1
|
Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Peresypkina A, Pobeda A, Ismail NM. Magnesium acetyltaurate prevents retinal damage and visual impairment in rats through suppression of NMDA-induced upregulation of NF-κB, p53 and AP-1 (c-Jun/c-Fos). Neural Regen Res 2021; 16:2330-2344. [PMID: 33818520 PMCID: PMC8354133 DOI: 10.4103/1673-5374.310691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
Magnesium acetyltaurate (MgAT) has been shown to have a protective effect against N-methyl-D-aspartate (NMDA)-induced retinal cell apoptosis. The current study investigated the involvement of nuclear factor kappa-B (NF-κB), p53 and AP-1 family members (c-Jun/c-Fos) in neuroprotection by MgAT against NMDA-induced retinal damage. In this study, Sprague-Dawley rats were randomized to undergo intravitreal injection of vehicle, NMDA or MgAT as pre-treatment to NMDA. Seven days after injections, retinal ganglion cells survival was detected using retrograde labelling with fluorogold and BRN3A immunostaining. Functional outcome of retinal damage was assessed using electroretinography, and the mechanisms underlying antiapoptotic effect of MgAT were investigated through assessment of retinal gene expression of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos) using reverse transcription-polymerase chain reaction. Retinal phospho-NF-κB, phospho-p53 and AP-1 levels were evaluated using western blot assay. Rat visual functions were evaluated using visual object recognition tests. Both retrograde labelling and BRN3A immunostaining revealed a significant increase in the number of retinal ganglion cells in rats receiving intravitreal injection of MgAT compared with the rats receiving intravitreal injection of NMDA. Electroretinography indicated that pre-treatment with MgAT partially preserved the functional activity of NMDA-exposed retinas. MgAT abolished NMDA-induced increase of retinal phospho-NF-κB, phospho-p53 and AP-1 expression and suppressed NMDA-induced transcriptional activity of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos). Visual object recognition tests showed that MgAT reduced difficulties in recognizing the visual cues (i.e. objects with different shapes) after NMDA exposure, suggesting that visual functions of rats were relatively preserved by pre-treatment with MgAT. In conclusion, pre-treatment with MgAT prevents NMDA induced retinal injury by inhibiting NMDA-induced neuronal apoptosis via downregulation of transcriptional activity of NF-κB, p53 and AP-1-mediated c-Jun/c-Fos. The experiments were approved by the Animal Ethics Committee of Universiti Teknologi MARA (UiTM), Malaysia, UiTM CARE No 118/2015 on December 4, 2015 and UiTM CARE No 220/7/2017 on December 8, 2017 and Ethics Committee of Belgorod State National Research University, Russia, No 02/20 on January 10, 2020.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Peresypkina
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russia
| | - Anna Pobeda
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russia
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Meloni BP, Mastaglia FL, Knuckey NW. Cationic Arginine-Rich Peptides (CARPs): A Novel Class of Neuroprotective Agents With a Multimodal Mechanism of Action. Front Neurol 2020; 11:108. [PMID: 32158425 PMCID: PMC7052017 DOI: 10.3389/fneur.2020.00108] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
There are virtually no clinically available neuroprotective drugs for the treatment of acute and chronic neurological disorders, hence there is an urgent need for the development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs) are an expanding and relatively novel class of compounds, which possess intrinsic neuroprotective properties. Intriguingly, CARPs possess a combination of biological properties unprecedented for a neuroprotective agent including the ability to traverse cell membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory, analgesic, anti-microbial, and anti-cancer actions. CARPs have also been used as carrier molecules for the delivery of other putative neuroprotective agents across the blood-brain barrier and blood-spinal cord barrier. However, there is increasing evidence that the neuroprotective efficacy of many, if not all these other agents delivered using a cationic arginine-rich cell-penetrating peptide (CCPPs) carrier (e.g., TAT) may actually be mediated largely by the properties of the carrier molecule, with overall efficacy further enhanced according to the amino acid composition of the cargo peptide, in particular its arginine content. Therefore, in reviewing the neuroprotective mechanisms of action of CARPs we also consider studies using CCPPs fused to a putative neuroprotective peptide. We review the history of CARPs in neuroprotection and discuss in detail the intrinsic biological properties that may contribute to their cytoprotective effects and their usefulness as a broad-acting class of neuroprotective drugs.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Neville W Knuckey
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
3
|
Liu W, Li X, Chen X, Zhang J, Luo L, Hu Q, Zhou J, Yan J, Lin S, Ye J. JIP1 Deficiency Protects Retinal Ganglion Cells From Apoptosis in a Rotenone-Induced Injury Model. Front Cell Dev Biol 2019; 7:225. [PMID: 31681759 PMCID: PMC6804425 DOI: 10.3389/fcell.2019.00225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) undergo apoptosis after injury. c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP1) is a scaffold protein that is relevant to JNK activation and a key molecule known to regulate neuronal apoptosis. However, the specific role of JIP1 in the apoptosis of RGCs is currently undefined. Here, we used JIP1 gene knockout (KO) mice to investigate the importance of JIP1-JNK signaling in the apoptosis of RGCs in a rotenone-induced injury model. In adult JIP1 KO mice, the number and electrophysiological functions of RGCs were not different from those of wild-type (WT) mice. Ablation of JIP1 attenuated the activation of JNK and the cleavage of caspase-3 in the retina after rotenone injury and contributed to a lower number of TUNEL-positive RGCs, a greater percentage of surviving RGCs, and a significant reduction in the electrophysiological functional loss of RGCs when compared to those in WT controls. We also found that JIP1 was located in the neurites of primary RGCs, but accumulated in soma in response to rotenone treatment. Moreover, the number of TUNEL-positive RGCs, the level of activation of JNK and the rate of cleavage of caspase-3 were reduced in primary JIP1-deficient RGCs after rotenone injury than in WT controls. Together, our results demonstrate that the JIP1-mediated activation of JNK contributes to the apoptosis of RGCs in a rotenone-induced injury model in vitro and in vivo, suggesting that JIP1 may be a potential therapeutic target for RGC degeneration.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jieqiong Zhang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jun Yan
- Department 1, Research Institute of Surgery & Daping Hospital, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Fahrenthold BK, Fernandes KA, Libby RT. Assessment of intrinsic and extrinsic signaling pathway in excitotoxic retinal ganglion cell death. Sci Rep 2018; 8:4641. [PMID: 29545615 PMCID: PMC5854579 DOI: 10.1038/s41598-018-22848-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 01/15/2023] Open
Abstract
Excitotoxicity leads to the activation of a cytotoxic cascade that causes neuronal death. In the retina, retinal ganglion cells (RGCs) die after an excitotoxic insult. Multiple pathways have been proposed to contribute to RGC death after an excitotoxic insult, including TNF signaling, JNK activation, and ER stress. To test the importance of these pathways in RGC death after excitotoxic injury, the excitotoxin N-methyl-D-aspartate (NMDA) was intravitreally injected into mice deficient in components of these pathways. Absence of Tnf or its canonical downstream mediator, Bid, did not confer short- or long-term protection to RGCs. Despite known activation in RGCs and a prominent role in mediating RGC death after other insults, attenuating JNK signaling did not prevent RGC death after excitotoxic insult. Additionally, deficiency of the ER stress protein DDIT3 (CHOP), which has been shown to be involved in RGC death, did not lessen NMDA induced RGC death. Furthermore, absence of both Jun (JNK’s canonical target) and Ddit3, which together provide robust, long-term protection to RGC somas after axonal insult, did not lessen RGC death. Collectively, these results indicate that the drivers of excitotoxic injury remain to be identified and/or multiple cell death pathways are activated in response to injury.
Collapse
Affiliation(s)
- Berkeley K Fahrenthold
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, 14642, USA.,Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kimberly A Fernandes
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, 14642, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA. .,The Center for Visual Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
Buccarello L, Sclip A, Sacchi M, Castaldo AM, Bertani I, ReCecconi A, Maestroni S, Zerbini G, Nucci P, Borsello T. The c-jun N-terminal kinase plays a key role in ocular degenerative changes in a mouse model of Alzheimer disease suggesting a correlation between ocular and brain pathologies. Oncotarget 2017; 8:83038-83051. [PMID: 29137322 PMCID: PMC5669948 DOI: 10.18632/oncotarget.19886] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
Recently a range of ocular manifestations such as retinal and lens amyloid-beta accumulation and retinal nerve fiber layer loss have been proposed as potential biomarkers in Alzheimer disease (AD). The TgCRND8 mouse model of AD exhibits age-dependent amyloid β (Aβ) oligomers accumulation and cognitive defects, amyloid plaques and hyperphosphorylated Tau deposition and inflammation. We proved the correlation between ocular pathologies and AD, observing increased levels of p-APP and p-Tau, accumulation of Aβ oligomers in the retina, eye, and optic nerve. The accumulation of amyloid markers was significantly stronger in the retinal ganglion cell (RGC) layer, suggesting that RGC might be more susceptible to degeneration. We detected a thinning of the RGC layer as well as RGC death in the retina of TgCRND8 mice, by using a combination of Optical Coherence Tomography (OCT), immunofluorescence, immunohistochemistry and Western blotting techniques. We proved for the first time the key role of C-Jun N-terminal Kinase (JNK) in the ocular degeneration. In support of this, the administration of the JNK inhibitor, D-JNKI1, was able to counteract the Aβ and p-Tau accumulation in the retina of TgCRND8 mice, and consequently reduce RGCs loss. These results confirm that degenerative changes in the retina/eye of AD mouse model mirrors the events observed in the brain parenchyma. Ocular changes can be detected by non-invasive imaging techniques, such as OCT, to study and test different therapeutic strategies against degenerative events associated to AD.
Collapse
Affiliation(s)
- Lucia Buccarello
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alessandra Sclip
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Matteo Sacchi
- University Eye Clinic, San Giuseppe Hospital, University of Milan, Milan, Italy
| | | | - Ilaria Bertani
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Andrea ReCecconi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Silvia Maestroni
- Unità Complicanze del Diabete, Istituto Scientifico San Raffaele, Milan, Italy
| | - Gianpaolo Zerbini
- Unità Complicanze del Diabete, Istituto Scientifico San Raffaele, Milan, Italy
| | - Paolo Nucci
- University Eye Clinic, San Giuseppe Hospital, University of Milan, Milan, Italy
| | - Tiziana Borsello
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH, Clark AF. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener 2016; 11:30. [PMID: 27098079 PMCID: PMC4839164 DOI: 10.1186/s13024-016-0093-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 04/08/2016] [Indexed: 01/24/2023] Open
Abstract
Background The c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in neuronal pathophysiology. Using JNK inhibitors, we examined involvement of the JNK pathway in cultured rat retinal ganglion cell (RGC) death and in mouse retinal ischemia/reperfusion (I/R) injury of the visual axis. The in vitro effects of JNK inhibitors were evaluated in cultured adult rat retinal cells enriched in RGCs. Retinal I/R was induced in C57BL/6J mice through elevation of intraocular pressure to 120 mmHg for 60 min followed by reperfusion. SP600125 was administered intraperitoneally once daily for 28 days. Phosphorylation of JNK and c-Jun in the retina was examined by immunoblotting and immunohistochemistry. The thickness of retinal layers and cell numbers in the ganglion cell layer (GCL) were examined using H&E stained retinal cross sections and spectral domain optical coherence tomography (SD-OCT). Retinal function was measured by scotopic flash electroretinography (ERG). Volumetric measurement of the superior colliculus (SC) as well as VGLUT2 and PSD95 expression were studied. Results JNK inhibitors SP600125 and TAT-JNK-III, dose-dependently and significantly (p < 0.05) protected against glutamate excitotoxicity and trophic factor withdrawal induced RGC death in culture. In the I/R model, phosphorylation of JNK (pJNK) in the retina was significantly (p < 0.05) increased after injury. I/R injury significantly (p < 0.05) decreased the thickness of retinal layers, including the whole retina, inner plexiform layer, and inner nuclear layer and cell numbers in the GCL. Administration of SP600125 for 28 days protected against all these degenerative morphological changes (p < 0.05). In addition, SP600125 significantly (p < 0.05) protected against I/R-induced reduction in scotopic ERG b-wave amplitude at 3, 7, 14, 21 and 28 days after injury. SP600125 also protected against the I/R-induced losses in volume and levels of synaptic markers in the SC. Moreover, the protective effects of SP600125 in the retina and SC were also detected even with only 7 days (Days 1–7 after I/R) of SP600125 treatment. Conclusions Our results demonstrate the important role the JNK pathway plays in retinal degeneration in both in vitro and in vivo models and suggest that JNK inhibitors may be a useful therapeutic strategy for neuroprotection of RGCs in the retina. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0093-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Present Address: Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21231, USA
| | - Sean M Silverman
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert J Wordinger
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA. .,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
7
|
Binda NS, Carayon CPP, Agostini RM, Pinheiro ACDN, Cordeiro MN, Silva MAR, Silva JF, Pereira EMR, da Silva Junior CA, de Castro Junior CJ, Guimarães ALS, Gomez MV. PhTx3-4, a Spider Toxin Calcium Channel Blocker, Reduces NMDA-Induced Injury of the Retina. Toxins (Basel) 2016; 8:toxins8030070. [PMID: 26978403 PMCID: PMC4810215 DOI: 10.3390/toxins8030070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/26/2016] [Accepted: 03/01/2016] [Indexed: 11/16/2022] Open
Abstract
The in vivo neuroprotective effect of PhTx3-4, a spider toxin N-P/Q calcium channel blocker, was studied in a rat model of NMDA-induced injury of the retina. NMDA (N-Methyl-d-Aspartate)-induced retinal injury in rats reduced the b-wave amplitude by 62% ± 3.6%, indicating the severity of the insult. PhTx3-4 treatment increased the amplitude of the b-wave, which was almost equivalent to the control retinas that were not submitted to injury. The PhTx3-4 functional protection of the retinas recorded on the ERG also was observed in the neuroprotection of retinal cells. NMDA-induced injury reduced live cells in the retina layers and the highest reduction, 84%, was in the ganglion cell layer. Notably, PhTx3-4 treatment caused a remarkable reduction of dead cells in the retina layers, and the highest neuroprotective effect was in the ganglion cells layer. NMDA-induced cytotoxicity of the retina increased the release of glutamate, reactive oxygen species (ROS) production and oxidative stress. PhTx3-4 treatment reduced glutamate release, ROS production and oxidative stress measured by malondialdehyde. Thus, we presented for the first time evidence of in vivo neuroprotection from NMDA-induced retinal injury by PhTx3-4 (-ctenitoxin-Pn3a), a spider toxin that blocks N-P/Q calcium channels.
Collapse
Affiliation(s)
- Nancy Scardua Binda
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| | - Charles Porto Petruceli Carayon
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| | - Rafael Mourão Agostini
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| | - Ana Cristina do Nascimento Pinheiro
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| | - Marta Nascimento Cordeiro
- Ezequiel Dias Foundation (FUNED), Laboratory of Biochemistry, Rua Conde Pereira Carneiro 80, Belo Horizonte, Minas Gerais 30510-010, Brazil.
| | - Marco Aurélio Romano Silva
- Faculty of Medicine, Minas Gerais Federal University, Neuroscience Laboratory, Av. Alfredo Balena 190, Belo Horizonte, Minas Gerais 30130-100, Brazil.
| | - Juliana Figueira Silva
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| | - Elizete Maria Rita Pereira
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| | - Claudio Antonio da Silva Junior
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| | - Célio José de Castro Junior
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| | - Andre Luiz Sena Guimarães
- Department of Dentistry, Montes Claros State University, University Hospital, Health Laboratory Research, Montes Claros, Montes Claros, Minas Gerais 39401-001, Brazil.
| | - Marcus Vinicius Gomez
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais 30150-240, Brazil.
| |
Collapse
|
8
|
Cholkar K, Trinh HM, Pal D, Mitra AK. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin Drug Discov 2015; 10:293-313. [PMID: 25575654 DOI: 10.1517/17460441.2015.1000857] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glaucoma is a neurodegenerative disease with heterogeneous causes that result in retinal ganglionic cell (RGC) death. The discovery of ocular antihypertensives has shifted glaucoma therapy, largely, from surgery to medical intervention. Indeed, several intraocular pressure (IOP)-lowering drugs, with different mechanisms of action and RGC protective property, have been developed. AREAS COVERED In this review, the authors discuss the main new class of kinase inhibitors used as glaucoma treatments, which lower IOP by enhancing drainage and/or lowering production of aqueous humor. The authors include novel inhibitors under preclinical evaluation and investigation for their anti-glaucoma treatment. Additionally, the authors look at treatments that are in clinics now and which may be available in the near future. EXPERT OPINION Treatment of glaucoma remains challenging because the exact cause is yet to be delineated. Neuroprotection to the optic nerve head is undisputable. The novel Rho-associated kinase inhibitors have the capacity to lower IOP and provide optic nerve and RGC protection. In particular, the S-isomer of roscovitine has the capacity to lower IOP and provide neuroprotection. Combinations of selected drugs, which can provide maximal and sustained IOP-lowering effects as well as neuroprotection, are paramount to the prevention of glaucoma progression. In the near future, microRNA intervention may be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- Kishore Cholkar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmaceutical Sciences , 5258 Health Science Building, 2464 Charlotte Street, Kansas City, MO 64108-2718 , USA +1 816 235 1615 ; +1 816 235 5779 ;
| | | | | | | |
Collapse
|
9
|
Chintala SK, Putris N, Geno M. Activation of TLR3 promotes the degeneration of retinal ganglion cells by upregulating the protein levels of JNK3. Invest Ophthalmol Vis Sci 2015; 56:505-14. [PMID: 25564448 DOI: 10.1167/iovs.14-15539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To investigate whether activation of Toll-like receptor 3 (TLR3) promotes the degeneration of retinal ganglion cells (RGCs) by upregulating the protein levels of c-jun N-terminal kinase 3 (JNK3). METHODS Toll-like receptor 3-specific activator, Poly(I:C) (polyinosinic-polycytidylic acid), or PBS was injected into the vitreous humor of Thy1-YFP mice. At 24, 48, and 72 hours after treatments, degeneration of RGCs was assessed by using antibodies against brain-specific homeobox/POU domain protein 3a (Brn3a). A TLR3-specific inhibitor was injected into the vitreous humor with or without Poly(I:C). Western blot assays were performed to determine relative levels of TLR3, JNK3, pJNK3, and sterile alpha and HEAT/Armadillo motif-containing 1 (SARM1) proteins in retinal protein extracts, and immunohistochemistry assays were performed to determine their cellular localization in the retina. Mouse eyes were treated with Poly(I:C) or PBS along with MitoTracker Red, and colocalization of MitoTracker Red and JNK3 in the retinas was determined by using antibodies against JNK3. RESULTS Poly(I:C) activated TLR3 and upregulated its downstream target protein JNK3 but not SARM1 in the retina. Poly(I:C) activated TLR3 and upregulated JNK3 specifically in RGCs and promoted a significant degeneration of RGCs over a 72-hour time period. Toll-like receptor 3 upregulated the levels of JNK3 protein in the cytoplasm of RGCs, but not in the mitochondria. Toll-like receptor 3-specific inhibitor downregulated Poly(I:C)-mediated upregulation of JNK3 protein, and, in turn, significantly attenuated TLR3-induced degeneration of RGCs. CONCLUSIONS Results presented in this study show that the activation of TLR3 alone promotes the degeneration of RGCs by upregulating the protein levels of JNK3.
Collapse
Affiliation(s)
- Shravan K Chintala
- Laboratory of Ophthalmic Neurobiology, Eye Research Institute of Oakland University, Rochester, Michigan, United States
| | - Nahrain Putris
- Laboratory of Ophthalmic Neurobiology, Eye Research Institute of Oakland University, Rochester, Michigan, United States
| | - Mason Geno
- Laboratory of Ophthalmic Neurobiology, Eye Research Institute of Oakland University, Rochester, Michigan, United States
| |
Collapse
|
10
|
El-Azab MF, Baldowski BRB, Mysona BA, Shanab AY, Mohamed IN, Abdelsaid MA, Matragoon S, Bollinger KE, Saul A, El-Remessy AB. Deletion of thioredoxin-interacting protein preserves retinal neuronal function by preventing inflammation and vascular injury. Br J Pharmacol 2014; 171:1299-313. [PMID: 24283717 DOI: 10.1111/bph.12535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/07/2013] [Accepted: 11/17/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Retinal neurodegeneration is an early and critical event in several diseases associated with blindness. Clinically, therapies that target neurodegeneration fail. We aimed to elucidate the multiple roles by which thioredoxin-interacting protein (TXNIP) contributes to initial and sustained retinal neurodegeneration. EXPERIMENTAL APPROACH Neurotoxicity was induced by intravitreal injection of NMDA into wild-type (WT) and TXNIP-knockout (TKO) mice. The expression of apoptotic and inflammatory markers was assessed by immunohistochemistry, elisa and Western blot. Microvascular degeneration was assessed by periodic acid-Schiff and haematoxylin staining and retinal function by electroretinogram. KEY RESULTS NMDA induced early (1 day) and significant retinal PARP activation, a threefold increase in TUNEL-positive nuclei and 40% neuronal loss in ganglion cell layer (GCL); and vascular permeability in WT but not TKO mice. NMDA induced glial activation, expression of TNF-α and IL-1β that co-localized with Müller cells in WT but not TKO mice. In parallel, NMDA triggered the expression of NOD-like receptor protein (NLRP3), activation of caspase-1, and release of IL-1β and TNF-α in primary WT but not TKO Müller cultures. After 14 days, NMDA induced 1.9-fold microvascular degeneration, 60% neuronal loss in GCL and increased TUNEL-labelled cells in the GCL and inner nuclear layer in WT but not TKO mice. Electroretinogram analysis showed more significant reductions in b-wave amplitudes in WT than in TKO mice. CONCLUSION AND IMPLICATIONS Targeting TXNIP expression prevented early retinal ganglion cell death, glial activation, retinal inflammation and secondary neuro/microvascular degeneration and preserved retinal function. TXNIP is a promising new therapeutic target for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- M F El-Azab
- Center for Pharmacy and Experimental Therapeutics, University of Georgia, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Deloche C, Lopez-Lazaro L, Mouz S, Perino J, Abadie C, Combette JM. XG-102 administered to healthy male volunteers as a single intravenous infusion: a randomized, double-blind, placebo-controlled, dose-escalating study. Pharmacol Res Perspect 2014; 2:e00020. [PMID: 25505576 PMCID: PMC4186400 DOI: 10.1002/prp2.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of the study is to evaluate the safety, tolerability and pharmacokinetics (PK) of the JNK inhibitor XG-102 in a randomized, double blind, placebo controlled, sequential ascending dose parallel group Phase 1 Study. Three groups of male subjects received as randomly assigned ascending single XG-102 doses (10, 40, and 80 μg/kg; 6 subjects per dose) or placebo (2 subjects per dose) as an intravenous (IV) infusion over 60 min. Safety and tolerability were assessed by physical examination, vital signs, electrocardiography, eye examination, clinical laboratory tests and adverse events (AEs). PK was analyzed using noncompartmental methods. All reported AEs were mild to moderate and neither their number nor their distribution by System Organ Class suggest a dose relationship. Only headache and fatigue were considered probably or possibly study drug related. Headache frequency was similar for active and placebo, consequently this was not considered to be drug related but probably to study conditions. The other examinations did not show clinically relevant deviations or trends suggesting a XG-102 relationship. Geometric mean half-life was similar among doses, ranging from 0.36 to 0.65 h. Geometric mean XG-102 AUC0–last increased more than linearly with dose, 90% confidence intervals (CIs) did not overlap for the two highest doses. Geometric mean dose normalized Cmax values suggest a more than linear increase with dose but 90% CIs overlap. It may be concluded that XG-102 single IV doses of 10–80 μg/kg administered over 1 h to healthy male subjects were safe and well tolerated.
Collapse
|
12
|
Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A 2013; 110:4045-50. [PMID: 23431148 DOI: 10.1073/pnas.1211284110] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations.
Collapse
|
13
|
Reinecke K, Eminel S, Dierck F, Roessner W, Kersting S, Chromik AM, Gavrilova O, Laukevicience A, Leuschner I, Waetzig V, Rosenstiel P, Herdegen T, Sina C. The JNK inhibitor XG-102 protects against TNBS-induced colitis. PLoS One 2012; 7:e30985. [PMID: 22427801 PMCID: PMC3302790 DOI: 10.1371/journal.pone.0030985] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/30/2011] [Indexed: 12/19/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK)-inhibiting peptide D-JNKI-1, syn. XG-102 was tested for its therapeutic potential in acute inflammatory bowel disease (IBD) in mice. Rectal instillation of the chemical irritant trinitrobenzene sulfonic acid (TNBS) provoked a dramatic acute inflammation in the colon of 7–9 weeks old mice. Coincident subcutaneous application of 100 µg/kg XG-102 significantly reduced the loss of body weight, rectal bleeding and diarrhoea. After 72 h, the end of the study, the colon was removed and immuno-histochemically analysed. XG-102 significantly reduced (i) pathological changes such as ulceration or crypt deformation, (ii) immune cell pathology such as infiltration and presence of CD3- and CD68-positive cells, (iii) the production of tumor necrosis factor (TNF)-α in colon tissue cultures from TNBS-treated mice, (iv) expression of Bim, Bax, FasL, p53, and activation of caspase 3, (v) complexation of JNK2 and Bim, and (vi) expression and activation of the JNK substrate and transcription factor c-Jun. A single application of subcutaneous XG-102 was at least as effective or even better depending on the outcome parameter as the daily oral application of sulfasalazine used for treatment of IBD. The successful and substantial reduction of the severe, TNBS-evoked intestinal damages and clinical symptoms render the JNK-inhibiting peptide XG-102 a powerful therapeutic principle of IBD.
Collapse
Affiliation(s)
- Kirstin Reinecke
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sevgi Eminel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Wibke Roessner
- Pharmaceutical Institute, University of Kiel, Kiel, Germany
| | - Sabine Kersting
- Department of Visceral and General Surgery, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ansgar Michael Chromik
- Department of Visceral and General Surgery, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Olga Gavrilova
- Institute for Clinical Molecular Biology, University of Kiel, University Hospital Schleswig-Holstein, Kiel, Campus Kiel, Kiel, Germany
| | - Ale Laukevicience
- Department of Physiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ivo Leuschner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Vicki Waetzig
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, University Hospital Schleswig-Holstein, Kiel, Campus Kiel, Kiel, Germany
| | - Thomas Herdegen
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- * E-mail:
| | - Christian Sina
- Institute for Clinical Molecular Biology, University of Kiel, University Hospital Schleswig-Holstein, Kiel, Campus Kiel, Kiel, Germany
| |
Collapse
|
14
|
Al-Gayyar MMH, Abdelsaid MA, Matragoon S, Pillai BA, El-Remessy AB. Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br J Pharmacol 2012; 164:170-80. [PMID: 21434880 DOI: 10.1111/j.1476-5381.2011.01336.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Up-regulation of thioredoxin interacting protein (TXNIP), an endogenous inhibitor of thioredoxin (Trx), compromises cellular antioxidant and anti-apoptotic defences and stimulates pro-inflammatory cytokines expression, implying a role for TXNIP in apoptosis. Here we have examined the causal role of TXNIP expression in mediating retinal neurotoxicity and assessed the neuroprotective actions of verapamil, a calcium channel blocker and an inhibitor of TXNIP expression. EXPERIMENTAL APPROACH Retinal neurotoxicity was induced by intravitreal injection of NMDA in Sprague-Dawley rats, which received verapamil (10 mg·kg(-1), p.o.) or vehicle. Neurotoxicity was examined by terminal dUTP nick-end labelling assay and ganglion cell count. Expression of TXNIP, apoptosis signal-regulating kinase 1 (ASK-1), NF-κB, p38 MAPK, JNK, cleaved poly-ADP-ribose polymerase (PARP), caspase-3, nitrotyrosine and 4-hydroxy-nonenal were examined by Western and slot-blot analysis. Release of TNF-α and IL-1β was examined by elisa. KEY RESULTS NMDA injection enhanced TXNIP expression, decreased Trx activity, causing increased oxidative stress, glial activation and release of TNF-α and IL-1β. Enhanced TXNIP expression disrupted Trx/ASK-1 inhibitory complex leading to release of ASK-1 and activation of the pro-apoptotic p38 MAPK/JNK pathway, as indicated by cleaved PARP and caspase-3 expression. Treatment with verapamil blocked these effects. CONCLUSION AND IMPLICATIONS Elevated TXNIP expression contributed to retinal neurotoxicity by three different mechanisms, inducing release of inflammatory mediators such as TNF-α and IL-1β, altering antioxidant status and disrupting the Trx-ASK-1 inhibitory complex leading to activation of the p38 MAPK/JNK apoptotic pathway. Targeting TXNIP expression is a potential therapeutic target for retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Mohammed M H Al-Gayyar
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
15
|
Gow WR, Campbell K, Meade AJ, Watt PM, Milech N, Knuckey NW, Meloni BP. Lack of neuroprotection of inhibitory peptides targeting Jun/JNK after transient focal cerebral ischemia in spontaneously hypertensive rats. J Cereb Blood Flow Metab 2011; 31:e1-8. [PMID: 21971350 PMCID: PMC3323192 DOI: 10.1038/jcbfm.2011.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we have assessed the ability of two TAT-fused peptides PYC36D-TAT and JNKI-1D-TAT (JNKI-1 or XG-102), which respectively inhibit jun proto-oncogene (c-Jun) and c-Jun N-terminal kinase (JNK) activation, to reduce infarct volume and improve functional outcome (adhesive tape removal) after transient focal cerebral ischemia in Spontaneously Hypertensive (SH) rats. PYC36D-TAT and JNKI-1D-TAT peptide batches used for experiments were tested in vitro and protected cortical neurons against glutamate excitotoxicity. Rats were treated intravenously with three different doses of PYC36D-TAT (7.7, 76, or 255 nmol/kg), JNKI-1D-TAT (255 nmol/kg), D-TAT peptide (255 nmol/kg), or saline (vehicle control), 10 minutes after reperfusion after 90 minutes of middle cerebral artery occlusion (MCAO). Contrary to other stroke models, no treatment significantly reduced infarct volume or improved functional score measurements compared with vehicle-treated animals when assessed 48 hours after MCAO. Additionally, assessment of the JNKI-1D-TAT peptide, when administered 1 or 2 hours after reperfusion after 90 minutes of MCAO, also did not improve histological or functional outcomes at 48 hours after occlusion. This study is the first to evaluate the efficacy of PYC36D-TAT and JNKI-1D-TAT using the SH rat, which has recently been shown to be more sensitive to AMPA receptor activation rather than to NMDA receptor activation after cerebral ischemia, and which may have contributed to the negative findings.
Collapse
Affiliation(s)
- William R Gow
- Centre for Neuromuscular and Neurological Disorders/University of Western Australia, Australian Neuro-muscular Research Institute, Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Piras A, Gianetto D, Conte D, Bosone A, Vercelli A. Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure. PLoS One 2011; 6:e22514. [PMID: 21799881 PMCID: PMC3142183 DOI: 10.1371/journal.pone.0022514] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/23/2011] [Indexed: 12/19/2022] Open
Abstract
Acute primary open angle glaucoma is an optic neuropathy characterized by the elevation of intraocular pressure, which causes retinal ischemia and neuronal death. Rat ischemia/reperfusion enhances endocytosis of both horseradish peroxidase (HRP) or fluorescent dextran into ganglion cell layer (GCL) neurons 24 h after the insult. We investigated the activation of autophagy in GCL-neurons following ischemia/reperfusion, using acid phosphatase (AP) histochemistry and immunofluorescence against LC3 and LAMP1. Retinal I/R lead to the appearance of AP-positive granules and LAMP1-positive vesicles 12 and 24 h after the insult, and LC3 labelling at 24 h, and induced a consistent retinal neuron death. At 48 h the retina was negative for autophagic markers. In addition, Western Blot analysis revealed an increase of LC3 levels after damage: the increase in the conjugated, LC3-II isoform is suggestive of autophagic activity. Inhibition of autophagy by 3-methyladenine partially prevented death of neurons and reduces apoptotic markers, 24 h post-lesion. The number of neurons in the GCL decreased significantly following I/R (I/R 12.21±1.13 vs controls 19.23±1.12 cells/500 µm); this decrease was partially prevented by 3-methyladenine (17.08±1.42 cells/500 µm), which potently inhibits maturation of autophagosomes. Treatment also prevented the increase in glial fibrillary acid protein immunoreactivity elicited by I/R. Therefore, targeting autophagy could represent a novel and promising treatment for glaucoma and retinal ischemia.
Collapse
Affiliation(s)
- Antonio Piras
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation, Orbassano, Torino, Italy.
| | | | | | | | | |
Collapse
|
17
|
Quigley HA, Cone FE, Gelman SE, Yang Z, Son JL, Oglesby EN, Pease ME, Zack DJ. Lack of neuroprotection against experimental glaucoma in c-Jun N-terminal kinase 3 knockout mice. Exp Eye Res 2011; 92:299-305. [PMID: 21272576 DOI: 10.1016/j.exer.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/21/2010] [Accepted: 01/18/2011] [Indexed: 01/09/2023]
Abstract
To determine if the absence of c-Jun N-terminal kinase 3 (JNK3) in the mouse retina would reduce retinal ganglion cell (RGC) loss in mice with experimental glaucoma. C57BL/6 mice underwent experimental intraocular pressure (IOP) elevation with a bead/viscoelastic injection into one eye. One-half of the mice were Jnk3 homozygous knockouts (KO) and were compared to wild type (WT) mice. IOP was measured under anesthesia with the TonoLab, axial length was measured post-mortem with calipers after inflation to 15mmHg, and RGC layer counts were performed on retinal whole mount images stained with DAPI, imaged by confocal microscopy, and counted by masked observers in an image analysis system. Axon counts were performed in optic nerve cross-sections by semi-automated image analysis. Both WT and Jnk3(-/-) mice had mean elevations of IOP of more than 50% after bead injection. Both groups underwent the expected axial globe elongation due to chronic IOP elevation. The absence of JNK3 in KO retina was demonstrated by Western blots. RGC layer neuron counts showed modest loss in both WT and Jnk3(-/-) animals; local differences by retinal eccentricity were detected, in each case indicating greater loss in KO animals than in WT. The baseline number of RGC layer cells in KO animals was 10% higher than in WT, but the number of optic nerve axons was identical in KO and WT controls. A slightly greater loss of RGC in Jnk3(-/-) mice compared to controls was detected in experimental mouse glaucoma by RGC layer counting and there was no protective effect shown in axon counts. Counts of RGC layer cells and optic nerve axons indicate that Jnk3(-/-) mice have an increased number of amacrine cells compared to WT controls.
Collapse
Affiliation(s)
- Harry A Quigley
- Glaucoma Research Laboratory, Wilmer Eye Institute, 600 North Wolfe Street, Johns Hopkins University School of Medicine, Baltimore, MD 21287-9205, USA.
| | | | | | | | | | | | | | | |
Collapse
|