1
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
2
|
Kitchen ST, Tang N, He M, Ly E, Mooney SM, Bearer CF. Bilirubin inhibits lipid raft dependent functions of L1 cell adhesion molecule in rat pup cerebellar granule neurons. Pediatr Res 2021; 89:1389-1395. [PMID: 32937649 PMCID: PMC9323028 DOI: 10.1038/s41390-020-01156-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanism of bilirubin neurotoxicity is poorly understood. We hypothesize that bilirubin inhibits the function of lipid rafts (LR), microdomains of the plasma membrane critical for signal transduction. To test this hypothesis, we measured the effect of free bilirubin (Bf) between 7.6 and 122.5 nM on LR-dependent functions of L1 cell adhesion molecule (L1). METHODS Cerebellar granule neurons (CGN) were plated on poly-L-lysine overnight, and neurite length was determined after 1 h treatment with L1 alone or L1 and bilirubin. L1 activation of ERK1/2 was measured in CGN in the presence or absence of bilirubin. The effect of bilirubin on L1 distribution in LR was quantitated, and the localization of bilirubin to LR was determined. RESULTS The addition of bilirubin to CGN treated with L1 significantly decreased neurite length compared to L1 alone. L1 activation of ERK1/2 was inhibited by bilirubin. Bilirubin redistributed L1 into LR. Bilirubin was associated only with LR-containing fractions of a sucrose density gradient. CONCLUSION Bf significantly inhibits LR-dependent functions of L1 and are found only associated with LR, suggesting one mechanism by which bilirubin may exert neurotoxicity is through the dysfunction of protein-LR interactions. IMPACT This article establishes lipid rafts as a target for the neurotoxic effects of bilirubin. This article provides clear evidence toward establishing one mechanism of bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into lipid raft dependent functions, and its role in neurodevelopmental outcome.
Collapse
Affiliation(s)
- Spencer T. Kitchen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21218
| | - Eric Ly
- Division of Neonatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandra M. Mooney
- Department of Nutrition, University of North Carolina School of Public Health, Chapel Hill, North Carolina, 27514
| | - Cynthia F. Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106,Corresponding author: Cynthia F. Bearer, M.D., Ph.D., Department of Pediatrics, 2109 Adelbert Rd, 8th floor, Cleveland, OH 44106, Tel. (410) 328-6003, Fax. (410) 328-1076,
| |
Collapse
|
3
|
Davis NL, Tang N, He M, Lee D, Bearer CF. Choline ameliorates ethanol induced alterations in tyrosine phosphorylation and distribution in detergent-resistant membrane microdomains of L1 cell adhesion molecule in vivo. Birth Defects Res 2020; 112:480-489. [PMID: 32052941 PMCID: PMC9741483 DOI: 10.1002/bdr2.1657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exposure to ethanol during pregnancy is the cause of fetal alcohol spectrum disorder. The function of L1 cell adhesion molecule (L1), critical for proper brain development, is dependent on detergent-resistant membrane microdomains (DRM). Ethanol at low concentrations disrupts L1 function measured by inhibition of downstream signaling and alterations in L1-DRM distribution in cerebellum in vivo and in cerebellar granule neurons (CGN) in vitro. We have previously shown that choline pretreatment of CGN partially prevents ethanol toxicity through improving L1 function in vitro. Here we show that choline supplementation reduces the impact of ethanol on L1 in cerebellum in vivo. METHODS Pregnant rat dams were placed on choline free diet on gestational Day 5 (G5). Pups were treated with saline or choline from postnatal day (P) 1-5. On P5, pups were intubated twice 2 hr apart with ethanol or Intralipid® for a total dose of 6 g/kg/d and sacrificed 1 hr after the last intubation. The cerebella were harvested and L1 phosphorylation/dephosphorylation status and distribution in DRM were analyzed. RESULTS Ethanol reduced L1 tyrosine phosphorylation and L1-Y1176 dephosphorylation in cerebella, and caused an increase in the percent of L1 in DRM. Choline supplementation of pups reduced the ethanol-induced changes in L1 phosphorylation status and ameliorated ethanol-induced redistribution of L1 into DRM. CONCLUSION Choline supplementation before an acute dose of ethanol ameliorates changes in L1 in vivo.
Collapse
Affiliation(s)
- Natalie L. Davis
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Ningfeng Tang
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Min He
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Daniel Lee
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Cynthia F. Bearer
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| |
Collapse
|
4
|
White KM, Sabatino JA, He M, Davis N, Tang N, Bearer CF. Toluene disruption of the functions of L1 cell adhesion molecule at concentrations associated with occupational exposures. Pediatr Res 2016; 80:145-50. [PMID: 27027721 PMCID: PMC4929035 DOI: 10.1038/pr.2016.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/05/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal toluene exposure can cause neurodevelopmental disabilities similar to fetal alcohol syndrome. Both share neuroanatomic pathologies similar to children with mutations in L1 cell adhesion molecule (L1). L1 mediates neurite outgrowth (NOG) via signaling through ERK1/2, which require trafficking of L1 through lipid rafts. Our objective is to determine if toluene inhibits L1-mediated NOG and toluene inhibits L1 signaling at concentrations achieved during occupational exposure. METHODS Concentrations of toluene reflective of blood concentrations achieved in solvent abusers and occupational settings are used. Cerebellar granule neurons (CGN) harvested from postnatal day 6 rat pups are plated on coverslips coated with poly-L-lysine (PLL) alone or PLL followed by laminin. L1 is added to the media of CGN plated on PLL alone. Toluene is added 2 h after plating. Cells are fixed at 24 h and neurite length is measured. ERK1/2 activation by L1 in CGN is analyzed by immunoblot. RESULTS Toluene significantly reduced mean neurite length of CGN exposed to L1 but not laminin. Toluene significantly reduced L1-mediated ERK1/2 phosphorylation. CONCLUSION Results suggest that toluene inhibits L1-lipid raft interactions at occupationally relevant concentrations and may lead to a fetal solvent spectrum disorder similar to fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Kimberly M.R. White
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Julia A. Sabatino
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Min He
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Natalie Davis
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ningfeng Tang
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cynthia F Bearer
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Tang N, Bamford P, Jones J, He M, Kane MA, Mooney SM, Bearer CF. Choline partially prevents the impact of ethanol on the lipid raft dependent functions of l1 cell adhesion molecule. Alcohol Clin Exp Res 2015; 38:2722-30. [PMID: 25421509 DOI: 10.1111/acer.12554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/23/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder, the leading known cause of mental retardation, is caused by alcohol exposure during pregnancy. One mechanism of ethanol (EtOH) teratogenicity is the disruption of the functions of L1 cell adhesion molecule (L1). These functions include enhancement of neurite outgrowth, trafficking through lipid rafts, and signal transduction. Recent data have shown that choline supplementation of rat pups reduces the effects of EtOH on neurobehavior. We sought to determine whether choline could prevent the effect of EtOH on L1 function using a simple experimental system. METHODS Cerebellar granule neurons (CGN) from postnatal day 6 rat pups were cultured with and without supplemental choline, and the effects on L1 signaling, lipid raft distribution, and neurite outgrowth were measured in the presence or absence of EtOH. RESULTS Choline significantly reduced the effect of EtOH on L1 signaling, the distribution of L1 in lipid rafts and L1-mediated neurite outgrowth. However, choline supplemented EtOH-exposed cultures remained significantly different than controls. CONCLUSIONS Choline pretreatment of CGN significantly reduces the disruption of L1 function by EtOH, but does not completely return L1 function to baseline. This experimental system will enable discovery of the mechanism of the neuroprotective effect of choline.
Collapse
Affiliation(s)
- Ningfeng Tang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
6
|
Maternal supplementation of nucleotides improves the behavioral development of prenatal ethanol-exposed mice. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 14:879-90. [PMID: 24146316 DOI: 10.3758/s13415-013-0218-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal ethanol consumption during pregnancy can induce learning deficits in the offspring. The objective of this study was to assess whether supplementation of exogenous nucleotides during pregnancy and lactation would ameliorate prenatal ethanol-induced learning and memory deficits in the offspring of mice, and to explore the possible mechanisms. In the present study, pregnant C57BL/6J mice were exposed to ethanol (5 g/kg body weight) intragastrically from gestational day (GD) 6 to GD15. The dams in exogenous nucleotide intervention groups were fed with feed containing 0.01%, 0.04%, or 0.16% nucleotide powder, with control and ethanol groups receiving normal feed. The dams were allowed to deliver naturally and to breast feed their offspring. After weaning, behavioral tests were carried out in the offspring of each group. Serum oxidation indexes were analyzed, and the hippocampus of each offspring was collected and detected for acetyl cholinesterase (AChE) activity and the expression of p-CREB, CREB, and BDNF. The results showed that maternal supplementation with exogenous nucleotides during pregnancy could ameliorate prenatal ethanol-induced learning and memory deficits in the offspring of mice, through improving their antioxidant capacity, reversing hippocampus AChE levels, and allowing the expression of some proteins related to learning and memory. However, different sensitivities were found between the two sexes.
Collapse
|
7
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
8
|
Ethanol neurotoxicity in the developing cerebellum: underlying mechanisms and implications. Brain Sci 2013; 3:941-63. [PMID: 24961432 PMCID: PMC4061865 DOI: 10.3390/brainsci3020941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 06/04/2013] [Indexed: 01/18/2023] Open
Abstract
Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA) receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-I), and basic fibroblast growth factor (bFGF). In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.
Collapse
|
9
|
Kendall EL, Shao C, DeVoe DL. Visualizing the growth and dynamics of liquid-ordered domains during lipid bilayer folding in a microfluidic chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3613-3619. [PMID: 22888063 DOI: 10.1002/smll.201200831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/29/2012] [Indexed: 06/01/2023]
Abstract
A microfluidic platform enabling optical monitoring of bilayer lipid membrane formation by a new monolayer folding process is described. The thermoplastic chips integrate dried lipid films that are rehydrated by microfluidic perfusion, which enables delivery of lipid-laden air bubbles across a membrane-supporting aperture. As in traditional Montal-Mueller bilayer formation, lipid monolayers are delivered independently to each side of the aperture, thereby allowing asymmetric lipid composition in the resulting bilayer to be achieved. Confocal microscopy is used to image the monolayer folding process, and reveals the growth and dynamics of asymmetric liquid-ordered domains during bilayer stabilization.
Collapse
Affiliation(s)
- Eric L Kendall
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
10
|
Littner Y, Tang N, He M, Bearer CF. L1 cell adhesion molecule signaling is inhibited by ethanol in vivo. Alcohol Clin Exp Res 2012; 37:383-9. [PMID: 23050935 DOI: 10.1111/j.1530-0277.2012.01944.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorder is an immense public health problem. In vitro studies support the hypothesis that L1 cell adhesion molecule (L1) is a target for ethanol (EtOH) developmental neurotoxicity. L1 is critical for the development of the central nervous system. It functions through signal transduction leading to phosphorylation and dephosphorylation of tyrosines on its cytoplasmic domain. The function of L1 is also dependent on trafficking through lipid rafts (LRs). Our hypothesis is that L1 is a target for EtOH neurotoxicity in vivo. Our objective is to demonstrate changes in L1 phosphorylation/dephosphorylation and LR association in vivo. METHODS Rat pups on postnatal day 6 are administered 4.5, 5.25, and 6 g/kg of EtOH divided into 2 doses 2 hours apart, then killed. Cerebella are rapidly frozen for assay. Blood is analyzed for blood EtOH concentration. L1 tyrosine phosphorylation is determined by immunoprecipitation and dephosphorylation of tyrosine 1176 determined by immunoblot. LRs are isolated by sucrose density gradient, and the distribution of L1 in LRs is determined. RESULTS EtOH at all doses reduced the relative amount of Y1176 dephosphorylation as well as the relative amount of L1 phosphorylated on other tyrosines. The proportion of L1 present in LRs is significantly increased in pups who received 6 g/kg EtOH compared to intubated controls. CONCLUSIONS L1 is a target for EtOH developmental neurotoxicity in vivo.
Collapse
Affiliation(s)
- Yoav Littner
- Department of Neuroscience, Lerner Research Institute, Children's Hospital, The Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
11
|
Chen S, Charness ME. Ethanol disrupts axon outgrowth stimulated by netrin-1, GDNF, and L1 by blocking their convergent activation of Src family kinase signaling. J Neurochem 2012; 123:602-12. [PMID: 22924694 DOI: 10.1111/j.1471-4159.2012.07954.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/23/2012] [Accepted: 08/23/2012] [Indexed: 01/17/2023]
Abstract
Pre-natal alcohol exposure causes fetal alcohol spectrum disorders (FASD), the most common, preventable cause of developmental disability. The developing cerebellum is particularly vulnerable to the effects of ethanol. We reported that ethanol inhibits the stimulation of axon outgrowth in cerebellar granule neurons (CGN) by NAP, an active motif of activity-dependent neuroprotective protein (ADNP), by blocking NAP activation of Fyn kinase and its downstream signaling molecule, the scaffolding protein Cas. Here, we asked whether ethanol inhibits the stimulation of axon outgrowth by diverse axon guidance molecules through a common action on the Src family kinases (SFK). We first demonstrated that netrin-1, glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule L1 stimulate axon outgrowth in CGNs by activating SFK, Cas, and extracellular signal-regulated kinase 1 and 2 (ERK1/2). The specific SFK inhibitor, PP2, blocked the stimulation of axon outgrowth and the activation of the SFK-Cas-ERK1/2 signaling pathway by each of these axon-guidance molecules. In contrast, brain-derived neurotrophic factor (BDNF) stimulated axon outgrowth and activated ERK1/2 without first activating SFK or Cas. Clinically relevant concentrations of ethanol inhibited axon outgrowth and the activation of the SFK-Cas-ERK1/2 pathway by netrin-1, GDNF, and L1, but did not disrupt BDNF-induced axon outgrowth or ERK1/2 activation. These results indicate that SFK, but not ERK1/2, is a primary target for ethanol inhibition of axon outgrowth. The ability of ethanol to block the convergent activation of the SFK-Cas-ERK1/2 pathway by netrin-1, GDNF, L1, and ADNP could contribute significantly to the pathogenesis of FASD.
Collapse
Affiliation(s)
- Suzhen Chen
- VA Boston Healthcare System and Department of Neurology, Harvard Medical School, West Roxbury, MA, USA
| | | |
Collapse
|
12
|
Shao C, Kendall E, DeVoe DL. Electro-optical BLM chips enabling dynamic imaging of ordered lipid domains. LAB ON A CHIP 2012; 12:3142-9. [PMID: 22728885 PMCID: PMC3411933 DOI: 10.1039/c2lc40077d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Studies of lipid rafts, ordered microdomains of sphingolipids and cholesterol within cell membranes, are essential in probing the relationships between membrane organization and cellular function. While in vitro studies of lipid phase separation are commonly performed using spherical vesicles as model membranes, the utility of these models is limited by a number of factors. Here we present a microfluidic device that supports simultaneous electrical measurements and confocal imaging of on-chip bilayer lipid membranes (BLMs), enabling real-time multi-domain imaging of membrane organization. The chips further support closed microfluidic access to both sides of the membrane, allowing the membrane boundary conditions to be rapidly changed and providing a mechanism for dynamically adjusting membrane curvature through application of a transmembrane pressure gradient. Here we demonstrate the platform through the study of dynamic generation and dissolution of ordered lipid domains as membrane components are transported to and from the supporting annulus containing solvated lipids and cholesterol.
Collapse
Affiliation(s)
- Chenren Shao
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eric Kendall
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Don L. DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Eckstrand KL, Ding Z, Dodge NC, Cowan RL, Jacobson JL, Jacobson SW, Avison MJ. Persistent dose-dependent changes in brain structure in young adults with low-to-moderate alcohol exposure in utero. Alcohol Clin Exp Res 2012; 36:1892-902. [PMID: 22594302 DOI: 10.1111/j.1530-0277.2012.01819.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/09/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Many children with heavy exposure to alcohol in utero display characteristic alterations in brain size and structure. However, the long-term effects of low-to-moderate alcohol exposure on these outcomes are unknown. METHODS Using voxel-based morphometry and region-of-interest analyses, we examined the influence of lower doses of alcohol on gray and white matter composition in a prospectively recruited, homogeneous, well-characterized cohort of alcohol-exposed (n = 11, age 19.5 ± 0.3 years) and control (n = 9, age 19.6 ± 0.5 years) young adults. A large proportion of the exposed individuals were born to mothers whose alcohol consumption during pregnancy was in the low-to-moderate range. RESULTS There were no differences in total brain volume or total gray or white matter volume between the exposed and control groups. However, gray matter volume was reduced in alcohol-exposed individuals in several areas previously reported to be affected by high levels of exposure, including the left cingulate gyrus, bilateral middle frontal gyri, right middle temporal gyrus, and right caudate nucleus. Notably, this gray matter loss was dose dependent, with higher exposure producing more substantial losses. CONCLUSIONS These results indicate that even at low doses, alcohol exposure during pregnancy impacts brain development and that these effects persist into young adulthood.
Collapse
Affiliation(s)
- Kristen L Eckstrand
- Department of Radiology and Radiological Sciences , Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
The interaction between cell adhesion molecule L1, matrix metalloproteinase 14, and adenine nucleotide translocator at the plasma membrane regulates L1-mediated neurite outgrowth of murine cerebellar neurons. J Neurosci 2012; 32:3917-30. [PMID: 22423112 DOI: 10.1523/jneurosci.6165-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have identified the adenine nucleotide translocator (ANT) isoforms ANT1 and ANT2 that are present in the plasma membrane of mouse cerebellar neurons as novel binding partners of the cell adhesion molecule L1. The direct interaction between ANT and L1 is mediated by sites within the fibronectin type III domains of L1 and the first and third extracellular loops of the ANT proteins. We also show that L1 interacts with the ANT binding partner matrix metalloprotease 14 (MMP14) and that the ANT proteins bind directly to the L1 interaction partner glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Moreover, we provide evidence that the functional interplay between L1, ANT proteins, MMP14, and GAPDH at the plasma membrane mediates L1-induced neurite outgrowth of cerebellar neurons. Disruption of this interplay by ANT inhibitors, ANT-derived synthetic peptides, and/or function-blocking MMP14 and ANT antibodies leads to alterations in L1-dependent neurite outgrowth. Stimulation of L1-mediated signaling in cerebellar neurons triggers transient ATP secretion via ANT proteins and leads to transient src family-dependent tyrosine phosphorylation of L1, ANT1, ANT2, and MMP14. Thus, our results indicate that plasma membrane-localized ANT1 and ANT2 regulate L1-mediated neurite outgrowth in conjunction with MMP14.
Collapse
|
15
|
Tang N, Farah B, He M, Fox S, Malouf A, Littner Y, Bearer CF. Ethanol causes the redistribution of L1 cell adhesion molecule in lipid rafts. J Neurochem 2011; 119:859-67. [PMID: 21884525 DOI: 10.1111/j.1471-4159.2011.07467.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fetal alcohol spectrum disorder is estimated to affect 1% of live births. The similarities between children with fetal alcohol syndrome and those with mutations in the gene encoding L1 cell adhesion molecule (L1) implicates L1 as a target of ethanol developmental neurotoxicity. Ethanol specifically inhibits the neurite outgrowth promoting function of L1 at pharmacologic concentrations. Emerging evidence shows that localized disruption of the lipid rafts reduces L1-mediated neurite outgrowth. We hypothesize that ethanol impairment of the association of L1 with lipid rafts is a mechanism underlying ethanol's inhibition of L1-mediated neurite outgrowth. In this study, we examine the effects of ethanol on the association of L1 and lipid rafts. We show that, in vitro, L1 but not N-cadherin shifts into lipid rafts following treatment with 25 mM ethanol. The ethanol concentrations causing this effect are similar to those inhibiting L1-mediated neurite outgrowth. Increasing chain length of the alcohol demonstrates the same cutoff as that previously shown for inhibition of L1-L1 binding. In addition, in cerebellar granule neurons in which lipid rafts are disrupted with methyl-beta-cyclodextrin, the rate of L1-mediated neurite outgrowth on L1-Fc is reduced to background rate and that this background rate is not ethanol sensitive. These data indicate that ethanol may inhibit L1-mediated neurite outgrowth by retarding L1 trafficking through a lipid raft compartment.
Collapse
Affiliation(s)
- Ningfeng Tang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21209, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Alfonso-Loeches S, Guerri C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 2011; 48:19-47. [PMID: 21657944 DOI: 10.3109/10408363.2011.580567] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The brain is one of the major target organs of alcohol actions. Alcohol abuse can lead to alterations in brain structure and functions and, in some cases, to neurodegeneration. Cognitive deficits and alcohol dependence are highly damaging consequences of alcohol abuse. Clinical and experimental studies have demonstrated that the developing brain is particularly vulnerable to alcohol, and that drinking during gestation can lead to a range of physical, learning and behavioral defects (fetal alcohol spectrum disorders), with the most dramatic presentation corresponding to fetal alcohol syndrome. Recent findings also indicate that adolescence is a stage of brain maturation and that heavy drinking at this stage can have a negative impact on brain structure and functions causing important short- and long-term cognitive and behavioral consequences. The effects of alcohol on the brain are not uniform; some brain areas or cell populations are more vulnerable than others. The prefrontal cortex, the hippocampus, the cerebellum, the white matter and glial cells are particularly susceptible to the effects of ethanol. The molecular actions of alcohol on the brain are complex and involve numerous mechanisms and signaling pathways. Some of the mechanisms involved are common for the adult brain and for the developing brain, while others depend on the developmental stage. During brain ontogeny, alcohol causes irreversible alterations to the brain structure. It also impairs several molecular, neurochemical and cellular events taking place during normal brain development, including alterations in both gene expression regulation and the molecules involved in cell-cell interactions, interference with the mitogenic and growth factor response, enhancement of free radical formation and derangements of glial cell functions. However, in both adult and adolescent brains, alcohol damages specific brain areas through mechanisms involving excitotoxicity, free radical formation and neuroinflammatory damage resulting from activation of the innate immune system mediated by TLR4 receptors. Alcohol also acts on specific membrane proteins, such as neurotransmitter receptors (e.g. NMDA, GABA-A), ion channels (e.g. L-type Ca²⁺ channels, GIRKs), and signaling pathways (e.g. PKA and PKC signaling). These effects might underlie the wide variety of behavioral effects induced by ethanol drinking. The neuroadaptive changes affecting neurotransmission systems which are more sensitive to the acute effects of alcohol occur after long-term alcohol consumption. Alcohol-induced maladaptations in the dopaminergic mesolimbic system, abnormal plastic changes in the reward-related brain areas and genetic and epigenetic factors may all contribute to alcohol reinforcement and alcohol addiction. This manuscript reviews the mechanisms by which ethanol impacts the adult and the developing brain, and causes both neural impairments and cognitive and behavioral dysfunctions. The identification and the understanding of the cellular and molecular mechanisms involved in ethanol toxicity might contribute to the development of treatments and/or therapeutic agents that could reduce or eliminate the deleterious effects of alcohol on the brain.
Collapse
|
17
|
Fitzgerald DM, Charness ME, Leite-Morris KA, Chen S. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1. PLoS One 2011; 6:e24364. [PMID: 21931691 PMCID: PMC3169602 DOI: 10.1371/journal.pone.0024364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/08/2011] [Indexed: 01/16/2023] Open
Abstract
The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs), and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7) rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10−12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Michael E. Charness
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, West Roxbury, Massachusetts, United States of America
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kimberly A. Leite-Morris
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Departments of Psychiatry, Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Suzhen Chen
- Department of Neurology, Harvard Medical School, West Roxbury, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Dou X, Menkari CE, Shanmugasundararaj S, Miller KW, Charness ME. Two alcohol binding residues interact across a domain interface of the L1 neural cell adhesion molecule and regulate cell adhesion. J Biol Chem 2011; 286:16131-9. [PMID: 21367865 DOI: 10.1074/jbc.m110.209254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol may cause fetal alcohol spectrum disorders (FASD) in part by inhibiting cell adhesion mediated by the L1 neural cell adhesion molecule. Azialcohols photolabel Glu-33 and Tyr-418, two residues that are predicted by homology modeling to lie within 2.8 Å of each other at the interface between the Ig1 and Ig4 domains of L1 (Arevalo, E., Shanmugasundararaj, S., Wilkemeyer, M. F., Dou, X., Chen, S., Charness, M. E., and Miller, K. W. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 371-375). Using transient transfection of NIH/3T3 cells with wild type (WT-L1) and mutated L1, we found that cysteine substitution of both residues (E33C/Y418C-L1) significantly increased L1 adhesion above levels observed for WT-L1 or the single cysteine substitutions E33C-L1 or Y418C-L1. The reducing agent β-mercaptoethanol (βME) reversibly decreased the adhesion of E33C/Y418C-L1, but had no effect on WT-L1, E33C-L1, or Y418C-L1. Thus, disulfide bond formation occurs between Cys-33 and Cys-418, confirming both the close proximity of these residues and the importance of Ig1-Ig4 interactions in L1 adhesion. Maximal ethanol inhibition of cell adhesion was significantly lower in cells expressing E33C/Y418C-L1 than in those expressing WT-L1, E33C-L1, or Y418C-L1. Moreover, the effects of βME and ethanol on E33C/Y418C-L1 adhesion were non-additive. The cutoff for alcohol inhibition of WT-L1 adhesion was between 1-butanol and 1-pentanol. Increasing the size of the alcohol binding pocket by mutating Glu-33 to Ala-33, increased the alcohol cutoff from 1-butanol to 1-decanol. These findings support the hypothesis that alcohol binding within a pocket bordered by Glu-33 and Tyr-418 inhibits L1 adhesion by disrupting the Ig1-Ig4 interaction.
Collapse
Affiliation(s)
- Xiaowei Dou
- Veterans Affairs Boston Healthcare System, Department of Neurology, Harvard Medical School, West Roxbury, Massachusetts 02132, USA
| | | | | | | | | |
Collapse
|
19
|
Warren KR, Hewitt BG, Thomas JD. Fetal alcohol spectrum disorders: research challenges and opportunities. ALCOHOL RESEARCH & HEALTH : THE JOURNAL OF THE NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM 2011; 34:4-14. [PMID: 23580035 PMCID: PMC3756137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The adverse effects of prenatal alcohol consumption have long been known; however, a formal description and clinical diagnosis of these effects was not introduced until 1973. Since then, the distinction of the wide range of effects that can be induced by prenatal alcohol exposure, and, consequently, the terminology to describe these effects has continued to evolve. Although much progress has been made in understanding the consequences of prenatal alcohol exposure, challenges still remain in properly identifying all affected individuals as well as their individual patterns of alcohol-induced deficits. Also, as the large numbers of women who continue to drink during pregnancy indicate, prevention efforts still require further refinement to enhance their effectiveness. In addition, the mechanisms underlying alcohol-induced damage have not yet been fully elucidated; as knowledge of the mechanisms underlying alcohol-induced deficits continues to grow, the possibility of minimizing potential harm by intervening during prenatal alcohol exposure is enhanced. Finally, researchers are exploring additional ways to improve or fully restore behavioral and cognitive functions disrupted by prenatal alcohol exposure by treating the individuals with fetal alcohol spectrum disorders, thereby reducing the heavy burden for affected individuals and their families.
Collapse
Affiliation(s)
- Kenneth R Warren
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | | | | |
Collapse
|
20
|
Schäfer MKE, Altevogt P. L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci 2010; 67:2425-37. [PMID: 20237819 PMCID: PMC11115577 DOI: 10.1007/s00018-010-0339-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/30/2010] [Accepted: 02/11/2010] [Indexed: 12/14/2022]
Abstract
Research over the last 25 years on the cell adhesion molecule L1 has revealed its pivotal role in nervous system function. Mutations of the human L1CAM gene have been shown to cause neurodevelopmental disorders such as X-linked hydrocephalus, spastic paraplegia and mental retardation. Impaired L1 function has been also implicated in the aetiology of fetal alcohol spectrum disorders, defective enteric nervous system development and malformations of the renal system. Importantly, aberrant expression of L1 has emerged as a critical factor in the development of human carcinomas, where it enhances cell proliferation, motility and chemoresistance. This discovery promoted collaborative work between tumour biologists and neurobiologists, which has led to a substantial expansion of the basic knowledge about L1 function and regulation. Here we provide an overview of the pathological conditions caused by L1 malfunction. We further discuss how the available data on gene regulation, molecular interactions and posttranslational processing of L1 may contribute to a better understanding of associated neurological and cancerous diseases.
Collapse
Affiliation(s)
- Michael K E Schäfer
- Center for Neurosciences, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
21
|
Ethanol and cognition: indirect effects, neurotoxicity and neuroprotection: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1540-57. [PMID: 20617045 PMCID: PMC2872345 DOI: 10.3390/ijerph7041540] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 04/01/2010] [Indexed: 01/03/2023]
Abstract
Ethanol affects cognition in a number of ways. Indirect effects include intoxication, withdrawal, brain trauma, central nervous system infection, hypoglycemia, hepatic failure, and Marchiafava-Bignami disease. Nutritional deficiency can cause pellagra and Wernicke-Korsakoff disorder. Additionally, ethanol is a direct neurotoxin and in sufficient dosage can cause lasting dementia. However, ethanol also has neuroprotectant properties and in low-to-moderate dosage reduces the risk of dementia, including Alzheimer type. In fetuses ethanol is teratogenic, and whether there exists a safe dose during pregnancy is uncertain and controversial.
Collapse
|
22
|
Sasabe T, Ishiura S. Alcoholism and alternative splicing of candidate genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1448-66. [PMID: 20617039 PMCID: PMC2872348 DOI: 10.3390/ijerph7041448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.
Collapse
Affiliation(s)
- Toshikazu Sasabe
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | |
Collapse
|