1
|
Wang Y, Wang J, Zhang QF, Xiao KW, Wang L, Yu QP, Xie Q, Poo MM, Wen Y. Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation. Neurosci Bull 2023; 39:69-82. [PMID: 35908004 PMCID: PMC9849633 DOI: 10.1007/s12264-022-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing-Fang Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ke-Wei Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Ping Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China.
| | - Yunqing Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
2
|
Li S, Jia H, Liu Z, Wang N, Guo X, Cao M, Fang F, Yang J, Li J, He Q, Guo R, Zhang T, Kang K, Wang Z, Liu S, Cao Y, Jiang X, Ren G, Wang K, Yu B, Xiao W, Li D. Fibroblast growth factor-21 as a novel metabolic factor for regulating thrombotic homeostasis. Sci Rep 2022; 12:400. [PMID: 35013379 PMCID: PMC8748457 DOI: 10.1038/s41598-021-00906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Fibroblast growth factor-21 (FGF-21) performs a wide range of biological functions in organisms. Here, we report for the first time that FGF-21 suppresses thrombus formation with no notable risk of bleeding. Prophylactic and therapeutic administration of FGF-21 significantly improved the degree of vascular stenosis and reduced the thrombus area, volume and burden. We determined the antithrombotic mechanism of FGF-21, demonstrating that FGF-21 exhibits an anticoagulant effect by inhibiting the expression and activity of factor VII (FVII). FGF-21 exerts an antiplatelet effect by inhibiting platelet activation. FGF-21 enhances fibrinolysis by promoting tissue plasminogen activator (tPA) expression and activation, while inhibiting plasminogen activator inhibitor 1 (PAI-1) expression and activation. We further found that FGF-21 mediated the expression and activation of tPA and PAI-1 by regulating the ERK1/2 and TGF-β/Smad2 pathways, respectively. In addition, we found that FGF-21 inhibits the expression of inflammatory factors in thrombosis by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Zhihang Liu
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Nan Wang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaochen Guo
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhua Cao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Fang Fang
- Molecular Imaging Research Center, Harbin Medical University, TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, 150028, People's Republic of China
| | - Jiarui Yang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Junyan Li
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi He
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rui Guo
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Teng Zhang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kai Kang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zongbao Wang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shijie Liu
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yukai Cao
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinghao Jiang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Guiping Ren
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, 150028, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China.
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, 222001, People's Republic of China.
| | - Deshan Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, 222001, People's Republic of China.
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
|
4
|
Kang X, Su S, Hong W, Geng W, Tang H. Research Progress on the Ability of Astragaloside IV to Protect the Brain Against Ischemia-Reperfusion Injury. Front Neurosci 2021; 15:755902. [PMID: 34867166 PMCID: PMC8637115 DOI: 10.3389/fnins.2021.755902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Stroke, a disease with a sudden onset and high morbidity and mortality rates, is difficult to treat in the clinic. Traditional Chinese medicine has become increasingly widely used in clinical practice. Modern pharmacological studies have found that Radix Astragali has a variety of medicinal properties, i.e., immunoregulatory, antioxidative, anti-cancer, anti-diabetes, myocardial protective, hepatoprotective, and antiviral functions. This article reviews the protective effect and mechanism of astragaloside IV, which is extracted from Radix Astragali, on stroke, discusses the cerebroprotective effect of astragaloside IV against ischemia-reperfusion-related complications, offers insight into research prospects, and expands the idea of integrating traditional Chinese and Western medicine treatment strategies and drugs to provide a theoretical reference for the clinical treatment of cerebral ischemia-reperfusion injury and the improvement of stroke prognosis.
Collapse
Affiliation(s)
- Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Su
- Wenzhou Medical University, Wenzhou, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, China
| | - Hongli Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
10-O-(N N-Dimethylaminoethyl)-Ginkgolide B Methane-Sulfonate (XQ-1H) Ameliorates Cerebral Ischemia Via Suppressing Neuronal Apoptosis. J Stroke Cerebrovasc Dis 2021; 30:105987. [PMID: 34273708 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.
Collapse
|
6
|
Chumachenko MS, Waseem TV, Fedorovich SV. Metabolomics and metabolites in ischemic stroke. Rev Neurosci 2021; 33:181-205. [PMID: 34213842 DOI: 10.1515/revneuro-2021-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Stroke is a major reason for disability and the second highest cause of death in the world. When a patient is admitted to a hospital, it is necessary to identify the type of stroke, and the likelihood for development of a recurrent stroke, vascular dementia, and depression. These factors could be determined using different biomarkers. Metabolomics is a very promising strategy for identification of biomarkers. The advantage of metabolomics, in contrast to other analytical techniques, resides in providing low molecular weight metabolite profiles, rather than individual molecule profiles. Technically, this approach is based on mass spectrometry and nuclear magnetic resonance. Furthermore, variations in metabolite concentrations during brain ischemia could alter the principal neuronal functions. Different markers associated with ischemic stroke in the brain have been identified including those contributing to risk, acute onset, and severity of this pathology. In the brain, experimental studies using the ischemia/reperfusion model (IRI) have shown an impaired energy and amino acid metabolism and confirmed their principal roles. Literature data provide a good basis for identifying markers of ischemic stroke and hemorrhagic stroke and understanding metabolic mechanisms of these diseases. This opens an avenue for the successful use of identified markers along with metabolomics technologies to develop fast and reliable diagnostic tools for ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Maria S Chumachenko
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| | | | - Sergei V Fedorovich
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| |
Collapse
|
7
|
Zhang L, Li Z, Ye X, Chen Z, Chen ZS. Mechanisms of thrombosis and research progress on targeted antithrombotic drugs. Drug Discov Today 2021; 26:2282-2302. [PMID: 33895314 DOI: 10.1016/j.drudis.2021.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
Globally, the incidence of thromboembolic diseases has increased in recent years, accompanied by an increase in patient mortality. Currently, several targeting delivery strategies have been developed to treat thromboembolic diseases. In this review, we discuss the mechanisms of thrombolysis and current anticoagulant drugs, particularly those with targeting capability, highlighting advances in the accurate treatment of thrombolysis with fewer adverse effects. Such approaches include magnetic drug-loading systems combined with molecular imaging to recanalize blood vessels and systems based on chimeric Arg-Gly-Asp (RGD) sequences that can target platelet glycoprotein receptor. With such progress in targeted antithrombotic drugs, targeted thrombolysis treatment shows significant potential benefit for patients.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China
| | - Xianren Ye
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY 11439, USA.
| |
Collapse
|
8
|
Glassman PM, Villa CH, Ukidve A, Zhao Z, Smith P, Mitragotri S, Russell AJ, Brenner JS, Muzykantov VR. Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics 2020; 12:E440. [PMID: 32397513 PMCID: PMC7284780 DOI: 10.3390/pharmaceutics12050440] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023] Open
Abstract
Red blood cells (RBC) have great potential as drug delivery systems, capable of producing unprecedented changes in pharmacokinetics, pharmacodynamics, and immunogenicity. Despite this great potential and nearly 50 years of research, it is only recently that RBC-mediated drug delivery has begun to move out of the academic lab and into industrial drug development. RBC loading with drugs can be performed in several ways-either via encapsulation within the RBC or surface coupling, and either ex vivo or in vivo-depending on the intended application. In this review, we briefly summarize currently used technologies for RBC loading/coupling with an eye on how pharmacokinetics is impacted. Additionally, we provide a detailed description of key ADME (absorption, distribution, metabolism, elimination) changes that would be expected for RBC-associated drugs and address unique features of RBC pharmacokinetics. As thorough understanding of pharmacokinetics is critical in successful translation to the clinic, we expect that this review will provide a jumping off point for further investigations into this area.
Collapse
Affiliation(s)
- Patrick M. Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Carlos H. Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Paige Smith
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alan J. Russell
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| |
Collapse
|
9
|
Alkaff SA, Radhakrishnan K, Nedumaran AM, Liao P, Czarny B. Nanocarriers for Stroke Therapy: Advances and Obstacles in Translating Animal Studies. Int J Nanomedicine 2020; 15:445-464. [PMID: 32021190 PMCID: PMC6982459 DOI: 10.2147/ijn.s231853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
The technology of drug delivery systems (DDS) has expanded into many applications, such as for treating neurological disorders. Nanoparticle DDS offer a unique strategy for targeted transport and improved outcomes of therapeutics. Stroke is likely to benefit from the emergence of this technology though clinical breakthroughs are yet to manifest. This review explores the recent advances in this field and provides insight on the trends, prospects and challenges of translating this technology to clinical application. Carriers of diverse material compositions are presented, with special focus on the surface properties and emphasis on the similarities and inconsistencies among in vivo experimental paradigms. Research attention is scattered among various nanoparticle DDS and various routes of drug administration, which expresses the lack of consistency among studies. Analysis of current literature reveals lipid- and polymer-based DDS as forerunners of DDS for stroke; however, cell membrane-derived vesicles (CMVs) possess the competitive edge due to their innate biocompatibility and superior efficacy. Conversely, inorganic and carbon-based DDS offer different functionalities as well as varied capacity for loading but suffer mainly from poor safety and general lack of investigation in this area. This review supports the existing literature by systematizing presently available data and accounting for the differences in drugs of choice, carrier types, animal models, intervention strategies and outcome parameters.
Collapse
Affiliation(s)
- Syed Abdullah Alkaff
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Krishna Radhakrishnan
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute 308433, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University 639798, Singapore
| |
Collapse
|
10
|
Himbert S, Blacker MJ, Kihm A, Pauli Q, Khondker A, Yang K, Sinjari S, Johnson M, Juhasz J, Wagner C, Stöver HDH, Rheinstädter MC. Hybrid Erythrocyte Liposomes: Functionalized Red Blood Cell Membranes for Molecule Encapsulation. ACTA ACUST UNITED AC 2020; 4:e1900185. [PMID: 32293142 DOI: 10.1002/adbi.201900185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/26/2019] [Indexed: 12/28/2022]
Abstract
The modification of erythrocyte membrane properties provides a new tool towards improved drug delivery and biomedical applications. The fabrication of hybrid erythrocyte liposomes is presented by doping red blood cell membranes with synthetic lipid molecules of different classes (PC, PS, PG) and different degrees of saturation (14:0, 16:0-18:1). The respective solubility limits are determined, and material properties of the hybrid liposomes are studied by a combination of X-ray diffraction, epi-fluorescent microscopy, dynamic light scattering (DLS), Zeta potential, UV-vis spectroscopy, and Molecular Dynamics (MD) simulations. Membrane thickness and lipid orientation can be tuned through the addition of phosphatidylcholine lipids. The hybrid membranes can be fluorescently labelled by incorporating Texas-red DHPE, and their charge modified by incorporating phosphatidylserine and phosphatidylglycerol. By using fluorescein labeled dextran as an example, it is demonstrated that small molecules can be encapsulated into these hybrid liposomes.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Matthew J Blacker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Alexander Kihm
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Quinn Pauli
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Kevin Yang
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Sheilan Sinjari
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Mitchell Johnson
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Janos Juhasz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Juravinski Cancer Centre, Department of Medical Physics, Hamilton, ON, L8V 5C2, Canada
| | - Christian Wagner
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Harald D H Stöver
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
11
|
Liu Y, Min JW, Feng S, Subedi K, Qiao F, Mammenga E, Callegari E, Wang H. Therapeutic Role of a Cysteine Precursor, OTC, in Ischemic Stroke Is Mediated by Improved Proteostasis in Mice. Transl Stroke Res 2019; 11:147-160. [PMID: 31049841 PMCID: PMC6824933 DOI: 10.1007/s12975-019-00707-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 01/15/2023]
Abstract
Oxidative stress aggravates brain injury following ischemia/reperfusion (I/R). We previously showed that ubiquilin-1 (Ubqln1), a ubiquitin-like protein, improves proteostasis and protects brains against oxidative stress and I/R-induced brain injury. Here, we demonstrate that a small molecule compound, L-2-oxothiazolidine-4-carboxylic acid (OTC) that functions as a precursor of cysteine, upregulated Ubqln1 and protected cells against oxygen-glucose deprivation-induced cell death in neuronal cultures. Further, the administration of OTC either at 1 h prior to ischemia or 3 h after the reperfusion significantly reduced brain infarct injury and improved behavioral outcomes in a stroke model. Administration of OTC also increased glutathione (GSH) level and decreased superoxide production, oxidized protein, and neuroinflammation levels in the penumbral cortex after I/R in the stroke mice. Furthermore, I/R reduced both Ubqln1 and the glutathione S-transferase protein levels, whereas OTC treatment restored both protein levels, which was associated with reduced ubiquitin-conjugated protein level. Interestingly, in the Ubqln1 knockout (KO) mice, OTC treatment showed reduced neuroprotection and increased ubiquitin-conjugated protein level when compared to the similarly treated non-KO mice following I/R, suggesting that OTC-medicated neuroprotection is, at least partially, Ubqln1-dependent. Thus, OTC is a potential therapeutic agent for stroke and possibly for other neurological disorders and its neuroprotection involves enhanced proteostasis.
Collapse
Affiliation(s)
- Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Jia-Wei Min
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, MSE R334, 6431 Fannin St, Houston, TX, 77030, USA
| | - Shelley Feng
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emily Mammenga
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
12
|
Grewal AK, Singh N, Singh TG. Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia-reperfusion-induced injury in mice. ACTA ACUST UNITED AC 2019; 71:956-970. [PMID: 30809806 DOI: 10.1111/jphp.13073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/01/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To investigate the mechanism of neuroprotection rendered via pharmacological postconditioning in cerebral ischaemia-reperfusion-induced injury in mice. METHODS Pharmacological postconditioning is strategy which either involves hindering deleterious pathway or inducing modest stress level which triggers intracellular defence pathway to sustain more vigorous insult leading to conditioning. Hence, in current research we explored the potentiality of CGS21680 (0.5 mg/kg; i.p), an adenosine A2 A receptor agonist and PTEN inhibitor, SF1670 (3 mg/kg; i.p.) to trigger postconditioning after inducing cerebral global ischaemia (17 min) and reperfusion (24 h)-induced injury via occlusion of both carotid arteries. Mice were also given treatment with LY294002 (1.5 mg/kg; i.p.), a PI3K inhibitor and adenosine A2 A receptor antagonist, Istradefylline (2 mg/kg; i.p.), to establish the precise mechanism of postconditioning. Various biochemical and behavioural parameters were assessed to examine the effect of pharmacological postconditioning. KEY FINDINGS Pharmacological postconditioning induced with CGS21680 and SF1670 attenuated the infarction along with improved behavioural and biochemical parameters in comparison with ischaemia-reperfusion control group. The outcome of postconditioning with CGS21680 and SF1670 was significantly reversed by LY294002 and Istradefylline, respectively. CONCLUSIONS The neuroprotective effects of CGS21680 and SF1670 postconditioning on cerebral ischaemia-reperfusion injury may be due to PI3K/Akt pathway activation.
Collapse
Affiliation(s)
- Amarjot Kaur Grewal
- Department of Pharmacology, Chitkara college of Pharmacy, Chitkara University, Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara college of Pharmacy, Chitkara University, Patiala, India
| |
Collapse
|
13
|
Armstead WM, Hekierski H, Pastor P, Yarovoi S, Higazi AAR, Cines DB. Release of IL-6 After Stroke Contributes to Impaired Cerebral Autoregulation and Hippocampal Neuronal Necrosis Through NMDA Receptor Activation and Upregulation of ET-1 and JNK. Transl Stroke Res 2019; 10:104-111. [PMID: 29476447 DOI: 10.1007/s12975-018-0617-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 01/01/2023]
Abstract
The sole FDA-approved drug treatment for ischemic stroke is tissue-type plasminogen activator (tPA). However, upregulation of JNK mitogen-activated protein kinase (MAPK) and endothelin 1 (ET-1) by tPA after stroke contributes to impaired cerebrovascular autoregulation. Wild-type (wt) tPA can bind to the lipoprotein-related receptor (LRP), which mediates vasodilation, or NMDA receptors (NMDA-Rs), exacerbating vasoconstriction. Elevations in IL-6, a marker of inflammation that accompanies stroke, are reported to be an adverse prognostic factor. We hypothesized that IL-6 released into CSF after stroke by wt-tPA through activation of NMDA-Rs and upregulation of ET-1 and JNK contribute to impairment of cerebrovascular autoregulation and increased histopathology. Results show that IL-6 was increased post stroke in pigs, which was increased further by wt-tPA. Co-administration of the IL-6 antagonist LMT-28 with wt-tPA prevented impairment of cerebrovascular autoregulation and necrosis of hippocampal cells. wt-tPA co-administered with the JNK inhibitor SP 600125 and the ET-1 antagonist BQ 123 blocked stroke-induced elevation of IL-6. Co-administration of LMT-28 with wt-tPA blocked the augmentation of JNK and ET-1 post stroke. In conclusion, IL-6 released after stroke, which is enhanced by wt-tPA through activation of NMDA-Rs and upregulation of ET-1 and JNK, impairs cerebrovascular autoregulation and increases histopathology. Strategies that promote fibrinolysis while limiting activation of NMDA-Rs and upregulation of IL-6 may improve the benefit/risk ratio compared to wt-tPA in treatment of stroke.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, 19104, USA.
- Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hugh Hekierski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, 19104, USA
| | - Philip Pastor
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, 19104, USA
| | - Serge Yarovoi
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Abd Al-Roof Higazi
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Clinical Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Douglas B Cines
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Release of IL-6 After Stroke Contributes to Impaired Cerebral Autoregulation and Hippocampal Neuronal Necrosis Through NMDA Receptor Activation and Upregulation of ET-1 and JNK. Transl Stroke Res 2018. [PMID: 29476447 DOI: 10.1007/s12975‐018‐0617‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sole FDA-approved drug treatment for ischemic stroke is tissue-type plasminogen activator (tPA). However, upregulation of JNK mitogen-activated protein kinase (MAPK) and endothelin 1 (ET-1) by tPA after stroke contributes to impaired cerebrovascular autoregulation. Wild-type (wt) tPA can bind to the lipoprotein-related receptor (LRP), which mediates vasodilation, or NMDA receptors (NMDA-Rs), exacerbating vasoconstriction. Elevations in IL-6, a marker of inflammation that accompanies stroke, are reported to be an adverse prognostic factor. We hypothesized that IL-6 released into CSF after stroke by wt-tPA through activation of NMDA-Rs and upregulation of ET-1 and JNK contribute to impairment of cerebrovascular autoregulation and increased histopathology. Results show that IL-6 was increased post stroke in pigs, which was increased further by wt-tPA. Co-administration of the IL-6 antagonist LMT-28 with wt-tPA prevented impairment of cerebrovascular autoregulation and necrosis of hippocampal cells. wt-tPA co-administered with the JNK inhibitor SP 600125 and the ET-1 antagonist BQ 123 blocked stroke-induced elevation of IL-6. Co-administration of LMT-28 with wt-tPA blocked the augmentation of JNK and ET-1 post stroke. In conclusion, IL-6 released after stroke, which is enhanced by wt-tPA through activation of NMDA-Rs and upregulation of ET-1 and JNK, impairs cerebrovascular autoregulation and increases histopathology. Strategies that promote fibrinolysis while limiting activation of NMDA-Rs and upregulation of IL-6 may improve the benefit/risk ratio compared to wt-tPA in treatment of stroke.
Collapse
|
15
|
Armstead WM, Hekierski H, Yarovoi S, Higazi AAR, Cines DB. tPA variant tPA-A 296-299 Prevents impairment of cerebral autoregulation and necrosis of hippocampal neurons after stroke by inhibiting upregulation of ET-1. J Neurosci Res 2017; 96:128-137. [PMID: 28703856 DOI: 10.1002/jnr.24112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/24/2017] [Accepted: 06/15/2017] [Indexed: 01/02/2023]
Abstract
Tissue-type plasminogen activator (tPA) is neurotoxic and exacerbates uncoupling of cerebral blood flow (CBF) and metabolism after stroke, yet it remains the sole FDA-approved drug for treatment of ischemic stroke. Upregulation of c-Jun-terminal kinase (JNK) after stroke contributes to tPA-mediated impairment of autoregulation, but the role of endothelin-1 (ET-1) is unknown. Based on the Glasgow Coma Scale, impaired autoregulation is linked to adverse outcomes after TBI, but correlation with hippocampal histopathology after stroke has not been established. We propose that given after stroke, tPA activates N-Methyl-D-Aspartate receptors (NMDA-Rs) and upregulates ET-1 in a JNK dependent manner, imparing autoregulation and leading to histopathology. After stroke, CBF was reduced in the hippocampus and reduced further during hypotension, which did not occur in hypotensive sham pigs, indicating impairment of autoregulation. Autoregulation and necrosis of hippocampal CA1 and CA3 neurons were further impaired by tPA, but were preserved by the ET-1 antagonist BQ 123 and tPA-A,296-299 a variant that is fibrinolytic but does not bind to NMDA-Rs. Expression of ET-1 was increased by stroke and potentiated by tPA but returned to sham levels by tPA-A296-299 and the JNK antagonist SP600125. Results show that JNK releases ET-1 after stroke. Tissue-type plasminogen activator -A296-299 prevents impairment of cerebral autoregulation and histopathology after stroke by inhibiting upregulation of ET-1.
Collapse
Affiliation(s)
- William M Armstead
- Departments of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, l9l04.,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, l9l04
| | - Hugh Hekierski
- Departments of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, l9l04
| | - Serge Yarovoi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, l9l04
| | - Abd Al-Roof Higazi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, l9l04.,Department of Clinical Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, l9l04
| |
Collapse
|
16
|
Yong MS, Kim SG, Cheon SH. Effects of skilled reach training with affected forelimb and treadmill exercise on the expression of neurotrophic factor following ischemia-induced brain injury in rats. J Phys Ther Sci 2017; 29:647-650. [PMID: 28533602 PMCID: PMC5430265 DOI: 10.1589/jpts.29.647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/25/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of the present study was to investigate effects of skilled reach
training with affected forelimb and treadmill exercise on the expression of neurotrophic
factor following ischemia-induced brain injury in rats. [Subjects and Methods] Thirty male
Sprague-Dawley rats were divided into 3 groups randomly: namely, the control sacrified 2
weeks after surgery, skilled reach training with forepaw contralateral to brain injury for
2 weeks, and treadmill exercise for 2 weeks. Transient focal cerebral ischemia was induced
by intraluminal occlusion of the left middle cerebral artery. After that, skilled reach
training and treadmill exercise were conducted. Western blot analysis was performed to
investigate expressions of neurotrophic factors. [Results] There were significant
differences in brain-derived neurotrophic factor and nerve growth factor expression
between the control group and the experimental group. There were no significant
differences in brain-derived neurotrophic factor and nerve growth factor expression
between the skilled reach training group and the treadmill exercise group. [Conclusion]
Skilled reach training and treadmill exercise can affect the expression of neurotrophic
factors.
Collapse
Affiliation(s)
- Min-Sik Yong
- Department of Physical Therapy, Youngsan University, Republic of Korea
| | - Seong-Gil Kim
- Department of Physical Therapy, Uiduk University, Republic of Korea
| | - Song-Hee Cheon
- Department of Physical Therapy, Youngsan University, Republic of Korea
| |
Collapse
|
17
|
Chen J, Ning R, Zacharek A, Cui C, Cui X, Yan T, Venkat P, Zhang Y, Chopp M. MiR-126 Contributes to Human Umbilical Cord Blood Cell-Induced Neurorestorative Effects After Stroke in Type-2 Diabetic Mice. Stem Cells 2016; 34:102-13. [PMID: 26299579 DOI: 10.1002/stem.2193] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM) is a high risk factor for stroke and leads to more severe vascular and white-matter injury than stroke in non-DM. We tested the neurorestorative effects of delayed human umbilical cord blood cell (HUCBC) treatment of stroke in type-2 diabetes (T2DM). db/db-T2DM and db/+-non-DM mice were subjected to distal middle cerebral artery occlusion (dMCAo) and were treated 3 days after dMCAo with: (a) non-DM + Phosphate buffered saline (PBS); (b) T2DM + PBS; (c) T2DM + naïve-HUCBC; (d) T2DM + miR-126(-/-) HUCBC. Functional evaluation, vascular and white-matter changes, neuroinflammation, and miR-126 effects were measured in vivo and in vitro. T2DM mice exhibited significantly decreased serum and brain tissue miR-126 expression compared with non-DM mice. T2DM + HUCBC mice exhibited increased miR-126 expression, increased tight junction protein expression, axon/myelin, vascular density, and M2-macrophage polarization. However, decreased blood-brain barrier leakage, brain hemorrhage, and miR-126 targeted gene vascular cell adhesion molecule-1 and monocyte chemotactic protein 1 expression in the ischemic brain as well as improved functional outcome were present in HUCBC-treated T2DM mice compared with control T2DM mice. MiR-126(-/-) HUCBC-treatment abolished the benefits of naïve-HUCBC-treatment in T2DM stroke mice. In vitro, knock-in of miR-126 in primary cultured brain endothelial cells (BECs) or treatment of BECs with naïve-HUCBCs significantly increased capillary-like tube formation, and increased axonal outgrowth in primary cultured cortical neurons; whereas treatment of BECs or cortical neurons with miR-126(-/-) HUCBC attenuated HUCBC-treatment-induced capillary tube formation and axonal outgrowth. Our data suggest delayed HUCBC-treatment of stroke increases vascular/white-matter remodeling and anti-inflammatory effects; MiR-126 may contribute to HUCBC-induced neurorestorative effects in T2DM mice.
Collapse
Affiliation(s)
- Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, People's Republic of China
| | - Ruizhuo Ning
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Chengcheng Cui
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
18
|
Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106:88-103. [PMID: 26941164 DOI: 10.1016/j.addr.2016.02.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Red blood cells (RBCs) constitute a unique drug delivery system as a biologic or hybrid carrier capable of greatly enhancing pharmacokinetics, altering pharmacodynamics (for example, by changing margination within the intravascular space), and modulating immune responses to appended cargoes. Strategies for RBC drug delivery systems include internal and surface loading, and the latter can be performed both ex vivo and in vivo. A relatively new avenue for RBC drug delivery is their application as a carrier for nanoparticles. Efforts are also being made to incorporate features of RBCs in nanocarriers to mimic their most useful aspects, such as long circulation and stealth features. RBCs have also recently been explored as carriers for the delivery of antigens for modulation of immune response. Therefore, RBC-based drug delivery systems represent supercarriers for a diverse array of biomedical interventions, and this is reflected by several industrial and academic efforts that are poised to enter the clinical realm.
Collapse
|
19
|
Xian JW, Choi AYT, Lau CBS, Leung WN, Ng CF, Chan CW. Gastrodia and Uncaria (tianma gouteng) water extract exerts antioxidative and antiapoptotic effects against cerebral ischemia in vitro and in vivo. Chin Med 2016; 11:27. [PMID: 27252774 PMCID: PMC4888490 DOI: 10.1186/s13020-016-0097-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastrodia and Uncaria decoction (tianma gouteng yin) is commonly used in Chinese medicine to treat cerebral ischemia. The aim of this study was to investigate the neuroprotective effects of a water extract (GUW) of Gastrodia elata (tianma; GE) and Uncaria rhynchophylla (gouteng; UR) against ischemic insult using oxygen-glucose-deprived neuronal differentiated PC12 cells and rats subjected to middle cerebral artery occlusion (MCAO). METHODS GUW was prepared by boiling raw GE and UR in water, followed by the lyophilization of the resulting extract. Neuronal differentiated PC12 cells were subjected to oxygen-glucose deprivation with or without GUW. The neuroprotective effects of GUW were compared with those of the corresponding GE and UR extracts to tease apart the effects of the different herbs. The synergistic effect of GE and UR in GUW was measured using a modified version of Burgi's formulae. The neuroprotective mechanisms via Nrf2 and anti-apoptotic pathways were investigated using real time PCR and enzyme activity assays. The neuroprotective effects of GUW were studied in vivo using a rat MCAO model. Neurofunctional outcome and brain infarct volume we assessed. H&E staining, cresyl violet staining and immunohistochemistry were performed to assess the histological outcome. RESULTS The results of lactate dehydrogenase assay showed that GUW protected cells in a concentration-dependent manner (P < 0.001). Moreover, the neuroprotective effects of GUW were greater than those of GE + UR (P = 0.018). Burgi's formula showed that the herbs in GUW acted synergistically to protect cells from ischemic injury. GUW significantly upregulated Bcl-2 expression (P = 0.0130) and reduced caspase-3 activity by 60 % (P < 0.001). GUW upregulated Nrf-2 expression (P = 0.0066) and the antioxidant response element pathway genes. The infarct volume was reduced by 55 % at day 7 of reperfusion (P < 0.001), and significant improvements were observed in the neurological deficit score and beam-walking test at 7 days (P < 0.001). H&E and cresyl violet staining revealed higher tissue integrity in the GUW treatment group compared with MCAO rats. CONCLUSION GUW modulated the antioxidant system and antiapoptotic genes in oxygen-glucose deprived neuronal differentiated PC12 cells and MCAO sprague-dawley rats.
Collapse
Affiliation(s)
- Jia Wen Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Angus Yiu-Ting Choi
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China ; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Wing Nang Leung
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Chun Fai Ng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Chun Wai Chan
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| |
Collapse
|
20
|
Villa CH, Muzykantov VR, Cines DB. The emerging role for red blood cells in haemostasis: opportunity for intervention. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/voxs.12197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- C. H. Villa
- Department of Pathology and Laboratory Medicine; The Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - V. R. Muzykantov
- Department of Pharmacology and Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics; The Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - D. B. Cines
- Department of Pathology and Laboratory Medicine; The Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
21
|
LEI XIAOFENG, LEI LIJIAN, ZHANG ZHELIN, CHENG YAN. Neuroprotective effects of lycopene pretreatment on transient global cerebral ischemia-reperfusion in rats: The role of the Nrf2/HO-1 signaling pathway. Mol Med Rep 2015; 13:412-8. [DOI: 10.3892/mmr.2015.4534] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/09/2015] [Indexed: 11/06/2022] Open
|
22
|
Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Deliv 2015; 6:795-826. [PMID: 26228773 PMCID: PMC4712023 DOI: 10.4155/tde.15.34] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel C Pan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Zaitsev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas B Cines
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Lee S, Hong Y, Park S, Lee SR, Chang KT, Hong Y. Comparison of surgical methods of transient middle cerebral artery occlusion between rats and mice. J Vet Med Sci 2014; 76:1555-61. [PMID: 25649935 PMCID: PMC4300368 DOI: 10.1292/jvms.14-0258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rodent models of focal cerebral ischemia that do not require craniotomy have been
developed by intraluminal suture middle cerebral artery occlusion (MCAo). Mouse MCAo
models have been widely used and extended to genetic studies of cell death or recovery
mechanisms. Therefore, we compared surgery-related parameters and techniques between such
rats and mice. In rodent MCAo models, has to be considered body temperature during the
operative period, as well as the need for the use of a standardized tip in terms of the
outer diameter of probes. Induction of focal cerebral ischemia was measured by
neurological dysfunction parameters. Our methods could induce stable moderate-severity
ischemic brain injury models and histological alteration at 24 hr after MCAo surgery.
Moreover approximately 80% (rats) and 85% (mice) survival ratios were shown indicating
with model engineering success. Finally, we described and compared major parameters
between rats and mice, including probe size, thread insert length, operation and occlusion
periods, and differences in the procedures.
Collapse
Affiliation(s)
- Seunghoon Lee
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Lee S, Lee M, Hong Y, Won J, Lee Y, Kang SG, Chang KT, Hong Y. Middle cerebral artery occlusion methods in rat versus mouse models of transient focal cerebral ischemic stroke. Neural Regen Res 2014; 9:757-8. [PMID: 25206884 PMCID: PMC4146278 DOI: 10.4103/1673-5374.131582] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 11/04/2022] Open
Affiliation(s)
- Seunghoon Lee
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea ; Ubiquitous Healthcare & Anti-aging Research Center, Inje University, Gimhae, Korea ; Cardiovascular & Metabolic Disease Center, Inje University, Gimhae, Korea
| | - Minkyung Lee
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
| | - Yunkyung Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea ; Ubiquitous Healthcare & Anti-aging Research Center, Inje University, Gimhae, Korea ; Cardiovascular & Metabolic Disease Center, Inje University, Gimhae, Korea
| | - Jinyoung Won
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
| | - Youngjeon Lee
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea ; National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Sung-Goo Kang
- School of Biological Sciences, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea ; Ubiquitous Healthcare & Anti-aging Research Center, Inje University, Gimhae, Korea ; Cardiovascular & Metabolic Disease Center, Inje University, Gimhae, Korea ; Department of Physical Therapy, Graduate School of Inje University, Gimhae, Korea
| |
Collapse
|
25
|
RBC-coupled tPA Prevents Whereas tPA Aggravates JNK MAPK-Mediated Impairment of ATP- and Ca-Sensitive K Channel-Mediated Cerebrovasodilation After Cerebral Photothrombosis. Transl Stroke Res 2014; 3:114-21. [PMID: 23577046 DOI: 10.1007/s12975-011-0105-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The sole Food and Drug Administration-approved treatment for acute stroke is tissue-type plasminogen activator (tPA), but tPA aggravates impairment of cerebrovasodilation during hypotension in a newborn pig photothrombotic model of stroke. Coupling to carrier red blood cells (RBC) enhances thrombolytic effects of tPA, while reducing its side effects. ATP- and Ca-sensitive K channels (Katp and Kca) are important regulators of cerebrovascular tone and mediate cerebrovasodilation during hypotension. Mitogen-activated protein kinase, a family of at least three kinases, ERK, p38, and c-Jun-N-terminal kinase (JNK), is upregulated after photothrombosis. This study examined the effect of photothrombosis on Katp- and Kca-induced cerebrovasodilation and the roles of tPA and JNK during/after injury. Photothrombosis blunted vasodilation induced by the Katp agonists cromakalim, calcitonin gene-related peptide, and the Kca agonist NS 1619, which was aggravated by injection of tPA. In contrast, both pre- or post-injury thrombosis injection of RBC-tPA and JNK antagonist SP 600125 prevented impairment of Katp- and Kca-induced vasodilation. Therefore, JNK activation in thrombosis impairs K channel-mediated cerebrovasodilation. Standard thrombolytic therapy of central nervous system ischemic disorders using free tPA poses the danger of further dysregulation of cerebrohemodynamics by impairing cation-mediated control of cerebrovascular tone, whereas RBC-coupled tPA both restores reperfusion and normalizes cerebral hemodynamics.
Collapse
|
26
|
Abstract
Cerebral ischemia induces neurogenesis, including proliferation and differentiation of neural progenitor cells and migration of newly generated neuroblasts. MicroRNAs (miRNAs) are small noncoding RNAs that decrease gene expression through mRNA destabilization and/or translational repression. Emerging data indicate that miRNAs have a role in mediating processes of proliferation and differentiation of adult neural progenitor cells. This article reviews recent findings on miRNA profile changes in neural progenitor cells after cerebral infarction and the contributions of miRNAs to their ischemia-induced proliferation and differentiation. We highlight interactions between the miR-124 and the miR17-92 cluster and the Notch and Sonic hedgehog signaling pathways in mediating stroke-induced neurogenesis.
Collapse
|
27
|
Biomedical and clinical promises of human pluripotent stem cells for neurological disorders. BIOMED RESEARCH INTERNATIONAL 2013; 2013:656531. [PMID: 24171168 PMCID: PMC3793324 DOI: 10.1155/2013/656531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/13/2013] [Indexed: 01/25/2023]
Abstract
Neurological disorders are characterized by the chronic and progressive loss of neuronal structures and functions. There is a variability of the onsets and causes of clinical manifestations. Cell therapy has brought a new concept to overcome brain diseases, but the advancement of this therapy is limited by the demands of specialized neurons. Human pluripotent stem cells (hPSCs) have been promised as a renewable resource for generating human neurons for both laboratory and clinical purposes. By the modulations of appropriate signalling pathways, desired neuron subtypes can be obtained, and induced pluripotent stem cells (iPSCs) provide genetically matched neurons for treating patients. These hPSC-derived neurons can also be used for disease modeling and drug screening. Since the most urgent problem today in transplantation is the lack of suitable donor organs and tissues, the derivation of neural progenitor cells from hPSCs has opened a new avenue for regenerative medicine. In this review, we summarize the recent reports that show how to generate neural derivatives from hPSCs, and discuss the current evidence of using these cells in animal studies. We also highlight the possibilities and concerns of translating these hPSC-derived neurons for biomedical and clinical uses in order to fight against neurological disorders.
Collapse
|
28
|
Li M, Ma RN, Li LH, Qu YZ, Gao GD. Astragaloside IV reduces cerebral edema post-ischemia/reperfusion correlating the suppression of MMP-9 and AQP4. Eur J Pharmacol 2013; 715:189-95. [DOI: 10.1016/j.ejphar.2013.05.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/09/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
|
29
|
Tao T, Liu Y, Zhang J, Xu Y, Li W, Zhao M. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model. Brain Res 2013; 1533:52-62. [PMID: 23939225 DOI: 10.1016/j.brainres.2013.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated neuroprotective effects of therapeutic hypercapnia for different forms of brain injury. However, few studies have assessed the neuroprotective and neurobehavioral effects of hypercapnia in focal cerebral ischemia, and the underlying mechanisms are still unclear. Here, we investigated the effects of therapeutic hypercapnia in focal cerebral ischemia in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model. Adult male Sprague Dawley rats were subjected to 90 min of MCAO/R and subsequently exposed to increased carbon dioxide (CO2) levels to maintain arterial blood CO2 tension (PaCO2) between 80 and 100 mmHg for 2h. Neurological deficits were evaluated with the corner test at days 1, 7, 14, and 28. Infarction volume and apoptotic changes were assessed by 2, 3, 7-triphenyltetrazolium chloride (TTC) staining, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL) staining at 24h after reperfusion. Apoptosis-related proteins (Bcl-2, Bax, cytochrome c, and caspase-3) were investigated by western blotting. The results of this study showed that therapeutic hypercapnia significantly reduced infarct volume and improved neurological scores after MCAO/R. Moreover, hypercapnia treatment increased the survival rate at 28 days after reperfusion. The TUNEL-positive neurons in the ipsilateral cortex were significantly decreased in the hypercapnia group. Mitochondrial Bcl-2 and Bax cortical expression levels were significantly higher and lower, respectively, in hypercapnia-treated rats. In addition, hypercapnia treatment decreased cytosolic cytochrome c and cleaved caspase-3 expression and increased cytosolic Bax expression. These findings indicate that therapeutic hypercapnia preserves brain tissue and promotes functional neurological recovery through antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Tao Tao
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, the Hei Long Jiang Province key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Despite continued achievements in antithrombotic pharmacotherapy, difficulties remain in managing patients at high risk for both thrombosis and hemorrhage. Utility of antithrombotic agents (ATAs) in these settings is restricted by inadequate pharmacokinetics and narrow therapeutic indices. Use of advanced drug delivery systems (ADDSs) may help to circumvent these problems. Various nanocarriers, affinity ligands, and polymer coatings provide ADDSs that have the potential to help optimize ATA pharmacokinetics, target drug delivery to sites of thrombosis, and sense pathologic changes in the vascular microenvironment, such as altered hemodynamic forces, expression of inflammatory markers, and structural differences between mature hemostatic and growing pathological clots. Delivery of ATAs using biomimetic synthetic carriers, host blood cells, and recombinant fusion proteins that are activated preferentially at sites of thrombus development has shown promising outcomes in preclinical models. Further development and translation of ADDSs that spare hemostatic fibrin clots hold promise for extending the utility of ATAs in the management of acute thrombotic disorders through rapid, transient, and targeted thromboprophylaxis. If the potential benefit of this technology is to be realized, a systematic and concerted effort is required to develop clinical trials and translate the use of ADDSs to the clinical arena.
Collapse
|
31
|
Zhang RL, Zhang ZG, Chopp M. Targeting nitric oxide in the subacute restorative treatment of ischemic stroke. Expert Opin Investig Drugs 2013; 22:843-51. [PMID: 23597052 DOI: 10.1517/13543784.2013.793672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Stroke remains the leading cause of adult disability. Thus, it is imperative to develop restorative therapies for ischemic stroke designed specifically to treat the intact brain tissue to stimulate functional benefit. Therapies targeting amplification of brain repair processes with nitric oxide (NO) donors and phosphodiesterase type 5 (PDE5) inhibitors in preclinical studies are emerging and showing improvement of functional recovery after stroke. AREAS COVERED This review will mainly cover the effect of NO donors, which produce NO, and PDE5 inhibitors, which elevate cyclic guanosine 3',5'-monophosphate (cGMP), on neural restorative events in ischemic brain and highlight mechanisms underlying their restorative therapeutic activity. EXPERT OPINION During stroke recovery, interwoven restorative events occur in ischemic brain, which include angiogenesis, neurogenesis, oligodendrogenesis, astrogliosis and neurite outgrowth. Emerging preclinical data indicate that restorative therapies targeting multiple parenchymal cells including neural stem cells, cerebral endothelial cells, astrocytes, oligodendrocytes, neurons would be more effective than agents with a single cell target. Preclinical data suggest that elevated cGMP levels induced by NO donors and PDE5 inhibitors act on cerebral endothelial cells, neural stem cells and oligodendrocyte progenitor cells to enhance stroke-induced angiogenesis, neurogenesis and oligodendrogenesis, respectively. These interacting remodeling events collectively improve neurological function after stroke.
Collapse
Affiliation(s)
- Rui Lan Zhang
- Henry Ford Hospital, Department of Neurology, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | |
Collapse
|
32
|
Abstract
The sad reality is that in the year 2012, people are still dying or suffering from the extreme morbidity of ischemic stroke. This tragedy is only compounded by the graveyard full of once promising new therapies. While it is indeed true that the overall mortality from stroke has declined in the United States, perhaps due to increased awareness of stroke symptoms by both the lay public and physicians, it is clear that better therapies are needed. In this regard, progress has been tremendously slowed by the simple fact that experimental models of stroke and the animals that they typically employ, rats and mice, do not adequately represent human stroke. Furthermore, the neuroprotective therapeutic approach, in which potential treatments are administered with the hope of preventing the spread of dying neurons that accompanies a stroke, typically fail for a number of reasons such as there is simply more brain matter to protect in a human than there is in a rodent! For this reason, there has been somewhat of a shift in stroke research away from neuroprotection and toward a neurorepair approach. This too may be problematic in that agents that might foster brain repair could be acutely deleterious or neurotoxic and vice versa, making the timing of treatment administration after stroke critical. Therefore, in our efforts to discover a new stroke therapy, we decided to focus on identifying brain repair elements that were (1) endogenously and actively generated in response to stroke in both human and experimental animal brains, (2) present acutely and chronically after ischemic stroke, suggesting that they could have a role in acute neuroprotection and chronic neurorepair, and (3) able to be administered peripherally and reach the site of stroke brain injury. In this review, I will discuss the evidence that suggests that perlecan domain V may be just that substance, a potential beacon of hope for stroke patients.
Collapse
Affiliation(s)
- Gregory J Bix
- Sanders-Brown Center on
Aging, Department of Anatomy and Neurobiology, University of Kentucky, 430 Sanders-Brown Building, 800 South Limestone
Street, Lexington, Kentucky 40536-0230, United States
| |
Collapse
|
33
|
Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem Int 2012; 60:458-65. [DOI: 10.1016/j.neuint.2012.01.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 01/06/2023]
|
34
|
Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke. Transl Stroke Res 2011; 3:154-63. [PMID: 22408693 PMCID: PMC3284672 DOI: 10.1007/s12975-011-0116-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 01/05/2023]
Abstract
Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach. Sprague–Dawley rats received 2 h middle cerebral artery occlusion (MCAo) and were treated with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset. Behavioral function, T2-weighted imaging (T2WI), and apparent diffusion coefficients were performed on days 1, 3, and 7 after MCAo. Infarct volume and number of GFAP, ED-1, and NeuN-positive cells were conducted on day 7. Behavioral deficit was significantly improved by LAU-0901 treatment compared to vehicle on days 1, 3, and 7. Total lesion volumes computed from T2WI were significantly reduced by LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%, respectively), which was consistent with decreased edema formation. Histopathology revealed that LAU-0901 treatment resulted in significant reduction of cortical and subcortical infarct volumes, attenuated microglial infiltration, and promoted astrocytic and neuronal survival. These findings suggest LAU-0901 is a promising neuroprotectant and provide the basis for future therapeutics in patients suffering ischemic stroke.
Collapse
|
35
|
Hobohm C, Laignel F, Kacza J, Küppers-Tiedt L, Heindl M, Schneider D, Grosche J, Härtig W, Michalski D. Long-lasting neuronal loss following experimental focal cerebral ischemia is not affected by combined administration of tissue plasminogen activator and hyperbaric oxygen. Brain Res 2011; 1417:115-26. [DOI: 10.1016/j.brainres.2011.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/26/2011] [Accepted: 08/11/2011] [Indexed: 01/13/2023]
|
36
|
Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011; 2011:464701. [PMID: 21331357 PMCID: PMC3035178 DOI: 10.1155/2011/464701] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/23/2010] [Accepted: 12/23/2010] [Indexed: 11/26/2022] Open
Abstract
A variety of animal models have been developed for modeling ischemic stroke. The middle cerebral artery occlusion (MCAO) model has been utilized extensively, especially in rodents. While the MCAO model provides stroke researchers with an excellent platform to investigate the disease, controversial or even paradoxical results are occasionally seen in the literature utilizing this model. Various factors exert important effects on the outcome in this stroke model, including the age and sex of the animal examined. This paper discusses emerging information on the effects of age and sex on ischemic outcomes after MCAO, with an emphasis on mouse models of stroke.
Collapse
|