1
|
Zhao S, Gu T, Weng K, Zhang Y, Cao Z, Zhang Y, Zhao W, Chen G, Xu Q. Phosphoproteome Reveals Extracellular Regulated Protein Kinase Phosphorylation Mediated by Mitogen-Activated Protein Kinase Kinase-Regulating Granulosa Cell Apoptosis in Broody Geese. Int J Mol Sci 2023; 24:12278. [PMID: 37569653 PMCID: PMC10418642 DOI: 10.3390/ijms241512278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Geese have strong brooding abilities, which severely affect their egg-laying performance. Phosphorylation is widely involved in regulating reproductive activities, but its role in goose brooding behavior is unclear. In this study, we investigated differences in the phosphoprotein composition of ovarian tissue between laying and brooding geese. Brooding geese exhibited ovarian and follicular atrophy, as well as significant oxidative stress and granulosa cell apoptosis. We identified 578 highly phosphorylated proteins and 281 lowly phosphorylated proteins, and a KEGG pathway analysis showed that these differentially phosphorylated proteins were mainly involved in cell apoptosis, adhesion junctions, and other signaling pathways related to goose brooding behavior. The extracellular regulated protein kinase (ERK)-B-Cell Lymphoma 2(BCL2) signaling pathway was identified as playing an important role in regulating cell apoptosis. The phosphorylation levels of ERK proteins were significantly lower in brooding geese than in laying geese, and the expression of mitogen-activated protein kinase kinase (MEK) was downregulated. Overexpression of MEK led to a significant increase in ERK phosphorylation and BCL2 transcription in H2O2-induced granulosa cells (p < 0.05), partially rescuing cell death. Conversely, granulosa cells receiving MEK siRNA exhibited the opposite trend. In conclusion, geese experience significant oxidative stress and granulosa cell apoptosis during brooding, with downregulated MEK expression, decreased phosphorylation of ERK protein, and inhibited expression of BCL2.
Collapse
Affiliation(s)
- Shuai Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Tiantian Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Zhengfeng Cao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Wenming Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| |
Collapse
|
2
|
Wu SZ, Lan YY, Chu CY, Lee YP, Chang HY, Huang BM. Sodium arsenite and dimethylarsenic acid induces apoptosis in OC3 oral cavity cancer cells. Mol Med Rep 2022; 27:26. [PMID: 36524366 PMCID: PMC9813566 DOI: 10.3892/mmr.2022.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although arsenic is an environmental toxicant, arsenic trioxide (ATO) is used to treat acute promyelocytic leukemia (APL) with anticancer effects. Studies have demonstrated oral cancer is in the top 10 cancers in Taiwan. High rate of oral cancers is linked to various behaviors, such as excessive alcohol consumption and tobacco use. Similarly, betel chewing is a strong risk factor in oral cancer. In the present study, oral squamous carcinoma OC3 cells were investigated with the treatments of sodium arsenite (NaAsO2) and dimethylarsenic acid (DMA), respectively, to examine if arsenic compounds have anti‑cancer efforts. It was found that 1 µM NaAsO2 and 1 mM DMA for 24 h induced rounded contours with membrane blebbing phenomena in OC3 cells, revealing cell apoptotic characteristics. In addition, NaAsO2 (10‑100 µM) and DMA (1‑100 mM) significantly decreased OC3 cell survival. In cell cycle regulation detected by flow cytometry, NaAsO2 and DMA significantly augmented percentage of subG1 and G2/M phases in OC3 cells, respectively. Annexin V/PI double staining assay was further used to confirm NaAsO2 and DMA did induce OC3 cell apoptosis. In mechanism investigation, western blotting assay was applied and the results showed that NaAsO2 and DMA significantly induced phosphorylation of JNK, ERK1/2 and p38 and then the cleavages of caspase‑8, ‑9, ‑3 and poly ADP‑ribose polymerase (PARP) in OC3 cells, dynamically. In conclusion, NaAsO2 and DMA activated MAPK pathways and then apoptotic pathways to induce OC3 oral cancer cell apoptosis.
Collapse
Affiliation(s)
- Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C.,Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, R.O.C
| | - Yu-Yan Lan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Chiao-Yun Chu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C.,Correspondence to: Professor Hong-Yi Chang, Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, 1, Nan-Tai Street, Yungkang, Tainan 71005, Taiwan, R.O.C., E-mail:
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40406, Taiwan, R.O.C.,Professor Bu-Miin Huang, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan, R.O.C., E-mail:
| |
Collapse
|
3
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|
4
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Wu SZ, Lan YY, Chu CY, Wang YK, Lee YP, Chang HY, Huang BM. Arsenic compounds induce apoptosis by activating the MAPK and caspase pathways in FaDu oral squamous carcinoma cells. Int J Oncol 2022; 60:18. [PMID: 35029282 DOI: 10.3892/ijo.2022.5308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022] Open
Abstract
For a number of years, oral cancer has remained in the top ten most common types of cancer, with an incidence rate that is steadily increasing. In total, ~75% oral cancer cases are associated with lifestyle factors, including uncontrolled alcohol consumption, betel and tobacco chewing, and the excessive use of tobacco. Notably, betel chewing is highly associated with oral cancer in Southeast Asia. Arsenic is a key environmental toxicant; however, arsenic trioxide has been used as a medicine for the treatment of acute promyelocytic leukemia, highlighting its anticancer properties. The present study aimed to investigate the role of arsenic compounds in the treatment of cancer, using FaDu oral squamous carcinoma cells treated with sodium arsenite (NaAsO2) and dimethyl arsenic acid (DMA). The results demonstrated that FaDu cells exhibited membrane blebbing phenomena and high levels of apoptosis following treatment with 10 µM NaAsO2 and 1 mM DMA for 24 h. The results of cell viability assay demonstrated that the rate of FaDu cell survival was markedly reduced as the concentration of arsenic compounds increased from 10 to 100 µM NaAsO2, and 1 to 100 mM DMA. Moreover, flow cytometry was carried out to further examine the effects of arsenic compounds on FaDu cell cycle regulation; the results revealed that treatment with NaAsO2 and DMA led to a significant increase in the percentage of FaDu cells in the sub‑G1 and G2/M phases of the cell cycle. An Annexin V/PI double staining assay was subsequently performed to verify the levels of FaDu cell apoptosis following treatment with arsenic compounds. Furthermore, the results of the western blot analyses revealed that the expression levels of caspase‑8, ‑9 and ‑3, and poly ADP‑ribose polymerase, as well the levels of phosphorylated JNK and ERK1/2 were increased following treatment with NaAsO2 and DMA in the FaDu cells. On the whole, the results of the present study revealed that treatment with NaAsO2 and DMA promoted the apoptosis of FaDu oral cancer cells, by activating MAPK pathways, as well as the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Yu-Yan Lan
- Department of Nursing, Shu‑Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Chiao-Yun Chu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| |
Collapse
|
6
|
Cyclometalated Ru(II) β-carboline complexes induce cell cycle arrest and apoptosis in human HeLa cervical cancer cells via suppressing ERK and Akt signaling. J Biol Inorg Chem 2021; 26:793-808. [PMID: 34459988 DOI: 10.1007/s00775-021-01894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Two new cyclometalated Ru(II)-β-carboline complexes, [Ru(dmb)2(Cl-Ph-βC)](PF6) (dmb = 4,4'-dimethyl-2,2'-bipyridine; Cl-Ph-βC = Cl-phenyl-9H-pyrido[3,4-b]indole; RuβC-3) and [Ru(bpy)2(Cl-Ph-βC)](PF6) (bpy = 2,2'-bipyridine; RuβC-4) were synthesized and characterized. The Ru(II) complexes display high cytotoxicity against HeLa cells, the stabilized human cervical cancer cell, with IC50 values of 3.2 ± 0.4 μM (RuβC-3) and 4.1 ± 0.6 μM (RuβC-4), which were considerably lower than that of non-cyclometalated Ru(II)-β-carboline complex [Ru(bpy)2(1-Py-βC)] (PF6)2 (61.2 ± 3.9 μM) by 19- and 15-folds, respectively. The mechanism studies indicated that both Ru(II) complexes could significantly inhibit HeLa cell migration and invasion, and effectively induce G0/G1 cell cycle arrest. The new Ru(II) complexes could also trigger apoptosis through activating caspase-3 and poly (ADP-ribose) polymerase (PARP), increasing the Bax/Bcl-2 ratio, enhancing reactive oxygen species (ROS) generation, decreasing mitochondrial membrane potential (MMP), and inducing cytochrome c release from mitochondria. Further research revealed that RuβC-3 could deactivate the ERK/Akt signaling pathway thus inhibiting HeLa cell invasion and migration, and inducing apoptosis. In addition, RuβC-3-induced apoptosis in HeLa cells was closely associated with the increase of intracellular ROS levels, which may act as upstream factors to regulate ERK and Akt pathways. More importantly, RuβC-3 exhibited low toxicity on both normal BEAS-2B cells in vitro and zebrafish embryos in vivo. Consequently, the developed Ru(II) complexes have great potential on developing novel low-toxic anticancer drugs.
Collapse
|
7
|
Seo M, Kim H, Lee JH, Park JW. Pelargonidin ameliorates acetaminophen-induced hepatotoxicity in mice by inhibiting the ROS-induced inflammatory apoptotic response. Biochimie 2019; 168:10-16. [PMID: 31669604 DOI: 10.1016/j.biochi.2019.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
The common analgesic acetaminophen (N-acetyl-p-aminophenol, APAP) is non-toxic to the liver at therapeutic doses. However, an overdose of APAP can lead to APAP-induced liver failure, which has emerged as a serious issue in the US and Europe. Pelargonidin is an anthocyanidin found in pomegranates, plums, and various berries. Pelargonidin has strong antioxidant effects, directly scavenging superoxide radicals and inhibiting H₂O₂-induced lipid peroxidation. Focusing on these effects, we studied the preventative effect of pelargonidin on APAP-induced hepatotoxicity and its underlying mechanisms in vivo. We observed that pelargonidin mitigates serum alanine aminotransferase and aspartate aminotransferase activity, which are strongly associated with APAP-induced hepatotoxicity. We also found that pelargonidin reduced APAP-induced hepatic necrosis by removing excessive ROS. Hepatic necrosis stimulates the release of molecular pathogens that induce inflammation, which increases cell stress and can lead to apoptosis. Therefore, pelargonidin was able to reduce levels of necrosis, inflammation, and hepatocyte apoptosis. These results indicate that the administration of pelargonidin protects against APAP-induced hepatotoxicity and that it could be a novel protective strategy against APAP-induced liver failure.
Collapse
Affiliation(s)
- Minseok Seo
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | - Hyunjin Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea.
| |
Collapse
|
8
|
Liu S, He X, Man VH, Ji B, Liu J, Wang J. New application of in silico methods in identifying mechanisms of action and key components of anti-cancer herbal formulation YIV-906 (PHY906). Phys Chem Chem Phys 2019; 21:23501-23513. [PMID: 31617551 DOI: 10.1039/c9cp03803e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
YIV-906 (formally PHY906, KD018) is a four-herb formulation that is currently being developed to improve the therapeutic index and ameliorate the side effects of many chemotherapeutic drugs including sorafenib, irinotecan, and capecitabine. However, as a promising anti-cancer adjuvant, the molecular mechanism of action of YIV-906 remains unrevealed due to its multi-component and multi-target features. Since YIV-906 has been shown to induce apoptosis and autophagy in cancer cells through modulating the negative regulators of ERK1/2, namely DUSPs, it is of great interest to elucidate the key components that cause the therapeutic effect of YIV-906. In this work, we investigated the mechanism of YIV-906 inhibiting DUSPs, using a broad spectrum of molecular modelling techniques, including molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. In total, MD simulations and binding free energy calculations were performed for 99 DUSP-ligand complexes. We found that some herbal components or their metabolites could inhibit DUSPs. Based on the docking scores and binding free energies, the sulfation and glucuronidation metabolites of the S ingredient in YIV-906 play a leading role in inhibiting DUSPs, although several original herbal chemicals with carboxyl groups from the P and Z ingredients also make contributions to this inhibitory effect. It is not a surprise that the electrostatic interaction plays the dominant role in the ligand binding process, given the fact that several charged residues reside in the binding pockets of DUSPs. Our MD simulation results demonstrate that the sulfate moieties and carboxyl moieties of the advantageous ligands from YIV-906 can occupy the enzymes' catalytic sites, mimicking the endogenous phosphate substrates of DUSPs. As such, the ligand binding can inhibit the association of DUSPs and ERK1/2, which in turn reduces the dephosphorylation of ERK1/2 and causes cell cycle arrest in the tumor. Our modelling study provides useful insights into the rational design of highly potent anti-cancer drugs targeting DUSPs. Finally, we have demonstrated that multi-scale molecular modelling techniques are able to elucidate molecular mechanisms involving complex molecular systems.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Pharmacy, Computational Chemical Genomics Screening Center, University of Pittsburgh, 3501 Terrace St, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Braga SS. Multi-target drugs active against leishmaniasis: A paradigm of drug repurposing. Eur J Med Chem 2019; 183:111660. [PMID: 31514064 DOI: 10.1016/j.ejmech.2019.111660] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022]
Abstract
This mini-review focuses on leishmanicidal drugs that were sourced from small molecules previously approved for other diseases. The mechanisms of action of these molecules are herein explored, to probe the origins of their inter-species growth inhibitory activities. It is shown how the transversal action of the azoles - fluconazole, posaconazole and itraconazole - in both fungi and Leishmania is due to the occurrence of the same target, lanosterol 14-α-demethylase, in these two groups of species. In turn, the drugs miltefosine and amphotericin B are presented as truly multi-target agents, acting on small molecules, proteins, genes and even organelles. Steps towards future leishmanicidal drug candidates based on the multi-target strategy and on drug repurposing are also briefly presented.
Collapse
Affiliation(s)
- Susana Santos Braga
- QOPNA & LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Sale MJ, Balmanno K, Cook SJ. Resistance to ERK1/2 pathway inhibitors; sweet spots, fitness deficits and drug addiction. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:365-380. [PMID: 35582726 PMCID: PMC8992624 DOI: 10.20517/cdr.2019.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/12/2022]
Abstract
MEK1/2 inhibitors are clinically approved for the treatment of BRAF-mutant melanoma, where they are used in combination with BRAF inhibitors, and are undergoing evaluation in other malignancies. Acquired resistance to MEK1/2 inhibitors, including selumetinib (AZD6244/ARRY-142866), can arise through amplification of BRAFV600E or KRASG13D to reinstate ERK1/2 signalling. We have found that BRAFV600E amplification and selumetinib resistance are fully reversible following drug withdrawal. This is because resistant cells with BRAFV600E amplification become addicted to selumetinib to maintain a precise level of ERK1/2 signalling (2%-3% of total ERK1/2 active), that is optimal for cell proliferation and survival. Selumetinib withdrawal drives ERK1/2 activation outside of this critical "sweet spot" (~20%-30% of ERK1/2 active) resulting in a p57KIP2-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death with features of autophagy; these terminal responses select against cells with amplified BRAFV600E. ERK1/2-dependent p57KIP2 expression is required for loss of BRAFV600E amplification and determines the rate of reversal of selumetinib resistance. Growth of selumetinib-resistant cells with BRAFV600E amplification as tumour xenografts also requires the presence of selumetinib to "clamp" ERK1/2 activity within the sweet spot. Thus, BRAFV600E amplification confers a selective disadvantage or "fitness deficit" during drug withdrawal, providing a rationale for intermittent dosing to forestall resistance. Remarkably, selumetinib resistance driven by KRASG13D amplification/upregulation is not reversible. In these cells ERK1/2 reactivation does not inhibit proliferation but drives a ZEB1-dependent epithelial-to-mesenchymal transition that increases cell motility and promotes resistance to traditional chemotherapy agents. Our results reveal that the emergence of drug-addicted, MEKi-resistant cells, and the opportunity this may afford for intermittent dosing schedules ("drug holidays"), may be determined by the nature of the amplified driving oncogene (BRAFV600E vs. KRASG13D), further exemplifying the difficulties of targeting KRAS mutant tumour cells.
Collapse
Affiliation(s)
- Matthew J. Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kathryn Balmanno
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
11
|
Wu GJ, Pen J, Huang Y, An S, Liu Y, Yang Y, Hao Q, Guo XX, Xu TR. KAP1 inhibits the Raf-MEK-ERK pathway to promote tumorigenesis in A549 lung cancer cells. Mol Carcinog 2018; 57:1396-1407. [PMID: 29917268 DOI: 10.1002/mc.22853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/02/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
Aberrant activation of the Raf-MEK-ERK pathway has frequently been associated with various cancers, especially lung cancer. However, the key regulators of this pathway are largely unknown. Using functional proteomics screening, we found that KAP1 interacts with c-Raf. Knocking out KAP1 decreased c-Raf phosphorylation at serine 259 and increased its phosphorylation at serine 338, which activated MEK and ERK. We detected higher KAP1 expression in lung cancer tissues than in normal peri-tumoral tissues. KAP1 knockdown arrested A549 lung cancer cells in the G0/G1 phase of the cell cycle and attenuated cell growth, metastasis, the epithelial-mesenchymal transition, angiogenesis, stemness, and colony formation. Furthermore, knocking out KAP1 remarkably increased the susceptibility of A549 cells to the anti-cancer drug 5-Fluorouracil, which correlated with increasing ERK phosphorylation. In vivo xenograft experiments suggested that KAP1 deficiency significantly decreases the tumorigenicity of A549 cells. Taken together, our findings indicate that KAP1 acts as a key module in the c-Raf-interactome complex and regulates lung cancer development through the Raf-MEK-ERK pathway. Therefore, KAP1 may represent a potential diagnosis biomarker and new treatment target for lung cancer.
Collapse
Affiliation(s)
- Guo-Jin Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Pen
- The First People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Ying Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
12
|
NSC 95397 Suppresses Proliferation and Induces Apoptosis in Colon Cancer Cells through MKP-1 and the ERK1/2 Pathway. Int J Mol Sci 2018; 19:ijms19061625. [PMID: 29857489 PMCID: PMC6032145 DOI: 10.3390/ijms19061625] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/21/2023] Open
Abstract
NSC 95397, a quinone-based small molecule compound, has been identified as an inhibitor for dual-specificity phosphatases, including mitogen-activated protein kinase phosphatase-1 (MKP-1). MKP-1 is known to inactivate mitogen-activated protein kinases by dephosphorylating both of their threonine and tyrosine residues. Moreover, owing to their participation in tumorigenesis and drug resistance in colon cancer cells, MKP-1 is an attractive therapeutic target for colon cancer treatment. We therefore investigated the inhibitory activity of NSC 95397 against three colon cancer cell lines including SW480, SW620, and DLD-1, and their underlying mechanisms. The results demonstrated that NSC 95397 reduced cell viability and anchorage-independent growth of all the three colon cancer cell lines through inhibited proliferation and induced apoptosis via regulating cell-cycle-related proteins, including p21, cyclin-dependent kinases, and caspases. Besides, by using mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126, we provided mechanistic evidence that the antineoplastic effects of NSC 95397 were achieved via inhibiting MKP-1 activity followed by ERK1/2 phosphorylation. Conclusively, our results indicated that NSC 95397 might serve as an effective therapeutic intervention for colon cancer through regulating MKP-1 and ERK1/2 pathway.
Collapse
|
13
|
SIRT6 regulated nucleosomal occupancy affects Hexokinase 2 expression. Exp Cell Res 2017; 357:98-106. [DOI: 10.1016/j.yexcr.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022]
|
14
|
Ramos-Miguel A, García-Sevilla JA, Barr AM, Bayer TA, Falkai P, Leurgans SE, Schneider JA, Bennett DA, Honer WG, García-Fuster MJ. Decreased cortical FADD protein is associated with clinical dementia and cognitive decline in an elderly community sample. Mol Neurodegener 2017; 12:26. [PMID: 28320441 PMCID: PMC5360099 DOI: 10.1186/s13024-017-0168-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND FADD (Fas-associated death domain) adaptor is a crucial protein involved in the induction of cell death but also mediates non-apoptotic actions via a phosphorylated form (p-Ser194-FADD). This study investigated the possible association of FADD forms with age-related neuropathologies, cognitive function, and the odds of dementia in an elderly community sample. METHODS FADD forms were quantified by western blot analysis in dorsolateral prefrontal cortex (DLPFC) samples from a large cohort of participants in a community-based aging study (Memory and Aging Project, MAP), experiencing no-(NCI, n = 51) or mild-(MCI, n = 42) cognitive impairment, or dementia (n = 57). RESULTS Cortical FADD was lower in subjects with dementia and lower FADD was associated with a greater load of amyloid-β pathology, fewer presynaptic terminal markers, poorer cognitive function and increased odds of dementia. Together with the observations of FADD redistribution into tangles and dystrophic neurites within plaques in Alzheimer's disease brains, and its reduction in APP23 mouse cortex, the results suggest this multifunctional protein might participate in the mechanisms linking amyloid and tau pathologies during the course of the illness. CONCLUSIONS The present data suggests FADD as a putative biomarker for pathological processes associated with the course of clinical dementia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, Vancouver, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Jesús A. García-Sevilla
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Baleares, Palma de Mallorca, Spain
| | - Alasdair M. Barr
- BC Mental Health and Addictions Research Institute, Vancouver, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Thomas A. Bayer
- Department of Psychiatry, University Medicine Goettingen, Goettingen, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, USA
| | - William G. Honer
- BC Mental Health and Addictions Research Institute, Vancouver, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - M. Julia García-Fuster
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Baleares, Palma de Mallorca, Spain
| |
Collapse
|
15
|
Fong Y, Wu CY, Chang KF, Chen BH, Chou WJ, Tseng CH, Chen YC, Wang HMD, Chen YL, Chiu CC. Dual roles of extracellular signal-regulated kinase (ERK) in quinoline compound BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer cells. Cancer Cell Int 2017; 17:37. [PMID: 28286419 PMCID: PMC5339964 DOI: 10.1186/s12935-017-0403-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Background 2,9-Bis[2-(pyrrolidin-1-yl)ethoxy]-6-{4-[2-(pyrrolidin-1-yl)ethoxy] phenyl}-11H-indeno[1,2-c]quinoline-11-one (BPIQ), is a synthetic quinoline analog. A previous study showed the anti-cancer potential of BPIQ through modulating mitochondrial-mediated apoptosis. However, the effect of BPIQ on cell migration, an index of cancer metastasis, has not yet been examined. Furthermore, among signal pathways involved in stresses, the members of the mitogen-activated protein kinase (MAPK) family are crucial for regulating the survival and migration of cells. In this study, the aim was to explore further the role of MAPK members, including JNK, p38 and extracellular signal-regulated kinase (ERK) in BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer (NSCLC) cells. Methods Western Blot assay was performed for detecting the activation of MAPK members in NSCLC H1299 cells following BPIQ administration. Cellular proliferation was determined using a trypan blue exclusion assay. Cellular apoptosis was detected using flow cytometer-based Annexin V/propidium iodide dual staining. Cellular migration was determined using wound-healing assay and Boyden’s chamber assay. Zymography assay was performed for examining MMP-2 and -9 activities. The assessment of MAPK inhibition was performed for further validating the role of JNK, p38, and ERK in BPIQ-induced growth inhibition, apoptosis, and migration of NSCLC cells. Results Western Blot assay showed that BPIQ treatment upregulates the phosphorylated levels of both MAPK proteins JNK and ERK. However, only ERK inhibitor rescues BPIQ-induced growth inhibition of NSCLC H1299 cells. The results of Annexin V assay further confirmed the pro-apoptotic role of ERK in BPIQ-induced cell death of H1299 cells. The results of wound healing and Boyden chamber assays showed that sub-IC50 (sub-lethal) concentrations of BPIQ cause a significant inhibition of migration in H1299 cells accompanied with downregulating the activity of MMP-2 and -9, the motility index of cancer cells. Inhibition of ERK significantly enhances BPIQ-induced anti-migration of H1299 cells. Conclusions Our results suggest ERK may play dual roles in BPIQ-induced apoptosis and anti-migration, and it would be worthwhile further developing strategies for treating chemoresistant lung cancers through modulating ERK activity. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0403-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Fong
- Department of Thoracic Surgery, Chi-Mei Medical Center, Tainan, 710 Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804 Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Kuo-Feng Chang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan.,The Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
| | - Wan-Ju Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804 Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan.,Translational Research Center, Cancer Center and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807 Taiwan.,Research Center for Environment Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| |
Collapse
|
16
|
Ghildiyal R, Sen E. CK2 induced RIG-I drives metabolic adaptations in IFNγ-treated glioma cells. Cytokine 2017; 89:219-228. [PMID: 26631910 DOI: 10.1016/j.cyto.2015.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/06/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022]
Abstract
Given the known anti-tumorigenic properties of IFNγ, its effect on glioma cell survival was investigated. Though IFNγ had no effect on glioma cell viability, it induced cell cycle arrest. This was accompanied by increased expression of p53 and retinoic acid inducible gene (RIG-I). While RIG-I had no effect on glioma cell survival, it increased expression of p53 and its downstream target TP53 induced glycolysis and apoptosis regulator (TIGAR). IFNγ induced mitochondrial co-localization of RIG-I was concomitant with its ability to regulate ROS generation, oxidative phosphorylation (OXPHOS) and key enzymes involved in glycolysis and pentose phosphate pathway. Importantly, metabolic gene profiling indicated a suppressed glycolytic pathway in glioma cells upon IFNγ treatment. In addition, IFNγ mediated increase in casein kinase 2 (CK2) expression positively regulated RIG-I expression. These findings demonstrate how IFNγ induced CK2 regulates RIG-I to drive a complex program of metabolic adaptation and redox homeostasis, crucial for determining glioma cell fate.
Collapse
Affiliation(s)
- Ruchi Ghildiyal
- National Brain Research Centre, Manesar 122 051, Haryana, India
| | - Ellora Sen
- National Brain Research Centre, Manesar 122 051, Haryana, India.
| |
Collapse
|
17
|
Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, Taliani S, Trincavelli ML, Martini C. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget 2016; 7:7866-84. [PMID: 26761214 PMCID: PMC4884960 DOI: 10.18632/oncotarget.6872] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/03/2016] [Indexed: 12/16/2022] Open
Abstract
The development of multi-target drugs and irreversible modulators of deregulated signalling proteins is the major challenge for improving glioblastoma multiforme (GBM) treatment. Reversible single-target drugs are not sufficient to sustain a therapeutic effect over time and may favour the activation of alternative signalling pathways and the onset of resistance phenomena. Thus, a multi-target compound that has a long-lasting mechanism of action might have a greater and longer life span of anti-proliferative activity. Recently, a dual-target indol-3ylglyoxyldipeptide derivative, designed to bind to the Translocator Protein (TSPO) and reactivate p53 function via dissociation from its physiological inhibitor, murine double minute 2 (MDM2), has been developed as a potent GBM pro-apoptotic agent. In this study, this derivative was chemically modified to irreversibly bind MDM2 and TSPO. The new compound elicited a TSPO-mediated mitochondrial membrane dissipation and restored p53 activity, triggering a long-lasting apoptosis of GBM cells. These effects were sustained over time, involved a stable activation of extracellular signal regulated kinases and were specifically observed in cancer cells, in which these protein kinases are deregulated. Dual-targeting and irreversible binding properties combined in the same molecule may represent a useful strategy to overcome the time-limited effects elicited by classical chemotherapies.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
18
|
Xie Y, Liu D, Cai C, Chen X, Zhou Y, Wu L, Sun Y, Dai H, Kong X, Liu P. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. Int J Nanomedicine 2016; 11:3557-70. [PMID: 27536098 PMCID: PMC4973727 DOI: 10.2147/ijn.s105575] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The application of Fe3O4 nanoparticles (NPs) has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mechanisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm). Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application.
Collapse
Affiliation(s)
- Yuexia Xie
- Central Laboratory; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huili Dai
- Central Laboratory; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute
| | - Xianming Kong
- Central Laboratory; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute
| | - Peifeng Liu
- Central Laboratory; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute
| |
Collapse
|
19
|
Investigation of inducing apoptosis in human lung cancer A549 cells and related mechanism of a ruthenium(II) polypyridyl complex. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Ren H, Li Y, Jiang H, Du M. Interferon-Gamma and Fas Are Involved in Porphyromonas gingivalis-Induced Apoptosis of Human Extravillous Trophoblast-Derived HTR8/SVneo Cells via Extracellular Signal-Regulated Kinase 1/2 Pathway. J Periodontol 2016; 87:e192-e199. [PMID: 27353438 DOI: 10.1902/jop.2016.160259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND A number of studies recently revealed a link between periodontal disease and preterm birth (PTB). PTB can be induced by dental infection with Porphyromonas gingivalis (Pg), a periodontopathic bacterium. This study aims to investigate responses of human extravillous trophoblast-derived HTR8/SVneo cells to Pg infection. METHODS Cell apoptosis, cell viability, protein expression, and cytokine production in HTR8 cells were measured via: 1) flow cytometry, 2) CCK-8 assay, 3) western blot, and 4) enzyme-linked immunosorbent assay methods, respectively. RESULTS Pg decreased cell viability and increased cell apoptosis, active caspase-3 and Fas expression, and interferon-gamma (IFN-γ) secretion in HTR8 cells. Extracellular signal-regulated kinase (ERK) 1/2 inhibitor U0126 and FasL neutralizing antibody NOK1 that blocks FasL/Fas interaction both significantly suppressed Pg-induced apoptosis. U0126 also inhibited IFN-γ secretion and Fas expression close to control levels. Moreover, treatment with recombinant IFN-γ also significantly decreased number of viable HTR8 cells and increased Fas expression, suggesting IFN-γ may play an important role in Pg-induced apoptosis of HTR8 cells, at least partially through regulation of Fas expression. CONCLUSIONS To the best of the authors' knowledge, this is the first study to demonstrate Pg induces IFN-γ secretion, Fas expression, and apoptosis in human extravillous trophoblast-derived HTR8/SVneo cells in an ERK1/2-dependent manner, and IFN-γ (explored by recombinant IFN-γ) and Fas are involved in Pg-induced apoptosis. The finding that Pg infection abnormally regulates inflammation and apoptosis of human trophoblasts may give new insights into the possible link of PTB with maternal periodontal disease and periodontal pathogens.
Collapse
Affiliation(s)
- Hongyu Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Fu J, Yuan D, Xiao L, Tu W, Dong C, Liu W, Shao C. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways. Mutat Res 2015; 783:1-8. [PMID: 26613333 DOI: 10.1016/j.mrfmmm.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022]
Abstract
Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.
Collapse
Affiliation(s)
- Jiamei Fu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Linlin Xiao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Weili Liu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
22
|
Pandey V, Bhaskara VK, Babu PP. Implications of mitogen-activated protein kinase signaling in glioma. J Neurosci Res 2015; 94:114-27. [PMID: 26509338 DOI: 10.1002/jnr.23687] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/22/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
Gliomas are the most common primary central nervous system tumors. Gliomas originate from astrocytes, oligodendrocytes, and neural stem cells or their precursors. According to WHO classification, gliomas are classified into four different malignant grades ranging from grade I to grade IV based on histopathological features and related molecular aberrations. The induction and maintenance of these tumors can be attributed largely to aberrant signaling networks. In this regard, the mitogen-activated protein kinase (MAPK) network has been widely studied and is reported to be severely altered in glial tumors. Mutations in MAPK pathways most frequently affect RAS and B-RAF in the ERK, c-Jun N-terminal kinase (JNK), and p38 pathways leading to malignant transformation. Also, it is linked to both inherited and sequential accumulations of mutations that control receptor tyrosine kinase (RTK)-activated signal transduction pathways, cell cycle growth arrest pathways, and nonresponsive cell death pathways. Genetic alterations that modulate RTK signaling can also alter several downstream pathways, including RAS-mediated MAP kinases along with JNK pathways, which ultimately regulate cell proliferation and cell death. The present review focuses on recent literature regarding important deregulations in the RTK-activated MAPK pathway during gliomagenesis and progression.
Collapse
Affiliation(s)
- Vimal Pandey
- Laboratory of Neuroscience, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, AP, India
| | - Vasantha Kumar Bhaskara
- Laboratory of Neuroscience, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, AP, India
| | - Phanithi Prakash Babu
- Laboratory of Neuroscience, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, AP, India
| |
Collapse
|
23
|
Lam W, Jiang Z, Guan F, Huang X, Hu R, Wang J, Bussom S, Liu SH, Zhao H, Yen Y, Cheng YC. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci Rep 2015; 5:9384. [PMID: 25819872 PMCID: PMC4377583 DOI: 10.1038/srep09384] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022] Open
Abstract
PHY906 (KD018) is a four-herb Chinese Medicine Formula. It has been shown to potentially enhance the therapeutic indices of different class anticancer agents in vivo. Here, PHY906 is reported to enhance the anti-tumor activity of Sorafenib in nude mice bearing HepG2 xenografts. Among the four herbal ingredients of PHY906, Scutellaria baicalensis Georgi (S) and Paeonia lactiflora Pall (P) are required; however, S plays a more important role than P in increasing tumor apoptosis induced by Sorafenib with an increase of mouse(m)FasL and human(h)FasR expression. PHY906 may potentiate Sorafenib action by increasing hMCP1 expression and enhancing infiltration of macrophages into tumors with a higher M1/M2 (tumor rejection) signature expression pattern, as well as affect autophagy by increasing AMPKα-P and ULK1-S555-P of tumors. Depletion of macrophage could counteract PHY906 to potentiate the anti-tumor activity of Sorafenib. It was reported that tumor cells with higher levels of ERK1/2-P are more susceptible to Sorafenib, and the S component of PHY906 may increase ERK1/2-P via inhibition of ERK1/2 phosphatase in HepG2 tumors. PHY906 may potentiate the anti-hepatoma activity of Sorafenib by multiple mechanisms targeting on the inflammatory state of microenvironment of tumor tissue through two major ingredients (P and S) of PHY906.
Collapse
Affiliation(s)
- Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Zaoli Jiang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Xiu Huang
- Department of Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Rong Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Jing Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Scott Bussom
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | - Hongyu Zhao
- Department of Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Yun Yen
- Department of Molecular Pharmacology. City of Hope, Duarte, California, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
24
|
Akil H, Abbaci A, Lalloué F, Bessette B, Costes LMM, Domballe L, Charreau S, Guilloteau K, Karayan-Tapon L, Bernard FX, Morel F, Jauberteau MO, Lecron JC. IL22/IL-22R pathway induces cell survival in human glioblastoma cells. PLoS One 2015; 10:e0119872. [PMID: 25793261 PMCID: PMC4368808 DOI: 10.1371/journal.pone.0119872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM). Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.
Collapse
Affiliation(s)
- Hussein Akil
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Amazigh Abbaci
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Fabrice Lalloué
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Barbara Bessette
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Léa M. M. Costes
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Linda Domballe
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Sandrine Charreau
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Karline Guilloteau
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- BIOalternatives, Gençay, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Marie-Odile Jauberteau
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- Service Immunologie et inflammation, CHU de Poitiers, Poitiers, France
| |
Collapse
|
25
|
Cumaoglu A, Dayan S, Agkaya AO, Ozkul Z, Ozpozan NK. Synthesis and pro-apoptotic effects of new sulfonamide derivatives via activating p38/ERK phosphorylation in cancer cells. J Enzyme Inhib Med Chem 2014; 30:413-9. [DOI: 10.3109/14756366.2014.940938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
26
|
Baek MW, Seong KJ, Jeong YJ, Kim GM, Park HJ, Kim SH, Chung HJ, Kim WJ, Jung JY. Nitric oxide induces apoptosis in human gingival fibroblast through mitochondria-dependent pathway and JNK activation. Int Endod J 2014; 48:287-97. [DOI: 10.1111/iej.12314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/19/2014] [Indexed: 01/04/2023]
Affiliation(s)
- M.-W. Baek
- Department of Oral Physiology; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| | - K.-J. Seong
- Department of Oral Physiology; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| | - Y.-J. Jeong
- Department of Oral Physiology; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| | - G.-M. Kim
- Department of Oral Physiology; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| | - H.-J. Park
- Department of Oral and Maxillofacial Surgery; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| | - S.-H. Kim
- Department of Oral Anatomy; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| | - H.-J. Chung
- Department of Periodontology; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| | - W.-J. Kim
- Department of Oral Physiology; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| | - J.-Y. Jung
- Department of Oral Physiology; Dental Science Research Institute and Medical Research Center for Biomineralization Disorders; School of Dentistry; Chonnam National University; Gwangju South Korea
| |
Collapse
|
27
|
Cordero-Herrera I, Martín MA, Bravo L, Goya L, Ramos S. Epicatechin gallate induces cell death via p53 activation and stimulation of p38 and JNK in human colon cancer SW480 cells. Nutr Cancer 2014; 65:718-28. [PMID: 23859040 DOI: 10.1080/01635581.2013.795981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tea flavonoid epicatechin gallate (ECG) exhibits a wide range of biological activities. In this study, the in vitro anticancer effects of ECG on SW480 colon cancer cell line was investigated by analyzing the cell cycle, apoptosis, key proteins involved in cellular survival/proliferation, namely AKT/phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinases (MAPKs), and the role of p53 in these processes. ECG induced cell cycle arrest at the G0/G1-S phase border associated with the stimulation of p21, p-p53, and p53 and the suppression of cyclins D1 and B1. Exposure of SW480 cells to ECG also led to apoptosis as determined by time-dependent changes in caspase-3 activity, MAPKs [extracellular regulated kinase (ERK), p38, and c-jun amino-terminal kinase (JNK)], p21 and p53 activation, and AKT inhibition. The presence of pifithrin, an inhibitor of p53 function, blocked ECG-induced apoptosis as was manifested by restored cell viability and caspase-3 activity to control values and reestablished the balance among Bcl-2 anti- and proapoptotic protein levels. Interestingly, ECG also inhibited p53 protein and RNA degradation, contributing to the stabilization of p53. In addition, JNK and p38 have been identified as necessary for ECG-induced apoptosis, upon activation by p53. The results suggest that the activation of the p53-p38/JNK cascade is required for ECG-induced cell death in SW480 cells.
Collapse
Affiliation(s)
- Isabel Cordero-Herrera
- Department of Metabolism and Nutrition, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Guggulsterone sensitizes glioblastoma cells to Sonic hedgehog inhibitor SANT-1 induced apoptosis in a Ras/NFκB dependent manner. Cancer Lett 2013; 336:347-58. [PMID: 23548480 DOI: 10.1016/j.canlet.2013.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/24/2022]
Abstract
Since Shh pathway effector, Gli1, is overexpressed in gliomas, we investigated the effect of novel Shh inhibitor SANT-1 on glioma cell viability. Though SANT-1 failed to induce apoptosis, it reduced proliferation of glioma stem-like cells. Apart from canonical Shh cascade, Gli1 is also induced by non-canonical pathways including NFκB. Therefore, a combinatorial strategy with Ras/NFκB inhibitor, Guggulsterone, was employed to enhance effectiveness of SANT-1. Guggulsterone inhibited Ras and NFκB activity and sensitized cells to SANT-1 induced apoptosis via intrinsic apoptotic mechanism. Inhibition of either Ras or NFκB activity was sufficient to sensitize cells to SANT-1. Guggulsterone induced ERK activation also contributed to Caspase-9 activation. Since SANT-1 and Guggulsterone differentially target stem-like and non-stem glioma cells respectively, this combination warrants investigation as an effective anti-glioma therapy.
Collapse
|
29
|
Gupta P, Ghosh S, Nagarajan A, Mehta VS, Sen E. β-defensin-3 negatively regulates TLR4–HMGB1 axis mediated HLA-G expression in IL-1β treated glioma cells. Cell Signal 2013; 25:682-9. [DOI: 10.1016/j.cellsig.2012.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/18/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022]
|
30
|
Gupta P, Dixit D, Sen E. Oncrasin targets the JNK-NF-κB axis to sensitize glioma cells to TNFα-induced apoptosis. Carcinogenesis 2012; 34:388-96. [DOI: 10.1093/carcin/bgs352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
31
|
Ghildiyal R, Dixit D, Sen E. EGFR inhibitor BIBU induces apoptosis and defective autophagy in glioma cells. Mol Carcinog 2012; 52:970-82. [PMID: 22753156 DOI: 10.1002/mc.21938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 01/17/2023]
Abstract
The importance of aberrant EGFR signaling in glioblastoma progression and the promise of EGFR-specific therapies, prompted us to determine the efficacy of novel EGFR inhibitor BIBU-1361 [(3-chloro-4-fluoro-phenyl)-[6-(4-diethylaminomethyl-piperidin-1-yl)-pyrimido [5,4-d]pyrimidin-4-yl]-amine] in affecting glioma survival. BIBU induced apoptosis in a caspase-dependent manner and induced cell cycle arrest in glioma cells. Apoptosis was accompanied by decreased EGFR levels and its increased distribution towards caveolin rich lipid raft microdomains. BIBU inhibited pro-survival pathways Akt/mTOR and gp130/JAK/STAT3; and decreased levels of pro-inflammatory cytokine IL-6. BIBU caused increased LC3-I to LC3-II conversion and triggered the internalization of EGFR within vacuoles along with its increased co-localization with LC3-II. BIBU caused accumulation of p62 and increased levels of cleaved forms of Beclin-1 in all the cell lines tested. Importantly, BIBU failed to initiate execution of autophagy as pharmacological inhibition of autophagy with 3-Methyladenine or Bafilomycin failed to rescue BIBU mediated death. The ability of BIBU to abrogate Akt and STAT3 activation, induce apoptosis and prevent execution of autophagy warrants its investigation as a potent anti-glioma target.
Collapse
Affiliation(s)
- Ruchi Ghildiyal
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | | | | |
Collapse
|
32
|
TNFα regulates the localization of CD40 in lipid rafts of glioma cells. Mol Biol Rep 2012; 39:8695-9. [PMID: 22699883 DOI: 10.1007/s11033-012-1726-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
Resistance of glioblastoma multiforme (GBM) to TNFα induced apoptosis is attributed to NFκB activation. As TNF-receptor family member CD40 regulates NFκB activation, we investigated the role of CD40 in NFκB activation in GBM. We observed elevated CD40 levels in human glioma samples as compared to the surrounding normal tissue. Treatment with TNFα elevated CD40 levels in glioma cells and inhibition of CD40 signaling failed to abrogate TNFα induced NFκΒ activity. While TNFα increased the interaction between TRAF2/6, IκBα, IKKα/β in the CD40 signalosome, the level of CD40 in the signalosome remained unaffected upon TNFα treatment. Interestingly, TNFα decreased the spatial localization of CD40 and increased TRAF2/6 co-localization with lipid raft marker Caveolin. As localization of CD40 signalosome in lipid raft is crucial for NFκB activation, TNFα mediated decreased clustering of CD40 in lipid rafts could have possibly contributed to its non-involvement in NFκB activation.
Collapse
|
33
|
Schattenberg JM, Wörns MA, Zimmermann T, He YW, Galle PR, Schuchmann M. The role of death effector domain-containing proteins in acute oxidative cell injury in hepatocytes. Free Radic Biol Med 2012; 52:1911-7. [PMID: 22406316 PMCID: PMC3341470 DOI: 10.1016/j.freeradbiomed.2012.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/20/2012] [Accepted: 02/24/2012] [Indexed: 01/23/2023]
Abstract
Apoptosis is a mechanism that regulates hepatic tissue homeostasis and contributes to both acute and chronic injury in liver disease. The apoptotic signaling cascade involves activation of the death-inducing signaling complex (DISC) and subsequent recruitment of proteins containing death effector domains (DED), which regulate downstream effector molecules. Prominent among these are the Fas-associated death domain (FADD) and the cellular caspase 8-like inhibitory protein (cFLIP), and alterations in these proteins can lead to severe disruption of physiological processes, including acute liver failure or hepatocellular carcinoma. Their role in cell signaling events independent of the DISC remains undetermined. Oxidative stress can cause cell injury from direct effects on molecules or by activating intracellular signaling pathways including the mitogen-activated protein kinases (MAPKs). In this context, prolonged activation of the cJun N-terminal kinase (JNK)/AP-1/cJun signaling pathway promotes hepatocellular apoptosis, whereas activation of the extracellular signal-regulated kinase (Erk) exerts protection. We investigated the roles of FADD and cFLIP in acute oxidant stress induced by the superoxide generator menadione in hepatocytes. Menadione resulted in dose-dependent predominantly necrotic cell death. Hepatocytes expressing a truncated, dominant-negative FADD protein were partially protected, whereas cFLIP-deficient hepatocytes displayed increased cell death from menadione. In parallel, Erk phosphorylation was enhanced in hepatocytes expressing dnFADD and decreased in cFLIP-deficient hepatocytes. Hepatocyte injury was accompanied by increased release of proapoptotic factors and increased JNK/cJun activation. Thus, FADD and cFLIP contribute to the regulation of cell death from acute oxidant stress in hepatocytes involving MAPK signaling. This implies that DED-containing proteins are involved in the regulation of cellular survival beyond their role in cell death receptor-ligand-mediated apoptosis.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- I. Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, 55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Coelho AC, Boisvert S, Mukherjee A, Leprohon P, Corbeil J, Ouellette M. Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing. PLoS Negl Trop Dis 2012; 6:e1512. [PMID: 22348164 PMCID: PMC3279362 DOI: 10.1371/journal.pntd.0001512] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023] Open
Abstract
Background Miltefosine (MF) is the first oral compound used in the chemotherapy against leishmaniasis. Since the mechanism of action of this drug and the targets of MF in Leishmania are unclear, we generated in a step-by-step manner Leishmania major promastigote mutants highly resistant to MF. Two of the mutants were submitted to a short-read whole genome sequencing for identifying potential genes associated with MF resistance. Methods/Principal Findings Analysis of the genome assemblies revealed several independent point mutations in a P-type ATPase involved in phospholipid translocation. Mutations in two other proteins—pyridoxal kinase and α-adaptin like protein—were also observed in independent mutants. The role of these proteins in the MF resistance was evaluated by gene transfection and gene disruption and both the P-type ATPase and pyridoxal kinase were implicated in MF susceptibility. The study also highlighted that resistance can be highly heterogeneous at the population level with individual clones derived from this population differing both in terms of genotypes but also susceptibility phenotypes. Conclusions/Significance Whole genome sequencing was used to pinpoint known and new resistance markers associated with MF resistance in the protozoan parasite Leishmania. The study also demonstrated the polyclonal nature of a resistant population with individual cells with varying susceptibilities and genotypes. Leishmania spp. are parasitic protozoa responsible for a spectrum of diseases known as leishmaniasis. There are few drugs available for the treatment of these diseases, and miltefosine is the first oral drug used in treatment of visceral leishmaniasis, a form of the disease that can be lethal if not treated. In this study, we seek to understand the mechanism of action and identify targets of the drug by generating promastigote mutants highly resistant to miltefosine. Two independent mutants were submitted to short read whole genome sequencing. Genome analysis of these mutants has permitted us to identify point mutations in three genes (P-type ATPase, pyridoxal kinase and α-adaptin like protein) that were also present in other independent miltefosine resistant mutants. Some of the new genes identified here could be useful as potential markers for miltefosine resistance in Leishmania. Moreover, our approach has permitted us to highlight that resistance can be highly heterogeneous at the population level with individual clones derived from this population differing both in terms of genotypes but also susceptibility phenotypes. This may have practical applications while studying resistance.
Collapse
Affiliation(s)
- Adriano C. Coelho
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | | | - Angana Mukherjee
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Jacques Corbeil
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
35
|
Das S, Dutta K, Kumawat KL, Ghoshal A, Adhya D, Basu A. Abrogated inflammatory response promotes neurogenesis in a murine model of Japanese encephalitis. PLoS One 2011; 6:e17225. [PMID: 21390230 PMCID: PMC3048396 DOI: 10.1371/journal.pone.0017225] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/26/2011] [Indexed: 01/19/2023] Open
Abstract
Background Japanese encephalitis virus (JEV) induces neuroinflammation with typical features of viral encephalitis, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. The detrimental effects of inflammation on neurogenesis have been reported in various models of acute and chronic inflammation. We investigated whether JEV-induced inflammation has similar adverse effects on neurogenesis and whether those effects can be reversed using an anti-inflammatory compound minocycline. Methodology/Principal Findings Here, using in vitro studies and mouse models, we observed that an acute inflammatory milieu is created in the subventricular neurogenic niche following Japanese encephalitis (JE) and a resultant impairment in neurogenesis occurs, which can be reversed with minocycline treatment. Immunohistological studies showed that proliferating cells were replenished and the population of migrating neuroblasts was restored in the niche following minocycline treatment. In vitro, we checked for the efficacy of minocycline as an anti-inflammatory compound and cytokine bead array showed that production of cyto/chemokines decreased in JEV-activated BV2 cells. Furthermore, mouse neurospheres grown in the conditioned media from JEV-activated microglia exhibit arrest in both proliferation and differentiation of the spheres compared to conditioned media from control microglia. These effects were completely reversed when conditioned media from JEV-activated and minocycline treated microglia was used. Conclusion/Significance This study provides conclusive evidence that JEV-activated microglia and the resultant inflammatory molecules are anti-proliferative and anti-neurogenic for NSPCs growth and development, and therefore contribute to the viral neuropathogenesis. The role of minocycline in restoring neurogenesis may implicate enhanced neuronal repair and attenuation of the neuropsychiatric sequelae in JE survivors.
Collapse
Affiliation(s)
- Sulagna Das
- National Brain Research Centre, Manesar, Haryana, India
| | - Kallol Dutta
- National Brain Research Centre, Manesar, Haryana, India
| | | | - Ayan Ghoshal
- National Brain Research Centre, Manesar, Haryana, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
- * E-mail:
| |
Collapse
|
36
|
Aguilar-Morante D, Morales-Garcia JA, Sanz-SanCristobal M, Garcia-Cabezas MA, Santos A, Perez-Castillo A. Inhibition of glioblastoma growth by the thiadiazolidinone compound TDZD-8. PLoS One 2010; 5:e13879. [PMID: 21079728 PMCID: PMC2975629 DOI: 10.1371/journal.pone.0013879] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/19/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Thiadiazolidinones (TDZD) are small heterocyclic compounds first described as non-ATP competitive inhibitors of glycogen synthase kinase 3β (GSK-3β). In this study, we analyzed the effects of 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), on murine GL261 cells growth in vitro and on the growth of established intracerebral murine gliomas in vivo. METHODOLOGY/PRINCIPAL FINDINGS Our data show that TDZD-8 decreased proliferation and induced apoptosis of GL261 glioblastoma cells in vitro, delayed tumor growth in vivo, and augmented animal survival. These effects were associated with an early activation of extracellular signal-regulated kinase (ERK) pathway and increased expression of EGR-1 and p21 genes. Also, we observed a sustained activation of the ERK pathway, a concomitant phosphorylation and activation of ribosomal S6 kinase (p90RSK) and an inactivation of GSK-3β by phosphorylation at Ser 9. Finally, treatment of glioblastoma stem cells with TDZD-8 resulted in an inhibition of proliferation and self-renewal of these cells. CONCLUSIONS/SIGNIFICANCE Our results suggest that TDZD-8 uses a novel mechanism to target glioblastoma cells, and that malignant progenitor population could be a target of this compound.
Collapse
Affiliation(s)
- Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Angel Morales-Garcia
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Angel Santos
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
37
|
Das S, Chakraborty S, Basu A. Critical role of lipid rafts in virus entry and activation of phosphoinositide 3′ kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. J Neurochem 2010; 115:537-49. [DOI: 10.1111/j.1471-4159.2010.06951.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Sharma V, Koul N, Joseph C, Dixit D, Ghosh S, Sen E. HDAC inhibitor, scriptaid, induces glioma cell apoptosis through JNK activation and inhibits telomerase activity. J Cell Mol Med 2010; 14:2151-61. [PMID: 19583803 PMCID: PMC3823006 DOI: 10.1111/j.1582-4934.2009.00844.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study identified a novel mechanism of induction of apoptosis in glioblastoma cells by scriptaid – a histone deacetylase (HDAC) inhibitor. Scriptaid reduced glioma cell viability by increasing Jun N-terminal kinase (JNK) activation. Although scriptaid induced activation of both p38MAPK and JNK, it was the inhibition of JNK that attenuated scriptaid-induced apoptosis significantly. Scriptaid also increased the expression of (i) p21 and p27 involved in cell-cycle regulation and (ii) γH2AX associated with DNA damage response in a JNK-dependent manner. Treatment with scriptaid increased Ras activity in glioma cells, and transfection of cells with constitutively active RasV12 further sensitized glioma cells to scriptaid-induced apoptosis. Scriptaid also inhibited telomerase activity independent of JNK. Taken together, our findings indicate that scriptaid (i) induces apoptosis and reduces glioma cell proliferation by elevating JNK activation and (ii) also decreases telomerase activity in a JNK-independent manner.
Collapse
Affiliation(s)
- Vivek Sharma
- National Brain Research Centre, Manesar, Haryana, India
| | | | | | | | | | | |
Collapse
|
39
|
Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J 2009; 277:2-21. [PMID: 19843174 DOI: 10.1111/j.1742-4658.2009.07366.x] [Citation(s) in RCA: 999] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras/Raf/extracellular signal-regulated kinase (ERK) signaling pathway plays a crucial role in almost all cell functions and therefore requires exquisite control of its spatiotemporal activity. Depending on the cell type and stimulus, ERK activity will mediate different antiproliferative events, such as apoptosis, autophagy and senescence in vitro and in vivo. ERK activity can promote either intrinsic or extrinsic apoptotic pathways by induction of mitochondrial cytochrome c release or caspase-8 activation, permanent cell cycle arrest or autophagic vacuolization. These unusual effects require sustained ERK activity in specific subcellular compartments and could depend on the presence of reactive oxygen species. We will summarize the mechanisms involved in Ras/Raf/ERK antiproliferative functions.
Collapse
Affiliation(s)
- Sebastien Cagnol
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | |
Collapse
|
40
|
Dixit D, Sharma V, Ghosh S, Koul N, Mishra PK, Sen E. Manumycin inhibits STAT3, telomerase activity, and growth of glioma cells by elevating intracellular reactive oxygen species generation. Free Radic Biol Med 2009; 47:364-74. [PMID: 19409983 DOI: 10.1016/j.freeradbiomed.2009.04.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 04/16/2009] [Accepted: 04/27/2009] [Indexed: 11/23/2022]
Abstract
The poor prognosis of glioblastoma multiforme and lack of effective therapy have necessitated the identification of new treatment strategies. We have previously reported that elevation of oxidative stress induces apoptosis of glioma cells. Because the farnesyltransferase inhibitor manumycin is known to induce reactive oxygen species (ROS) generation, we evaluated the effects of manumycin on glioma cells. Manumycin induced glioma cell apoptosis by elevating ROS generation. Treatment with the ROS inhibitor N-acetylcysteine blocked manumycin-induced apoptosis, caspase-3 activity, and PARP expression, indicating the involvement of increased ROS in the proapoptotic activity of manumycin. This heightened ROS level was accompanied by a concurrent decrease in antioxidants such as superoxide dismutase (SOD-1) and thioredoxin (TRX-1). SOD-1 overexpression protects glioma cells from manumycin-induced apoptosis. In addition, small interfering RNA-mediated knockdown of SOD-1 and TRX-1 expression also increased ROS generation and sensitivity of glioma cells to manumycin-induced cell death. Interestingly, suppressing ROS generation prevented manumycin-induced Ras inhibition. This study reports for the first time that Ras inhibition by manumycin is due to heightened ROS levels. We also report for the first time that manumycin inhibits the phosphorylation of signal transducer and activator of transcription 3 and telomerase activity in a ROS-dependent manner, which plays a crucial role in glioma resistance to apoptosis. In addition manumycin (i) induced the DNA-damage repair response, (ii) affected cell-cycle-regulatory molecules, and (iii) impaired the colony-forming ability of glioma cells in a ROS-dependent manner.
Collapse
Affiliation(s)
- Deobrat Dixit
- National Brain Research Centre, Manesar, Haryana 122050, India
| | | | | | | | | | | |
Collapse
|
41
|
Tewari R, Sharma V, Koul N, Ghosh A, Joseph C, Hossain Sk U, Sen E. Ebselen abrogates TNFalpha induced pro-inflammatory response in glioblastoma. Mol Oncol 2008; 3:77-83. [PMID: 19383369 DOI: 10.1016/j.molonc.2008.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/24/2008] [Accepted: 10/15/2008] [Indexed: 12/19/2022] Open
Abstract
We investigated the pro-inflammatory response mediated by TNFalpha in glioblastoma and whether treatment with organoselenium Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]one) can affect TNFalpha induced inflammatory response. Exposure to TNFalpha increased the expression of pro-inflammatory mediator interleukin IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1) and cyclooxygenase (COX-2). Treatment with Ebselen abrogated TNFalpha induced increase in pro-inflammatory mediators. Ebselen not only abrogated TNFalpha induced enhanced invasiveness of glioma cells by down-regulating matrix metallo proteinase (MMP-9) and urokinase plasminogen (uPa) activity, but also inhibited glioma cell migration. Treatment with Ebselen also down-regulated the enhanced ROS production of TNFalpha treated glioma cells. In addition, Ebselen induced DNA damage repair signaling response in glioma cells both in the presence and absence of TNFalpha. These studies indicate that together with its known ability to sensitize glioma cell to TNFalpha induced apoptosis, Ebselen can overcome TNFalpha induced pro-inflammatory mediators to prevent a build up of a deleterious pro-inflammatory tumor microenvironment.
Collapse
Affiliation(s)
- Richa Tewari
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122 050, India
| | | | | | | | | | | | | |
Collapse
|