette's syndrome. Further understanding of these sex differences may lead to novel therapeutic strategies for prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Kara M Smith
- Parkinson's Disease and Movement Disorders Center, 330 S. 9th St, 2nd Floor, Philadelphia, PA 19107, USA.
| | - Nabila Dahodwala
- Parkinson's Disease and Movement Disorders Center, 330 S. 9th St, 2nd Floor, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Bourque M, Morissette M, Di Paolo T. Raloxifene activates G protein-coupled estrogen receptor 1/Akt signaling to protect dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Neurobiol Aging 2014; 35:2347-56. [PMID: 24726471 DOI: 10.1016/j.neurobiolaging.2014.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/20/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022]
Abstract
Raloxifene, used in the clinic, is reported to protect brain dopaminergic neurons in mice. Raloxifene was shown to mediate an effect through the G protein-coupled estrogen receptor 1 (GPER1). We investigated if raloxifene neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated male mice is mediated through GPER1 by using its antagonist G15. Striatal concentrations of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid to dopamine ratio as well as dopamine transporter and vesicular monoamine transporter 2 showed that raloxifene neuroprotection of dopaminergic neurons was blocked by G15. Protection by raloxifene was accompanied by activation of striatal Akt signaling (but not ERK1/2 signaling) and increased Bcl-2 and brain-derived neurotrophic factor levels; these effects were abolished by coadministration with G15. The effect of raloxifene was not mediated through increased levels of 17β-estradiol. MPTP mice had decreased plasma testosterone, dihydrotestosterone, and 3β-diol levels; this was prevented in raloxifene-treated MPTP mice. Our results suggest that raloxifene acted through GPER1 to mediate Akt activation, increase Bcl-2 and brain-derived neurotrophic factor levels, and protection of dopaminergic neurons and plasma androgens.
Collapse
Affiliation(s)
- Mélanie Bourque
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Quebec, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
24
|
Mandillo S, Golini E, Marazziti D, Di Pietro C, Matteoni R, Tocchini-Valentini GP. Mice lacking the Parkinson's related GPR37/PAEL receptor show non-motor behavioral phenotypes: age and gender effect. GENES BRAIN AND BEHAVIOR 2013; 12:465-77. [DOI: 10.1111/gbb.12041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/15/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022]
Affiliation(s)
- S. Mandillo
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - E. Golini
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - D. Marazziti
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - C. Di Pietro
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - R. Matteoni
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - G. P. Tocchini-Valentini
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| |
Collapse
|
25
|
Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM. Gonadal hormones and the control of reactive gliosis. Horm Behav 2013; 63:216-21. [PMID: 22401743 DOI: 10.1016/j.yhbeh.2012.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
Abstract
Astrocytes and microglia respond to central nervous system (CNS) injury with changes in morphology, proliferation, migration and expression of inflammatory regulators. This phenomenon is known as reactive gliosis. Activation of astrocytes and microglia after acute neural insults, such as stroke or traumatic CNS injury, is considered to be an adaptive response that contributes to minimize neuronal damage. However, reactive gliosis may amplify CNS damage under chronic neurodegenerative conditions. Progesterone, estradiol and testosterone have been shown to control reactive gliosis in different models of CNS injury, modifying the number of reactive astrocytes and reactive microglia and the expression of anti-inflammatory and proinflammatory mediators. The actions of gonadal hormones on reactive gliosis involve different mechanisms, including the modulation of the activity of steroid receptors, such as estrogen receptors α and β, the regulation of nuclear factor-κB mediated transcription of inflammatory molecules and the recruitment of the transcriptional corepressor c-terminal binding protein to proinflammatory promoters. In addition, the Parkinson's disease related gene parkin and the endocannabinoid system also participate in the regulation of reactive gliosis by estradiol. The control exerted by gonadal hormones on reactive gliosis may affect the response of neural tissue to trauma and neurodegeneration and may contribute to sex differences in the manifestation of neurodegenerative diseases. However, the precise functional consequences of the regulation of reactive gliosis by gonadal hormones under acute and chronic neurodegenerative conditions are still not fully clarified.
Collapse
|
26
|
Arnold S. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:305-39. [PMID: 22729864 DOI: 10.1007/978-1-4614-3573-0_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus--encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and -survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute for Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany.
| |
Collapse
|
27
|
Bourque M, Dluzen DE, Di Paolo T. Signaling pathways mediating the neuroprotective effects of sex steroids and SERMs in Parkinson's disease. Front Neuroendocrinol 2012; 33:169-78. [PMID: 22387674 DOI: 10.1016/j.yfrne.2012.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
Abstract
Studies with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of Parkinson's disease have shown the ability of 17β-estradiol to protect the nigrostriatal dopaminergic system. This paper reviews the signaling pathways mediating the neuroprotective effect of 17β-estradiol against MPTP-induced toxicity. The mechanisms of 17β-estradiol action implicate activation of signaling pathways such as the phosphatidylinositol-3 kinase/Akt and the mitogen-activated protein kinase pathways. 17β-estradiol signaling is complex and integrates multiple interactions with signaling molecules that act to potentiate a protective effect. 17β-estradiol signaling is mediated via estrogen receptors, including GPER1, but others receptors, such as the IGF-1 receptor, are implicated in the neuroprotective effect. Glial and neuronal crosstalk is a critical factor in the maintenance of dopamine neuronal survival and in the neuroprotective action of 17β-estradiol. Compounds that stimulate GPER1 such as selective estrogen receptor modulators and phytoestrogens show neuroprotective activity and are alternatives to 17β-estradiol.
Collapse
Affiliation(s)
- Mélanie Bourque
- Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL), Quebec City, QC, Canada G1V 4G2
| | | | | |
Collapse
|
28
|
Reiner A, Lafferty DC, Wang HB, Del Mar N, Deng YP. The group 2 metabotropic glutamate receptor agonist LY379268 rescues neuronal, neurochemical and motor abnormalities in R6/2 Huntington's disease mice. Neurobiol Dis 2012; 47:75-91. [PMID: 22472187 DOI: 10.1016/j.nbd.2012.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/14/2012] [Accepted: 03/17/2012] [Indexed: 12/11/2022] Open
Abstract
Excitotoxic injury to striatum by dysfunctional cortical input or aberrant glutamate uptake may contribute to Huntington's disease (HD) pathogenesis. Since corticostriatal terminals possess mGluR2/3 autoreceptors, whose activation dampens glutamate release, we tested the ability of the mGluR2/3 agonist LY379268 to improve the phenotype in R6/2 HD mice with 120-125 CAG repeats. Daily subcutaneous injection of a maximum tolerated dose (MTD) of LY379268 (20mg/kg) had no evident adverse effects in WT mice, and diverse benefits in R6/2 mice, both in a cohort of mice tested behaviorally until the end of R6/2 lifespan and in a cohort sacrificed at 10weeks of age for blinded histological analysis. MTD LY379268 yielded a significant 11% increase in R6/2 survival, an improvement on rotarod, normalization and/or improvement in locomotor parameters measured in open field (activity, speed, acceleration, endurance, and gait), a rescue of a 15-20% cortical and striatal neuron loss, normalization of SP striatal neuron neurochemistry, and to a lesser extent enkephalinergic striatal neuron neurochemistry. Deficits were greater in male than female R6/2 mice, and drug benefit tended to be greater in males. The improvements in SP striatal neurons, which facilitate movement, are consistent with the improved movement in LY379268-treated R6/2 mice. Our data indicate that mGluR2/3 agonists may be particularly useful for ameliorating the morphological, neurochemical and motor defects observed in HD.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
29
|
Effect of a chronic treatment with 17β-estradiol on striatal dopamine neurotransmission and the Akt/GSK3 signaling pathway in the brain of ovariectomized monkeys. Psychoneuroendocrinology 2012; 37:280-91. [PMID: 21763075 DOI: 10.1016/j.psyneuen.2011.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/03/2011] [Accepted: 06/16/2011] [Indexed: 02/07/2023]
Abstract
The present experiments sought the effect of chronic treatment with 17β-estradiol on striatal dopaminergic activity and the Akt/GSK3 signaling pathway in the brain of monkeys. Eight female monkeys (Macacca fascicularis) were ovariectomized (OVX) and a month later, half received a month treatment with 17β-estradiol and the other with vehicle. The DA transporter (DAT) was measured by autoradiography with [(125)I]RTI-121 and the vesicular DA transporter (VMAT(2)) with [(3)H]TBZ-OH at three rostro-caudal levels (anterior, middle and posterior) of the caudate nucleus and putamen subdivided in their lateral/medial, ventral/dorsal sub-regions. Specific binding to DAT was increased in all sub-regions of the caudate nucleus and the putamen of 17β-estradiol-treated compared to vehicle-treated monkeys whereas specific binding to VMAT(2) remained unchanged. We measured by Western blot the phosphorylated forms of Akt at serine 473 and threonine 308, GSK3β at serine 9 and tyrosine 216 and GSK3α at serine 21 in anterior, middle and posterior caudate nucleus and putamen. 17β-Estradiol treatment increased in all the caudate nucleus and putamen pAkt (Ser473)/βIII-tubulin, pGSK3β (Ser9)/βIII-tubulin and in putamen Akt/βIII-tubulin compared to vehicle-treated monkeys. In anterior and middle putamen, pAkt (Thr308)/βIII-tubulin was also increased in monkeys treated with 17β-estradiol. pGSK3β (Tyr216)/βIII-tubulin and pGSK3α (Ser21)/βIII-tubulin remained unchanged by the 17β-estradiol treatment. These results suggest that 17β-estradiol activates striatal DA neurotransmission in primates as reflected with increased DAT specific binding and downstream activation of Akt/GSK3 signaling. This supports a beneficial role of a chronic treatment with 17β-estradiol by increasing the activity of signaling pathways implicated in cell survival.
Collapse
|
30
|
Dluzen DE, McDermott JL, Bourque M, Di Paolo T, Darvesh AS, Buletko AB, Laping NJ. Markers associated with sex differences in methamphetamine-induced striatal dopamine neurotoxicity. Curr Neuropharmacol 2011; 9:40-4. [PMID: 21886559 PMCID: PMC3137198 DOI: 10.2174/157015911795017399] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
Three different approaches were employed to assess various markers associated with sex differences in responses to methamphetamine (MA). Bioassay measures reveal that MA treatment results in significantly greater reductions in body weight and increases in body temperature in male mice. Protein and mRNA determinations show significant increases in Bcl-2 and PAI-1 in male mice, while females show significant increases in GFAP and decreases in IGF-1R following treatment with MA. In mice with a heterozygous mutation of their dopamine transporter (+/- DAT), only female mice show significant differences in dopamine transporter binding and mRNA and associated reductions in striatal dopamine content along with increases in MA-evoked striatal dopamine output. The identification of these sex-dependent differences in markers provides a foundation for more exhaustive evaluation of their impact upon, and treatment of, disorders/neurotoxicity of the nigrostriatal dopaminergic system and the bases for the differences that exist between females and males.
Collapse
Affiliation(s)
- D E Dluzen
- Department of Anatomy and Neurobiology, NEOUCOM, Rootstown, OH 44272
| | | | | | | | | | | | | |
Collapse
|
31
|
Melcangi RC, Garcia-Segura LM. Sex differences in the injured brain. Horm Mol Biol Clin Investig 2011; 7:385-91. [DOI: 10.1515/hmbci.2011.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 08/15/2011] [Indexed: 11/15/2022]
Abstract
AbstractObservations obtained in human and in experimental models clearly demonstrate sex differences in degenerative events occurring in the central nervous system. The present review focuses on potential factors that may contribute to these sex-dimorphic features; in particular, morphological organization of the central nervous system and functional influence by neuroactive steroids, genes, and immune system are considered.
Collapse
|
32
|
Bourque M, Dluzen DE, Di Paolo T. Male/Female differences in neuroprotection and neuromodulation of brain dopamine. Front Endocrinol (Lausanne) 2011; 2:35. [PMID: 22654803 PMCID: PMC3356083 DOI: 10.3389/fendo.2011.00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/02/2011] [Indexed: 12/26/2022] Open
Abstract
The existence of a sex difference in Parkinson's disease (PD) is observed as related to several variables, including susceptibility of the disease, age at onset, and symptoms. These differences between men and women represent a significant characteristic of PD, which suggest that estrogens may exert beneficial effects against the development and the progression of the disease. This paper reviews the neuroprotective and neuromodulator effects of 17β-estradiol and progesterone as compared to androgens in the nigrostriatal dopaminergic (NSDA) system of both female and male rodents. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of PD and methamphetamine toxicity faithfully reproduce the sex differences of PD in that endogenous estrogen levels appear to influence the vulnerability to toxins targeting the NSDA system. Exogenous 17β-estradiol and/or progesterone treatments show neuroprotective properties against NSDA toxins while androgens fail to induce any beneficial effect. Sex steroid treatments show male and female differences in their neuroprotective action against methamphetamine toxicity. NSDA structure and function, as well as the distribution of estrogen receptors, show sex differences and may influence the susceptibility to the toxins and the response to sex steroids. Genomic and non-genomic actions of 17β-estradiol converge to promote survival factors and the presence of both estrogen receptors α and β are critical to 17β-estradiol neuroprotective action against MPTP toxicity.
Collapse
Affiliation(s)
- Mélanie Bourque
- Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL)Quebec City, QC, Canada
- Faculty of Pharmacy, Laval University, Quebec CityQC, Canada
| | - Dean E. Dluzen
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine and PharmacyRootstown, OH, USA
| | - Thérèse Di Paolo
- Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL)Quebec City, QC, Canada
- Faculty of Pharmacy, Laval University, Quebec CityQC, Canada
- *Correspondence: Thérèse Di Paolo, Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL), 2705 Laurier Boulevard, Quebec City, QC, Canada G1V 4G2. e-mail:
| |
Collapse
|
33
|
Di Domenico F, Casalena G, Sultana R, Cai J, Pierce WM, Perluigi M, Cini C, Baracca A, Solaini G, Lenaz G, Jia J, Dziennis S, Murphy SJ, Alkayed NJ, Butterfield DA. Involvement of Stat3 in mouse brain development and sexual dimorphism: a proteomics approach. Brain Res 2010; 1362:1-12. [PMID: 20875800 DOI: 10.1016/j.brainres.2010.09.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 01/27/2023]
Abstract
Although the role of STAT3 in cell physiology and tissue development has been largely investigated, its involvement in the development and maintenance of nervous tissue and in the mechanisms of neuroprotection is not yet known. The potentially wide range of STAT3 activities raises the question of tissue- and gender-specificity as putative mechanisms of regulation. To explore the function of STAT3 in the brain and the hypothesis of a gender-linked modulation of STAT3, we analyzed a neuron-specific STAT3 knockout mouse model investigating the influence of STAT3 activity in brain protein expression pattern in both males and females in the absence of neurological insult. We performed a proteomic study aimed to reveal the molecular pathways directly or indirectly controlled by STAT3 underscoring its role in brain development and maintenance. We identified several proteins, belonging to different neuronal pathways such as energy metabolism or synaptic transmission, controlled by STAT3 that confirm its crucial role in brain development and maintenance. Moreover, we investigated the different processes that could contribute to the sexual dimorphic behavior observed in the incidence of neurological and mental disease. Interestingly both STAT3 KO and gender factors influence the expression of several mitochondrial proteins conferring to mitochondrial activity high importance in the regulation of brain physiology and conceivable relevance as therapeutic target.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
35
|
Cosimo Melcangi R, Garcia-Segura LM. Sex-specific therapeutic strategies based on neuroactive steroids: In search for innovative tools for neuroprotection. Horm Behav 2010; 57:2-11. [PMID: 19524584 DOI: 10.1016/j.yhbeh.2009.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 02/07/2023]
Abstract
Different pathologies of the central and peripheral nervous system show sex differences in their incidence, symptomatology and/or neurodegenerative outcome. These include Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple sclerosis, traumatic brain injury, stroke, autism, schizophrenia, depression, anxiety disorders, eating disorders and peripheral neuropathy. These sex differences reveal the need for sex-specific neuroprotective strategies. This review article and other manuscripts published in this issue of Hormones and Behavior analyze possible sex-specific therapeutic strategies based on neuroactive steroids. In particular in our introductory article, the possibility that sex differences in the levels or in the action of neuroactive steroids may represent causative factors for sex differences in the incidence or manifestation of pathologies of the nervous system is considered.
Collapse
Affiliation(s)
- Roberto Cosimo Melcangi
- Department of Endocrinology, Pathophysiology and Applied Biology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milano, Italy.
| | | |
Collapse
|
36
|
Gillies GE, McArthur S. Independent influences of sex steroids of systemic and central origin in a rat model of Parkinson's disease: A contribution to sex-specific neuroprotection by estrogens. Horm Behav 2010; 57:23-34. [PMID: 19538962 DOI: 10.1016/j.yhbeh.2009.06.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 11/16/2022]
Abstract
This review considers evidence which reveals considerable complexity and sex differences in the response of the nigrostriatal dopaminergic (NSDA) system to hormonal influences. This pathway degenerates in Parkinson's disease (PD) and sex hormones contribute to sex differences in PD, where men fare worse than women. Here we discuss evidence from animal studies which allows us to hypothesize that, contrary to expectations, the acclaimed neuroprotective property of physiological concentrations of estradiol arises not by promoting NSDA neuron survival, but by targeting powerful adaptive responses in the surviving neurons, which restore striatal DA functionality until over 60% of neurons are lost. Estrogen generated locally in the NSDA region appears to promote these adaptive mechanisms in females and males to preserve striatal DA levels in the partially injured NSDA pathway. However, responses to systemic steroids differ between the sexes. In females there is general agreement that gonadal steroids and exogenous estradiol promote striatal adaptation in the partially injured NSDA pathway to protect against striatal DA loss. In contrast, the balance of evidence suggests that in males gonadal factors and exogenous estradiol have negligible or even harmful effects. Sex differences in the organization of NSDA-related circuitry may well account for these differences. Compensatory mechanisms and sexually dimorphic hard-wiring are therefore likely to represent important biological substrates for sex dimorphisms. As these processes may be targeted differentially by systemic steroids in males and females, further understanding of the underlying processes would provide valuable insights into the potential for hormone-based therapies in PD, which would need to be sex-specific. Alternatively, evidence that estrogen generated locally is protective in the injured male NSDA pathway indicates the great therapeutic potential of harnessing central steroid synthesis to ameliorate neurodegenerative disorders. A clearer understanding of the relative contributions and inter-relationships of central and systemic steroids within the NSDA system is an important goal for future studies.
Collapse
Affiliation(s)
- Glenda E Gillies
- Department of Cellular and Molecular Neuroscience, Imperial College London, Hammersmith Hospital Campus, UK.
| | | |
Collapse
|
37
|
Ookubo M, Yokoyama H, Kato H, Araki T. Gender differences on MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in C57BL/6 mice. Mol Cell Endocrinol 2009; 311:62-8. [PMID: 19631714 DOI: 10.1016/j.mce.2009.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the impact of gender difference in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated animal model of Parkinson's disease (PD). In the present study, we investigated the time-dependent alterations of dopamine and its metabolites, striatal tyrosine hydroxylase (TH) protein, dopamine transporter (DAT) protein, glial fibrillary acidic protein (GFAP) protein and midbrain TH protein and motor function in male and female mice 5h and 1, 3 and 7 days after four administrations of MPTP (20mg/kg) at 2-h intervals. The present study showed that the decrease of dopamine, DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanillic acid) content in female mice was more pronounced than that in male animals 1, 3 and 7 days after MPTP treatment. Our Western blot analysis study also demonstrated that the decrease of both striatal and midbrain TH protein levels in female mice was more pronounced than that in male animals from 1 to 7 days after MPTP treatment. As compared to male mice, in contrast, the increase of striatal GFAP protein levels in female mice was observed from 5h to 7 days after MPTP treatment. Furthermore, the present study showed that motor deficits were found in both male and female mice 1 and 7 days after MPTP treatment. In the present study, moreover, the decrease of striatal DAT protein levels in female mice was more pronounced than that in male animals 1, 3 and 7 days after MPTP treatment. These results demonstrate that our administrations of MPTP at 2-h intervals can cause more severe damage in female mice as compared with male animals. The gender difference may be due to the decrease of DAT expression caused by MPTP. Thus our findings provide further valuable information for the pathogenesis of PD.
Collapse
Affiliation(s)
- Masanori Ookubo
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima 770-8505, Japan
| | | | | | | |
Collapse
|
38
|
Arnold S, Beyer C. Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 2009; 110:1-11. [DOI: 10.1111/j.1471-4159.2009.06133.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
40
|
Casarejos MJ, Solano RM, Rodriguez-Navarro JA, Gómez A, Perucho J, Castaño JG, García de Yébenes J, Mena MA. Parkin deficiency increases the resistance of midbrain neurons and glia to mild proteasome inhibition: the role of autophagy and glutathione homeostasis. J Neurochem 2009; 110:1523-37. [PMID: 19549073 DOI: 10.1111/j.1471-4159.2009.06248.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkin mutations in humans produce parkinsonism whose pathogenesis is related to impaired protein degradation, increased free radicals and abnormal neurotransmitter release. In this study, we have investigated whether partial proteasomal inhibition by epoxomicin, an ubiquitin proteasomal system (UPS) irreversible inhibitor, further aggravates the cellular effects of parkin suppression in midbrain neurons and glia. We observed that parkin null (PK-KO) midbrain neuronal cultures are resistant to epoxomicin-induced cell death. This resistance is due to increased GSH and DJ-1 protein levels in PK-KO mice. The treatment with epoxomicin increases, in wild type (WT) cultures, the pro-apoptotic Bax/Bcl-2 ratio, the phosphorylation of tau, and the levels of chaperones heat-shock protein 70 and C-terminal Hsc-interacting protein, but none of these effects took place in epoxomicin-treated PK-KO cultures. Poly-ubiquitinated proteins increased more in WT than in PK-KO-treated neuronal cultures. Parkin accumulated in WT neuronal cultures treated with epoxomicin. Markers of autophagy, such as LC3II/I, were increased in naïve PK-KO cultures, and further increased after treatment with epoxomicin, implying that the blockade of the proteasome in PK-KO neurons triggers the enhancement of autophagy. The treatment with l-buthionine-S,R-sulfoximine and the inhibition of autophagy, however, reverted the increase resistance to epoxomicin of the PK-KO cultures. We also found that PK-KO glial cells, stressed by growth in defined medium and depleted of GSH, were more susceptible to epoxomicin induced cell death than WT glia treated similarly. This susceptibility was linked to reduced GSH levels and less heat-shock protein 70 response, and to activation of p-serine/threonine kinase protein signaling pathway as well as to increased poly-ubiquitinated proteins. These data suggest that mild UPS inhibition is compensated by other mechanisms in PK-KO midbrain neurons. However the depletion of GSH, as happens in stressed glia, suppresses the protection against UPS inhibition-induced cell death. Furthermore, GSH inhibition regulated differentially UPS activity and in old PK-KO mice, which have depletion of GSH, UPS activity is decreased in comparison with that of old-WT.
Collapse
Affiliation(s)
- Maria J Casarejos
- Department of Neurobiology, Hospital Ramón y Cajal, CIBERNED, Madrid 28034, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Estradiol promotes proliferation of dopaminergic precursors resulting in a higher proportion of dopamine neurons derived from mouse embryonic stem cells. Int J Dev Neurosci 2009; 27:493-500. [PMID: 19379802 DOI: 10.1016/j.ijdevneu.2009.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 01/04/2023] Open
Abstract
Estradiol protects dopamine neurons of the substantia nigra from toxic insults. Such neurons succumb in Parkinson's disease; one strategy for restoring dopamine deficiency is cell therapy with neurons differentiated from embryonic stem cells. We investigated the effects of 17beta-estradiol on dopaminergic induction of embryonic stem cells using the 5-stage protocol. Cells were incubated with different steroid concentrations during the proliferation (stage 4) or differentiation (stage 5) phases. Estradiol added at nM concentrations only during stage 4 increases the proliferation of dopaminergic precursors expressing Lmx1a, inducing a higher proportion of dopamine neurons at stage 5. These actions were mediated by activation of estrogen receptors, because co-incubation of cells with estradiol and ICI 182,780 completely abolished the positive effect on both proliferation of committed precursors, and subsequent differentiation to dopaminergic neurons. Our results suggest that estradiol should be useful in producing higher proportions of dopamine neurons from embryonic stem cells aimed for treating Parkinson's disease.
Collapse
|
42
|
Mena MA, Casarejos MJ, Solano R, Rodríguez-Navarro JA, Gómez A, Rodal I, Medina M, de Yebenes JG. NP7 protects from cell death induced by oxidative stress in neuronal and glial midbrain cultures from parkin null mice. FEBS Lett 2008; 583:168-74. [PMID: 19084014 DOI: 10.1016/j.febslet.2008.11.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 11/19/2008] [Accepted: 11/27/2008] [Indexed: 11/29/2022]
Abstract
Parkin mutations produce Parkinson's disease (PD) in humans and nigrostriatal dopamine lesions related to increased free radicals in mice. We examined the effects of NP7, a synthetic, marine derived, free radical scavenger which enters the brain, on H(2)O(2) toxicity in cultured neurons and glia from wild-type (WT) and parkin null mice (PK-KO). NP7, 5-10 microM, prevented the H(2)O(2) induced apoptosis and necrosis of midbrain neuronal and glial cultures from WT and PK-KO mice. NP7 suppressed microglial activation and the H(2)O(2) induced drop-out of dopamine neurons(.) Furthermore, NP7 prevented the increased phosphorylation of ERK and AKT induced by H(2)O(2). NP7 may be a promising neuroprotector against oxidative stress in PD.
Collapse
Affiliation(s)
- M A Mena
- Departmento de Neurobiología-Investigación, CIBERned, Hospital Ramón y Cajal, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|