1
|
Miguel Telega L, Berti R, Blazhenets G, Domogalla LC, Steinacker N, Omrane MA, Meyer PT, Coenen VA, Eder AC, Döbrössy MD. Reserpine-induced rat model for depression: Behavioral, physiological and PET-based dopamine receptor availability validation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111013. [PMID: 38636702 DOI: 10.1016/j.pnpbp.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), Freiburg, Germany
| | - Raissa Berti
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa-Charlotte Domogalla
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Nils Steinacker
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - M Aymen Omrane
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), Freiburg, Germany
| | - Ann-Christin Eder
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Máté D Döbrössy
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Kokane SS, Butler BD, Antonio JH, Armant RJ, Hoch AC, Coelho CS, Brady BN, Chamseddine HH, Perrotti LI. Interactions between estradiol and ERK, but not mTOR, signaling is necessary for enhanced cocaine-induced conditioned place preference in female rats. Pharmacol Biochem Behav 2023; 232:173653. [PMID: 37804867 DOI: 10.1016/j.pbb.2023.173653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Women rapidly progress from recreational cocaine use to dependence, consume greater quantities of cocaine, experience more positive subjective effects of cocaine and have higher incidences of relapse during abstinence. These effects have been replicated in animal models of cocaine addiction and indicate an enhanced sensitivity and therefore, vulnerability of females to cocaine addiction. Furthermore, it has been demonstrated that estradiol (E2) is a key mediator of the aforementioned effects of cocaine in women and female animals. However, studies identifying the influence of E2 on cocaine-associated reward and its underlying neurobiological mechanisms are lacking. Here, we further explored the influence of E2 on cocaine conditioned place preference in female rats. We show that E2 mediates cocaine-conditioned reward by potentiating cocaine-context associations. In addition, the E2-mediated increases in cocaine-induced CPP are associated with increased activation of ERK1/2 and mTOR proteins in the nucleus accumbens, dorsal striatum, and ventral tegmental area. To assess the involvement of ERK1/2 and mTOR in E2-mediated enhanced cocaine-CPP, we inhibited ERK1/2 and/or mTOR activity during cocaine-conditioning and before CPP-test. Inhibition of ERK1/2 during conditioning blocked cocaine-CPP in females, inhibition mTOR was without effect, and inhibiting ERK1/2 and mTOR before CPP-test blocked cocaine-CPP. In conclusion, we have established that E2 enhances cocaine-conditioned reward by potentiating cocaine-context associations formed during conditioning. Additionally, activation of ERK1/2 during cocaine-conditioning is necessary for the potentiation of cocaine-conditioned reward by E2. SIGNIFICANCE STATEMENT: Studies characterizing the molecular substrates underlying the effects of E2 during the formation of cocaine-context associations are virtually unknown. In this study, we established the influence of E2 during the formation of cocaine-CPP and characterized the role of ERK1/2 and mTOR activity on this effect within significant nodes of the reward pathway. The elucidation of the role of E2 in cocaine-induced intracellular signaling fills a significant gap in our knowledge regarding the mechanisms by which E2 affects intracellular signaling pathways to indicate the motivational salience of a stimulus. These data are crucial to our understanding of how fluctuating hormone levels can render females increasing sensitive to the rewarding effects of cocaine.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Brandon D Butler
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Josimar Hernandez Antonio
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ross J Armant
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Adam C Hoch
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Clinton S Coelho
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Blake N Brady
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Houda H Chamseddine
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Linda I Perrotti
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
3
|
Guo N, Zhang L, Fan W, Bai L, Zhang X, Shi Z, Bai J. Inhibition of Geranylgeranylacetone on cholecystokinin-B receptor, BDNF and dopamine D1 receptor induced by morphine. Biochem Biophys Res Commun 2022; 588:23-28. [PMID: 34942530 DOI: 10.1016/j.bbrc.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
Morphine is the pain releasing and abusing drug. Morphine leads to addiction by activating dopaminergic rewarding system consisted of the ventral tegmental area (VTA) and nucleus accumbens (NAc). Cholecystokinin (CCK) is a gut-brain neuropeptide and involved in morphine dependence. Brain-derived neurotrophic factor (BDNF) is a neurotrophin and plays roles in regulating addiction. Geranylgeranylacetone (GGA) is a medicine of protecting gastric mucosal injury and protecting neurons. Our previous study showed that GGA blocked morphine-induced withdrawal and relapse through inducing thioredoxin 1(Trx1). In this study, we investigated that whether cholecystokinin-B receptor (CCKB receptor) and BDNF were related to GGA inhibition on morphine addiction. At first, we made conditioned place preference (CPP) model and confirmed again that GGA blocked the expression of morphine-CPP in present study. Then, our results showed that morphine increased the expressions of dopamine D1 receptor, tyrosine hydroxylase (TH), CCKB receptor and BDNF in the VTA and NAc in mice, which was inhibited by GGA. These results suggest that CCK and BDNF in dopaminergic systems are associated with the role of GGA blocking morphine-CPP.
Collapse
Affiliation(s)
- Ningning Guo
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Le Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Fan
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xianwen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhizhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
4
|
Jordan CJ, Xi ZX. Identification of the Risk Genes Associated With Vulnerability to Addiction: Major Findings From Transgenic Animals. Front Neurosci 2022; 15:811192. [PMID: 35095405 PMCID: PMC8789752 DOI: 10.3389/fnins.2021.811192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding risk factors for substance use disorders (SUD) can facilitate medication development for SUD treatment. While a rich literature exists discussing environmental factors that influence SUD, fewer articles have focused on genetic factors that convey vulnerability to drug use. Methods to identify SUD risk genes include Genome-Wide Association Studies (GWAS) and transgenic approaches. GWAS have identified hundreds of gene variants or single nucleotide polymorphisms (SNPs). However, few genes identified by GWAS have been verified by clinical or preclinical studies. In contrast, significant progress has been made in transgenic approaches to identify risk genes for SUD. In this article, we review recent progress in identifying candidate genes contributing to drug use and addiction using transgenic approaches. A central hypothesis is if a particular gene variant (e.g., resulting in reduction or deletion of a protein) is associated with increases in drug self-administration or relapse to drug seeking, this gene variant may be considered a risk factor for drug use and addiction. Accordingly, we identified several candidate genes such as those that encode dopamine D2 and D3 receptors, mGluR2, M4 muscarinic acetylcholine receptors, and α5 nicotinic acetylcholine receptors, which appear to meet the risk-gene criteria when their expression is decreased. Here, we describe the role of these receptors in drug reward and addiction, and then summarize major findings from the gene-knockout mice or rats in animal models of addiction. Lastly, we briefly discuss future research directions in identifying addiction-related risk genes and in risk gene-based medication development for the treatment of addiction.
Collapse
Affiliation(s)
- Chloe J. Jordan
- Division of Alcohol, Drugs and Addiction, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
- *Correspondence: Chloe J. Jordan,
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
- Zheng-Xiong Xi,
| |
Collapse
|
5
|
Kawahara Y, Ohnishi YN, Ohnishi YH, Kawahara H, Nishi A. Distinct Role of Dopamine in the PFC and NAc During Exposure to Cocaine-Associated Cues. Int J Neuropsychopharmacol 2021; 24:988-1001. [PMID: 34626116 PMCID: PMC8653875 DOI: 10.1093/ijnp/pyab067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dopamine neurotransmission plays a critical role in reward in drug abuse and drug addiction. However, the role of dopamine in the recognition of drug-associated environmental stimuli, retrieval of drug-associated memory, and drug-seeking behaviors is not fully understood. METHODS Roles of dopamine neurotransmission in the prefrontal cortex (PFC) and nucleus accumbens (NAc) in the cocaine-conditioned place preference (CPP) paradigm were evaluated using in vivo microdialysis. RESULTS In mice that had acquired cocaine CPP, dopamine levels in the PFC, but not in the NAc, increased in response to cocaine-associated cues when mice were placed in the cocaine chamber of an apparatus with 2 separated chambers. The induction of the dopamine response and the development of cocaine CPP were mediated through activation of glutamate NMDA (N-methyl-D-aspartate)/AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor signaling in the PFC during conditioning. Activation of dopamine D1 or D2 receptor signaling in the PFC was required for cocaine-induced locomotion, but not for the induction of the dopamine response or the development of cocaine CPP. Interestingly, dopamine levels in the NAc increased in response to cocaine-associated cues when mice were placed at the center of an apparatus with 2 connected chambers, which requires motivated exploration associated with cocaine reward. CONCLUSIONS Dopamine neurotransmission in the PFC is activated by the exposure to the cocaine-associated cues, whereas dopamine neurotransmission in the NAc is activated in a process of motivated exploration of cues associated with cocaine reward. Furthermore, the glutamate signaling cascade in the PFC is suggested to be a potential therapeutic target to prevent the progression of drug addiction.
Collapse
Affiliation(s)
- Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan,Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan,Correspondence: Yukie Kawahara, DDS, PhD, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan ()
| | - Yoshinori N Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Yoko H Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroshi Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
6
|
Qian H, Wang J, Shang Q, Xiao J, Chen G, Gao B, Liang M, Li T, Liu X. The effect of protein phosphatase 2A inhibitor LB100 on regulating methamphetamine induced conditioned place preference in mice. Neurosci Lett 2020; 721:134817. [PMID: 32032748 DOI: 10.1016/j.neulet.2020.134817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
Abstract
Protein phosphatase 2A (PP2A) is an evolutionarily conserved serine/threonine phosphatase abundant in mammalian brains. Although recent research has revealed that PP2A plays important roles in cocaine and morphine addictions, the mechanism of action of PP2A in methamphetamine (METH) addiction is unclear. LB100 is a PP2A inhibitor able to penetrate the blood-brain barrier (BBB); the role of LB100 in METH-induced conditioned place preference (CPP) has not yet been reported. Here, we explored the roles of LB100 in distinct phases of METH-induced CPP. Our findings indicate that LB100 inhibits the acquisition and reinstatement of METH-induced CPP and promotes the extinction of METH-induced CPP. Moreover, LB100 alone did not affect the natural preference of mice. Intriguingly, repeated administration of LB100 in the extinction phase did not inhibit the reinstatement of METH-induced CPP, but LB100 injection prior to METH administration could significantly block it. Taken together, we found that LB100 has significant effects on different phases of METH-induced CPP, and is therefore, a potentially promising therapeutic for METH addiction.
Collapse
Affiliation(s)
- Hongyan Qian
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qing Shang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Xiao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Gang Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Baoyao Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Min Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Zhan J, Jordan CJ, Bi GH, He XH, Gardner EL, Wang YL, Xi ZX. Genetic deletion of the dopamine D3 receptor increases vulnerability to heroin in mice. Neuropharmacology 2018; 141:11-20. [PMID: 30138692 DOI: 10.1016/j.neuropharm.2018.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
Despite extensive research, the neurobiological risk factors that convey vulnerability to opioid abuse are still unknown. Recent studies suggest that the dopamine D3 receptor (D3R) is involved in opioid self-administration, but it remains unclear whether altered D3R availability is a risk factor for the development of opioid abuse and addiction. Here we used dopamine D3 receptor-knockout (D3-KO) mice to investigate the role of this receptor in the different phases of opioid addiction. D3-KO mice learned to self-administer heroin faster and took more heroin than wild-type mice during acquisition and maintenance of self-administration. D3R-KO mice also displayed higher motivation to work to obtain heroin reward during self-administration under progressive-ratio reinforcement, as well as elevated heroin-seeking during extinction and reinstatement testing. In addition, deletion of the D3R induced higher baseline levels of extracellular dopamine (DA) in the nucleus accumbens (NAc), higher basal levels of locomotion, and reduced NAc DA and locomotor responses to lower doses of heroin. These findings suggest that the D3R is critically involved in regulatory processes that normally limit opioid intake via DA-related mechanisms. Deletion of D3R augments opioid-taking and opioid-seeking behaviors. Therefore, low D3R availability in the brain may represent a risk factor for the development of opioid abuse and addiction.
Collapse
Affiliation(s)
- Jia Zhan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA; Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Xiang-Hu He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA; Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Eliot L Gardner
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
8
|
Saika F, Kiguchi N, Wakida N, Kobayashi D, Fukazawa Y, Matsuzaki S, Kishioka S. Upregulation of CCL7 and CCL2 in reward system mediated through dopamine D1 receptor signaling underlies methamphetamine-induced place preference in mice. Neurosci Lett 2017; 665:33-37. [PMID: 29174638 DOI: 10.1016/j.neulet.2017.11.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
We previously showed that the CC-chemokine ligand 2 (CCL2)-CC-chemokine receptor 2 (CCR2) system is responsible for conditioned place preference (CPP) by methamphetamine (Meth). In this study, we investigated the roles for other chemokines mediating Meth-induced CPP and the upstream factors upregulating chemokines in mice. We found that CCL7 mRNA level was upregulated in the prefrontal cortex (PFC) after Meth administration (3mg/kg, subcutaneous), and increased CCL7 immunoreactivity was localized to the PFC NeuN-positive neurons. Meth-induced CPP was blocked by the dopamine D1 receptor antagonist SCH 23390 but not by the D2 receptor antagonists raclopride or haloperidol. The D1 receptor agonist SKF 81297 alone elicited CPP, suggesting a critical role of D1 receptor signaling in Meth-induced reward. Consistent with these results, the Meth-induced upregulation of CCL7 and CCL2 were attenuated by SCH 23390, and a single administration of SKF 81297 upregulated mRNA expression levels of CCL7 and CCL2 in the PFC. Furthermore, Meth-induced CPP was prevented by INCB 3284, a selective antagonist of CCR2, a receptor that binds both CCL7 and CCL2. Collectively, we identified two CC-chemokines (i.e., CCL7 and CCL2) as key regulatory factors in Meth-induced reward. Pharmacological inhibitors of these chemokines may warrant development as novel therapeutics for ameliorating Meth addiction.
Collapse
Affiliation(s)
- Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan.
| | - Naoki Wakida
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Yohji Fukazawa
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| |
Collapse
|
9
|
Du Y, Du L, Cao J, Hölscher C, Feng Y, Su H, Wang Y, Yun KM. Levo-tetrahydropalmatine inhibits the acquisition of ketamine-induced conditioned place preference by regulating the expression of ERK and CREB phosphorylation in rats. Behav Brain Res 2017; 317:367-373. [DOI: 10.1016/j.bbr.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 12/31/2022]
|
10
|
Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci 2016; 45:2-19. [DOI: 10.1111/ejn.13390] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Bernard Le Foll
- Centre for Addiction and Mental Health; Toronto ON Canada
- University of Toronto; Toronto ON Canada
| |
Collapse
|
11
|
Zhu J, Zhu F, Zhao N, Mu X, Li P, Wang W, Liu J, Ma X. Methylation of glucocorticoid receptor gene promoter modulates morphine dependence and accompanied hypothalamus-pituitary-adrenal axis dysfunction. J Neurosci Res 2016; 95:1459-1473. [PMID: 27618384 DOI: 10.1002/jnr.23913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 11/09/2022]
Abstract
Previous studies demonstrated that dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis played an important role in morphine dependence. Nonetheless, the molecular mechanism underlying morphine-induced HPA axis dysfunction and morphine dependence remains unclear. In the current study, 5'-aza-2'-deoxycytidine (5-aza), an inhibitor of DNA methyltransferases (DNMTs), was used to examine the effects of glucocorticoid receptor (GR) promoter 17 methylation on chronic morphine-induced HPA axis dysfunction and behavioral changes in rats and the underlying mechanism. Our results showed that chronic but not acute morphine downregulated the expression of nuclear GR protein and GR exon 17 variant mRNA, and upregulated the methylation of GR 17 exon promoter in the hippocampus of rats. Meanwhile, 5-aza per se had no effect on observed molecular and behavior change. In contrast, pretreatment of 5-aza into rat hippocampus reversed chronic morphine-induced hypermethylation of GR 17 promoter and decrease in GR expression. Moreover, pretreatment of 5-aza attenuated chronic morphine-enhanced HPA axis reactivity and the naloxone-precipitated somatic signs in morphine-dependent rats. Our results suggest that chronic morphine induced hypermethylation of GR 17 promoter, which then downregulated the expression of hippocampal GR, and was thus involved in chronic morphine-induced dysfunction of the HPA axis and the modulation of morphine dependence. Moreover, chronic morphine-induced hypermethylation of GR 17 promoter may be at least partially due to the increase in hippocampal DNMT 1 expression and its binding at GR 17 promoter in the rat hippocampus. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Feng Zhu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Zhao
- Northwest University of Politics and Law School of Police, Xi'an, Shaanxi, People's Republic of China
| | - Xin Mu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Reproductive Medicine Center, Maternal and Child Health Hospital of Shaanxi Province & Northwest Women's and Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Pingping Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wei Wang
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jian Liu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Xiancang Ma
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
12
|
Zhu J, Zhao N, Chen Y, Zhu L, Zhong Q, Liu J, Chen T. Sodium butyrate modulates a methamphetamine-induced conditioned place preference. J Neurosci Res 2016; 95:1044-1052. [PMID: 27426635 DOI: 10.1002/jnr.23835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Abstract
Previous studies demonstrated that histone acetylation modulated the transcription of associated gene expression and thus contributed to the persistence of addictive behaviors and neuroplasticity. Nonetheless, the roles of histone acetylation in distinct phases of methamphetamine (METH)-induced conditioned place preference (CPP) remain unclear. The current study examines the effects of the histone deacetylases (HDACs) inhibitor sodium butyrate (NaB) on the acquisition, extinction, and reinstatement of METH-induced CPP in mice. Our results showed that 1 mg/kg METH induced CPP in mice after four conditioning sessions. METH-induced CPP was extinguished after three extinction training sessions and could be triggered by the same dose (1 mg/kg) of METH on the reinstatement test day. Meanwhile, NaB (400 mg/kg) per se had no effect on the natural preference of mice, but injections of NaB during the conditioning and extinction phases facilitated the acquisition and extinction of METH-induced CPP, respectively. Additionally, although the effect of a single NaB injection prior to the trigger of CPP reinstatement was not observed, repeated NaB injections during the extinction phase totally blocked the reinstatement of METH-induced CPP. Taken together, our results suggested a specific effect of histone acetylation on modulating distinct phases of METH-induced CPP and that treatment of NaB during the extinction phase not only produced beneficial effects on eliminating already established CPP but also blocked the reinstatement of METH-induced CPP. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Zhao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Northwest University of Politics and Law School of Police, Xi'an, Shaanxi, People's Republic of China
| | - Yanjiong Chen
- Departments of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qing Zhong
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jian Liu
- The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 2016; 781:10-24. [DOI: 10.1016/j.ejphar.2016.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
14
|
Sun WL, Quizon PM, Zhu J. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:1-40. [PMID: 26809997 DOI: 10.1016/bs.pmbts.2015.10.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
15
|
Zhao Y, Liu P, Chu Z, Liu F, Han W, Xun X, Dang YH. Electrolytic lesions of the bilateral ventrolateral orbital cortex inhibit methamphetamine-associated contextual memory formation in rats. Brain Res 2015; 1624:214-221. [DOI: 10.1016/j.brainres.2015.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/19/2015] [Accepted: 07/25/2015] [Indexed: 12/29/2022]
|
16
|
Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen T. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci 2015; 16:18. [PMID: 25884509 PMCID: PMC4399149 DOI: 10.1186/s12868-015-0157-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023] Open
Abstract
Background Repeated exposure to addictive drugs elicits long-lasting cellular and molecular changes. It has been reported that the aberrant expression of long non-coding RNAs (lncRNAs) is involved in cocaine and heroin addiction, yet the expression profile of lncRNAs and their potential effects on methamphetamine (METH)-induced locomotor sensitization are largely unknown. Results Using high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq), here we examined the alterations in the lncRNAs expression profile in the nucleus accumbens (NAc) of METH-sensitized mice. We found that the expression levels of 6246 known lncRNAs (6215 down-regulated, 31 up-regulated) and 8442 novel lncRNA candidates (8408 down-regulated, 34 up-regulated) were significantly altered in the METH-sensitized mice. Based on characterizations of the genomic contexts of the lncRNAs, we further showed that there were 5139 differentially expressed lncRNAs acted via cis mechanisms, including sense intronic (4295 down-regulated and one up-regulated), overlapping (25 down-regulated and one up-regulated), natural antisense transcripts (NATs, 148 down-regulated and eight up-regulated), long intergenic non-coding RNAs (lincRNAs, 582 down-regulated and five up-regulated), and bidirectional (72 down-regulated and two up-regulated). Moreover, using the program RNAplex, we identified 3994 differentially expressed lncRNAs acted via trans mechanisms. Gene ontology (GO) and KEGG pathway enrichment analyses revealed that the predicted cis- and trans- associated genes were significantly enriched during neuronal development, neuronal plasticity, learning and memory, and reward and addiction. Conclusions Taken together, our results suggest that METH can elicit global changes in lncRNA expressions in the NAc of sensitized mice that might be involved in METH-induced locomotor sensitization and addiction. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0157-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Yufeng Liu
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Yanjiong Chen
- Departments of Immunology and Pathogenic Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yanlin Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Liren Huang
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Sisi Chen
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Yonghui Dang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| |
Collapse
|
17
|
Peng X, Wang Q, Mishra Y, Xu J, Reichert DE, Malik M, Taylor M, Luedtke RR, Mach RH. Synthesis, pharmacological evaluation and molecular modeling studies of triazole containing dopamine D3 receptor ligands. Bioorg Med Chem Lett 2014; 25:519-23. [PMID: 25556097 DOI: 10.1016/j.bmcl.2014.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/09/2014] [Indexed: 02/01/2023]
Abstract
A series of 2-methoxyphenyl piperazine analogues containing a triazole ring were synthesized and their in vitro binding affinities at human dopamine D2 and D3 receptors were evaluated. Compounds 5b, 5c, 5d, and 4g, demonstrate high affinity for dopamine D3 receptors and moderate selectivity for the dopamine D3 versus D2 receptor subtypes. To further examine their potential as therapeutic agents, their intrinsic efficacy at both D2 and D3 receptors was determined using a forskolin-dependent adenylyl cyclase inhibition assay. Affinity at dopamine D4 and serotonin 5-HT1A receptors was also determined. In addition, information from previous molecular modeling studies of the binding of a panel of 163 structurally-related benzamide analogues at dopamine D2 and D3 receptors was applied to this series of compounds. The results of the modeling studies were consistent with our previous experimental data. More importantly, the modeling study results explained why the replacement of the amide linkage with the hetero-aromatic ring leads to a reduction in the affinity of these compounds at D3 receptors.
Collapse
Affiliation(s)
- Xin Peng
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Qi Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Yogesh Mishra
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David E Reichert
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Maninder Malik
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert H Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
18
|
Yan Y, Newman AH, Xu M. Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration. Neuroscience 2014; 278:154-64. [PMID: 25149631 PMCID: PMC4172503 DOI: 10.1016/j.neuroscience.2014.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
Memories of drug experience and drug-associated environmental cues can elicit drug-seeking and taking behaviors in humans. Disruption of reconsolidation of drug memories dampens previous memories and therefore may provide a useful way to treat drug abuse. We and others previously demonstrated that dopamine D1 and D3 receptors play differential roles in acquiring cocaine-induced behaviors. Moreover, D3 receptors contribute to the reconsolidation of cocaine-induced conditioned place preference. In the present study, we examined effects of manipulating D1 or D3 receptors on reconsolidation of cocaine memories in mouse models of drug self-administration. We found that pharmacological blockade of D1 receptors or a genetic mutation of the D3 receptor gene attenuated reconsolidation that lasted for at least 1week after the memory retrieval. In contrast, with no memory retrieval, pharmacological antagonism of D1 receptors or the D3 receptor gene mutation did not significantly affect reconsolidation of cocaine memories. Pharmacological blockade of D3 receptors also attenuated reconsolidation in wild-type mice that lasted for at least 1week after the memory retrieval. These results suggest that D1 and D3 receptors and related signaling mechanisms play key roles in reconsolidation of cocaine memories in mice, and that these receptors may serve as novel targets for the treatment of cocaine abuse in humans.
Collapse
Affiliation(s)
- Y Yan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA
| | - A H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - M Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Inhibition of histone deacetylase in the basolateral amygdala facilitates morphine context-associated memory formation in rats. J Mol Neurosci 2014; 55:269-278. [PMID: 24829091 DOI: 10.1007/s12031-014-0317-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 04/28/2014] [Indexed: 12/20/2022]
Abstract
Histone acetylation/deacetylation is a crucial mechanism in memory formation and drug addiction. There is evidence suggesting that histone H3 acetylation may contribute to the long-term neural and behavioral responses to addictive drugs. In addition, the basolateral amygdala (BLA) is critically involved in the formation of cue-associated memories. However, the behavioral effect of histone deacetylase (HDAC) inhibition in the BLA and the underlying molecular alterations at different phases of morphine-induced conditioned place preference (CPP) has not been investigated. In this study, we measured the expression, extinction, and reinstatement of morphine-induced place preference in rats pretreated with trichostatin A (TSA), an HDAC inhibitor. Intra-BLA pretreatment with TSA significantly enhanced morphine-induced CPP acquisition and expression, facilitated extinction, and reduced reinstatement of morphine-induced CPP. These behavioral changes were associated with a general increase in histone H3 lysine14 (H3K14) acetylation in the BLA together with upregulation of the brain-derived neurophic factor (BDNF) and ΔFosB and CREB activation. Collectively, our findings imply that HDAC inhibition in the BLA promotes some aspects of the memory that develops during conditioning and extinction training. Furthermore, histone H3 acetylation may play a role in learning and memory for morphine addiction in the BLA.
Collapse
|
20
|
Levo-tetrahydropalmatine attenuates the development and expression of methamphetamine-induced locomotor sensitization and the accompanying activation of ERK in the nucleus accumbens and caudate putamen in mice. Neuroscience 2014; 258:101-10. [DOI: 10.1016/j.neuroscience.2013.11.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/24/2013] [Accepted: 11/12/2013] [Indexed: 11/20/2022]
|
21
|
Xu W, Wang Y, Ma Z, Chiu YT, Huang P, Rasakham K, Unterwald E, Lee DYW, Liu-Chen LY. L-isocorypalmine reduces behavioral sensitization and rewarding effects of cocaine in mice by acting on dopamine receptors. Drug Alcohol Depend 2013; 133:693-703. [PMID: 24080315 PMCID: PMC3954112 DOI: 10.1016/j.drugalcdep.2013.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously reported isolation of l-isocorypalmine (l-ICP), a mono-demethylated analog of l-tetrahydropalmatine (l-THP), from the plant Corydalis yanhusuo. Here we characterized its in vitro pharmacological properties and examined its effects on cocaine-induced behaviors in mice. METHODS Receptor binding, cAMP and [(35)S]GTPγS assays were used to examine pharmacological actions of l-ICP in vitro. Effects of l-ICP on cocaine-induced locomotor hyperactivity and sensitization and conditioned place preference (CPP) in mice were investigated. HPLC was employed to analyze metabolites of l-ICP in mouse serum. RESULTS Among more than 40 targets screened, l-ICP and l-THP bound only to dopamine (DA) receptors. l-ICP was a high-affinity partial agonist of D1 and D5 receptors and a moderate-affinity antagonist of D2, D3 and D4 receptors, whereas l-THP bound to only D1 and D5 receptors, with lower affinities than l-ICP. At 10mg/kg (i.p.), l-ICP inhibited spontaneous locomotor activity for a shorter time than l-THP. Pretreatment with l-ICP reduced cocaine-induced locomotor hyperactivities. Administration of l-ICP before cocaine once a day for 5 days reduced cocaine-induced locomotor sensitization on days 5 and 13 after 7 days of withdrawal. Pretreatment with l-ICP before cocaine daily for 6 days blocked cocaine-induced CPP, while l-ICP itself did not cause preference or aversion. HPLC analysis showed that l-ICP was the main compound in mouse serum following i.p. injection of l-ICP. CONCLUSIONS l-ICP likely acts as a D1 partial agonist and a D2 antagonist to produce its in vivo effects and may be a promising agent for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Wei Xu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Yujun Wang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Zhongze Ma
- Bio-Organic and Natural Products Laboratory, McLean Hospital,
Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Yi-Ting Chiu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Peng Huang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Khampaseuth Rasakham
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Ellen Unterwald
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - David Y.-W. Lee
- Bio-Organic and Natural Products Laboratory, McLean Hospital,
Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA,Correspondence should be sent to Dr. Lee-Yuan Liu-Chen,
Center for Substance Abuse Research and Department of Pharmacology, Temple
University School of Medicine, Philadelphia, PA 19140, USA. Tel: +1 215
707 4188; Fax: +1 215 707 7068.
| |
Collapse
|
22
|
Su HL, Zhu J, Chen YJ, Zhao N, Han W, Dang YH, Xu M, Chen T. Roles of levo-tetrahydropalmatine in modulating methamphetamine reward behavior. Physiol Behav 2013; 118:195-200. [DOI: 10.1016/j.physbeh.2013.05.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/25/2013] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
|
23
|
Song R, Zhang HY, Peng XQ, Su RB, Yang RF, Li J, Xi ZX, Gardner EL. Dopamine D(3) receptor deletion or blockade attenuates cocaine-induced conditioned place preference in mice. Neuropharmacology 2013; 72:82-7. [PMID: 23643749 DOI: 10.1016/j.neuropharm.2013.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/02/2013] [Accepted: 04/20/2013] [Indexed: 01/11/2023]
Abstract
The dopamine (DA) D3 receptor (D3R) has received much attention in medication development for treatment of addiction. However, the functional role of the D3R in drug reward and addiction has been a matter of debate. We recently reported that D3 receptor-knockout (D3(-/-)) mice display increased vulnerability to cocaine self-administration, which we interpret as a compensatory response to attenuated cocaine reward after D3R deletion. Here we report that D3(-/-) mice displayed attenuated cocaine-induced conditioned place response (CPP) compared to wild-type mice. Similarly, blockade of brain D3Rs by YQA-14, a novel DA D3 receptor antagonist, significantly and dose-dependently inhibits acquisition and expression of cocaine-induced CPP in WT mice, but not in D3(-/-) mice. These findings suggest that: 1) D3Rs play an important role in mediating cocaine's rewarding effects; and 2) YQA-14 is a highly potent and selective D3R antagonist in vivo, which deserves further study as a candidate for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Rui Song
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Region-specific expression of brain-derived neurotrophic factor splice variants in morphine conditioned place preference in mice. Brain Res 2013; 1519:53-62. [PMID: 23623815 DOI: 10.1016/j.brainres.2013.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/25/2013] [Accepted: 04/19/2013] [Indexed: 01/14/2023]
Abstract
It is well established that brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain plasticity-related processes, such as learning, memory and drug addiction. However, changes in expression of BDNF splice variants after acquisition, extinction and reinstatement of cue-elicited morphine seeking behavior have not yet been investigated. Real-time PCR was used to assess BDNF splice variants (I, II, IV and VI) in various brain regions during acquisition, extinction and reinstatement of morphine-conditioned place preference (CPP) in mice. Repeated morphine injections (10mg/kg, i.p.) increased expression of BDNF splice variants II, IV and VI in the hippocampus, caudate putamen (CPu) and nucleus accumbens (NAcc). Levels of BDNF splice variants decreased after extinction training and continued to decrease during reinstatement induced by a morphine priming injection (10mg/kg, i.p.). However, after reinstatement induced by exposure to 6 min of forced swimming (FS), expression of BDNF splice variants II, IV and VI was increased in the hippocampus, CPu, NAcc and prefrontal cortex (PFC). After reinstatement induced by 40 min of restraint, expression of BDNF splice variants was increased in PFC. These results show that exposure to either morphine or acute stress can induce reinstatement of drug-seeking, but expression of BDNF splice variants is differentially affected by chronic morphine and acute stress. Furthermore, BDNF splice variants II, IV and VI may play a role in learning and memory for morphine addiction in the hippocampus, CPu and NAcc.
Collapse
|
25
|
Dennis TS, Beck KD, Bobzean SAM, Dougall AL, Perrotti LI. Assessing learned associations between conditioned cocaine reward and environmental stimuli in the Wistar Kyoto rat. Pharmacol Biochem Behav 2013; 103:76-82. [PMID: 22922075 DOI: 10.1016/j.pbb.2012.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 11/28/2022]
Abstract
Clinical studies demonstrate that anxiety disorders increase the risk of substance use disorder. However, few studies have directly assessed anxiety as a vulnerability factor in processing of rewarding stimuli. The Wistar–Kyoto (WKY) rat has been proposed as a model of anxiety vulnerability because it exhibits extreme behavioral inhibition in novel and social environments; yet, it displays paradoxical rapid active avoidance learning that is resistant to extinction. The present study was designed to characterize the acquisition and persistence of cocaine conditioned place preference (CPP) in WKY rats. In the first of a series of three experiments, adult male WKY and Sprague Dawley (SD) rats were given six pairings of cocaine (3, 5, 10, 15 mg/kg) or saline on alternating days. SD rats developed cocaine-induced CPP to each of the four doses of cocaine tested. In contrast, WKY rats demonstrated CPP when conditioned with 3, 5, and 10 mg/kg, but displayed no preference to the 15 mg/kg dose. Next, separate groups of rats were subject to an extended CPP paradigm, which included acquisition, extinction and reinstatement phases. Rats were conditioned with cocaine and saline on alternating days using either a 6/6 (as above) or 4/4 conditioning regimen. Both SD and WKY rats acquired a lasting CPP with the 6/6 conditioning regimen. Results from the 4/4 conditioning regimen show that SD, but not WKY, rats acquired CPP. Preference scores for SD rats during the cocaine primed reinstatement test were significantly different from pretest scores indicating reinstatement of CPP in this group. Paradoxically, WKY rats demonstrated a latent sensitization to the conditioned rewarding effects of cocaine during the drug-primed reinstatement test. Taken together, WKY rats appear to be more sensitive to high doses of cocaine and need more experience with the drug to acquire a preference than SD rats.
Collapse
Affiliation(s)
- Torry S Dennis
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
26
|
Electroacupuncture reduces cocaine-induced seizures and mortality in mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:134610. [PMID: 23690833 PMCID: PMC3652148 DOI: 10.1155/2013/134610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/17/2013] [Indexed: 12/20/2022]
Abstract
The aims of this study were to characterize the protective profile of electroacupuncture (EA) on cocaine-induced seizures and mortality in mice. Mice were treated with EA (2 Hz, 50 Hz, and 100 Hz), or they underwent needle insertion without anesthesia at the Dazhui (GV14) and Baihui (GV20) acupoints before cocaine administration. EA at 50 Hz applied to GV14 and GV20 significantly reduced the seizure severity induced by a single dose of cocaine (75 mg/kg; i.p.). Furthermore, needle insertion into GV14 and GV20 and EA at 2 Hz and 50 Hz at both acupoints significantly reduced the mortality rate induced by a single lethal dose of cocaine (125 mg/kg; i.p.). In the sham control group, EA at 50 Hz applied to bilateral Tianzong (SI11) acupoints had no protective effects against cocaine. In addition, EA at 50 Hz applied to GV14 and GV20 failed to reduce the incidence of seizures and mortality induced by the local anesthetic procaine. In an immunohistochemistry study, EA (50 Hz) pretreatment at GV14 and GV20 decreased cocaine (75 mg/kg; i.p.)-induced c-Fos expression in the paraventricular thalamus. While the dopamine D3 receptor antagonist, SB-277011-A (30 mg/kg; s.c), did not by itself affect cocaine-induced seizure severity, it prevented the effects of EA on cocaine-induced seizures. These results suggest that EA alleviates cocaine-induced seizures and mortality and that the dopamine D3 receptor is involved, at least in part, in the anticonvulsant effects of EA in mice.
Collapse
|
27
|
Yan Y, Kong H, Wu EJ, Newman AH, Xu M. Dopamine D3 receptors regulate reconsolidation of cocaine memory. Neuroscience 2013; 241:32-40. [PMID: 23506736 DOI: 10.1016/j.neuroscience.2013.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 12/12/2022]
Abstract
Memories of learned associations between the rewarding properties of drugs of abuse and environmental cues contribute to craving and relapse in humans. Disruption of reconsolidation dampens or even erases previous memories. Dopamine (DA) mediates the acquisition of reward memory and drugs of abuse can pathologically change related neuronal circuits in the mesolimbic DA system. Previous studies showed that DA D3 receptors are involved in cocaine-conditioned place preference (CPP) and reinstatement of cocaine-seeking behavior. However, the role of D3 receptors in reconsolidation of cocaine-induced reward memory remains unclear. In the present study, we combined genetic and pharmacological approaches to investigate the role of D3 receptors in reconsolidation of cocaine-induced CPP. We found that the mutation of the D3 receptor gene weakened reconsolidation of cocaine-induced CPP in mice triggered by a 3-min (min) retrieval. Furthermore, treatment of a selective D3 receptor antagonist PG01037 immediately following the 3-min retrieval disrupted reconsolidation of cocaine-induced CPP in wild-type mice and such disruption remained at least 1 week after the 3-min retrieval. These results suggest that D3 receptors play a key role in reconsolidation of cocaine-induced CPP in mice, and that pharmacological blockade of these receptors may be therapeutic for the treatment of cocaine craving and relapse in clinical settings.
Collapse
Affiliation(s)
- Y Yan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
28
|
Mao LM, Reusch JM, Fibuch EE, Liu Z, Wang JQ. Amphetamine increases phosphorylation of MAPK/ERK at synaptic sites in the rat striatum and medial prefrontal cortex. Brain Res 2012. [PMID: 23201445 DOI: 10.1016/j.brainres.2012.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a central role in cell signaling. Extracellular signal-regulated kinase (ERK) is a prototypic subclass of MAPKs and is densely expressed in postmitotic neurons of adult mammalian brains. Active ERK translocates into the nucleus to regulate gene expression. Additionally, ERK is visualized in neuronal peripheries, such as distal synaptic structures. While nuclear ERK is a known sensitive target of psychostimulants, little is known about the responsiveness of synaptic ERK to stimulants. In this study, we focused on ERK at synaptic versus extrasynaptic sites and investigated its responses to the psychostimulant amphetamine in the adult rat striatum and medial prefrontal cortex (mPFC) in vivo. We used a pre-validated biochemical fractionation procedure to isolate synapse- and extrasynapse-enriched membranes. We found that two common ERK isoforms (ERK1 and ERK2) were concentrated more in extrasynaptic fractions than in synaptic fractions in striatal and cortical neurons under normal conditions. At synaptic sites, ERK2 was noticeably more abundant than ERK1. Acute injection of amphetamine induced an increase in ERK2 phosphorylation in the synaptic fraction of striatal neurons, while the drug did not alter extrasynaptic ERK2 phosphorylation. Similar results were observed in the mPFC. In both synaptic and extrasynaptic compartments, total ERK1/2 proteins remained stable in response to amphetamine. Our data establish the subsynaptic distribution pattern of MAPK/ERK in striatal and cortical neurons. Moreover, the synaptic pool of ERK2 in these neurons can be selectively activated by amphetamine.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
29
|
Increased vulnerability to cocaine in mice lacking dopamine D3 receptors. Proc Natl Acad Sci U S A 2012; 109:17675-80. [PMID: 23045656 DOI: 10.1073/pnas.1205297109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroimaging studies using positron emission tomography suggest that reduced dopamine D(2) receptor availability in the neostriatum is associated with increased vulnerability to drug addiction in humans and experimental animals. The role of D(3) receptors (D(3)Rs) in the neurobiology of addiction remains unclear, however. Here we report that D(3)R KO (D(3)(-/-)) mice display enhanced cocaine self-administration and enhanced motivation for cocaine-taking and cocaine-seeking behavior. This increased vulnerability to cocaine is accompanied by decreased dopamine response to cocaine secondary to increased basal levels of extracellular dopamine in the nucleus accumbens, suggesting a compensatory response to decreased cocaine reward in D(3)(-/-) mice. In addition, D(3)(-/-) mice also display up-regulation of dopamine transporters in the striatum, suggesting a neuroadaptative attempt to normalize elevated basal extracellular dopamine. These findings suggest that D(3)R deletion increases vulnerability to cocaine, and that reduced D(3)R availability in the brain may constitute a risk factor for the development of cocaine addiction.
Collapse
|
30
|
Caine SB, Thomsen M, Barrett AC, Collins GT, Grundt P, Newman AH, Butler P, Xu M. Cocaine self-administration in dopamine D₃ receptor knockout mice. Exp Clin Psychopharmacol 2012; 20:352-63. [PMID: 22867038 PMCID: PMC3587777 DOI: 10.1037/a0029135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dopamine D₃ receptor has received attention over the last two decades as a target for medications development for substance abuse disorders. Results have remained mixed. Despite emergence of more D₃-selective ligands, possible attribution of observed effects to D₂ receptors remains a concern. Knockout mice may help shed light on mechanisms. Here we evaluated the effect of constitutive D₃ receptor inactivation ("knockout") on the reinforcing effects of cocaine. We tested D₃ wild-type (WT), heterozygous (D₃⁺/⁻), and knockout (D₃⁻/⁻), mice in acquisition and maintenance of intravenous self-administration across a broad range of cocaine doses, using a fixed ratio (FR) 1 and a progressive ratio (PR) schedule of reinforcement, along with parallel food-reinforced studies. Generally, D₃⁻/⁻ mice showed cocaine self-administration comparable to WT controls across assays. Moderate and nonsignificant trends toward lesser reinforcing effects of a low cocaine dose (0.32 mg/kg) were apparent in acquisition and PR studies, consistent with the idea that the D₃ receptor may play a subtle role in the reinforcing effects of low cocaine doses under low FR conditions. However, those effects with cocaine self-administration were more subtle than the lower responding of D₃ knockout mice observed with food-maintained behavior. In addition, the D₃ antagonist PG01037 failed to affect cocaine self-administration under an FR 1 schedule in WT mice. The present data do not support a necessary role for the D₃ receptor in the direct reinforcing effects of cocaine.
Collapse
Affiliation(s)
- S Barak Caine
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, MA 02478, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Vidal-Infer A, Roger-Sánchez C, Daza-Losada M, Aguilar MA, Miñarro J, Rodríguez-Arias M. Role of the dopaminergic system in the acquisition, expression and reinstatement of MDMA-induced conditioned place preference in adolescent mice. PLoS One 2012; 7:e43107. [PMID: 22916213 PMCID: PMC3420895 DOI: 10.1371/journal.pone.0043107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 07/19/2012] [Indexed: 12/16/2022] Open
Abstract
Background The rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in conditioned place preference (CPP) procedures, but the involvement of the dopaminergic system in MDMA-induced CPP and reinstatement is poorly understood. Methodology/Principal Findings In this study, the effects of the DA D1 antagonist SCH 23390 (0.125 and 0.250 mg/kg), the DA D2 antagonist Haloperidol (0.1 and 0.2 mg/kg), the D2 antagonist Raclopride (0.3 and 0.6 mg/kg) and the dopamine release inhibitor CGS 10746B (3 and 10 mg/kg) on the acquisition, expression and reinstatement of a CPP induced by 10 mg/kg of MDMA were evaluated in adolescent mice. As expected, MDMA significantly increased the time spent in the drug-paired compartment during the post-conditioning (Post-C) test, and a priming dose of 5 mg/kg reinstated the extinguished preference. The higher doses of Haloperidol, Raclopride and CGS 10746B and both doses of SCH 23390 blocked acquisition of the MDMA-induced CPP. However, only Haloperidol blocked expression of the CPP. Reinstatement of the extinguished preference was not affected by any of the drugs studied. Analysis of brain monoamines revealed that the blockade of CPP acquisition was accompanied by an increase in DA concentration in the striatum, with a concomitant decrease in DOPAC and HVA levels. Administration of haloperidol during the Post-C test produced increases in striatal serotonin, DOPAC and HVA concentrations. In mice treated with the higher doses of haloperidol and CGS an increase in SERT concentration in the striatum was detected during acquisition of the CPP, but no changes in DAT were observed. Conclusions/Significance These results demonstrate that, in adolescent mice, the dopaminergic system is involved in the acquisition and expression of MDMA-induced CPP, but not in its reinstatement.
Collapse
Affiliation(s)
- Antonio Vidal-Infer
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
| | | | - Manuel Daza-Losada
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
| | - María A. Aguilar
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
| | - José Miñarro
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
32
|
Zhu J, Chen Y, Zhao N, Cao G, Dang Y, Han W, Xu M, Chen T. Distinct roles of dopamine D3 receptors in modulating methamphetamine-induced behavioral sensitization and ultrastructural plasticity in the shell of the nucleus accumbens. J Neurosci Res 2012; 90:895-904. [PMID: 22420045 DOI: 10.1002/jnr.22821] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Persistent changes in behavior and psychological function that occur as a consequence of exposure to drugs of abuse are thought to be mediated by the structural plasticity of specific neural circuits such as the brain's dopamine (DA) system. Changes in dendritic morphology in the nucleus accumbens (NAc) accompany drug-induced enduring behavioral and molecular changes, yet ultrastructural changes in synapses following repeated exposure to drugs have not been well studied. The current study examines the role of DA D3 receptors in modulating locomotor activity induced by both acute and repeated methamphetamine (METH) administration and accompanying ultrastructural plasticity in the shell of NAc in mice. We found that D3 receptor mutant (D3−/−) mice exhibited attenuated acute locomotor responses as well as the development of behavioral sensitization to METH compared with wild-type mice. In the absence of obvious neurotoxic effects, METH induced similar increases in synaptic density in the shell of NAc in both wild-type and D3−/− mice. These results suggest that D3 receptors modulate locomotor responses to both acute and repeated METH treatment. In contrast, the D3 receptor is not obviously involved in modulating baseline or METH-induced ultrastructural changes in the NAc shell.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an, Shannxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kong H, Xu M. Dopamine D1 and D3 Receptors Are Differentially Involved in Cocaine-Induced Reward Learning and Cell Signaling. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/jdar/235577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Besheer J, Fisher KR, Cannady R, Grondin JJM, Hodge CW. Intra-amygdala inhibition of ERK(1/2) potentiates the discriminative stimulus effects of alcohol. Behav Brain Res 2011; 228:398-405. [PMID: 22209853 DOI: 10.1016/j.bbr.2011.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 01/11/2023]
Abstract
Extracellular signal-regulated kinase (ERK(1/2)) has been implicated in modulating drug seeking behavior and is a target of alcohol and other drugs of abuse. Given that the discriminative stimulus (subjective/interoceptive) effects of drugs are determinants of abuse liability and can influence drug seeking behavior, we examined the role of ERK(1/2) in modulating the discriminative stimulus effects of alcohol. Using drug discrimination procedures, rats were trained to discriminate a moderate intragastric (IG) alcohol dose (1g/kg) versus water (IG). Following an alcohol (1g/kg) discrimination session phosphorylated ERK(1/2) (pERK(1/2)) immunoreactivity (IR) was significantly elevated in the amygdala, but not the nucleus accumbens. Therefore, we hypothesized that intra-amygdala inhibition of ERK(1/2) would disrupt expression of the discriminative stimulus effects of alcohol. However, intra-amygdala or accumbens administration of the MEK/ERK(1/2) inhibitor U0126 (1 and 3μg) had no effect on the discriminative stimulus effects of the training dose of alcohol (1g/kg). Contrary to our hypothesis, intra-amygdala infusion of U0126 (3μg) potentiated the discriminative stimulus effects of a low alcohol dose (0.5g/kg) and had no effect following nucleus accumbens infusion. Importantly, site-specific inhibition of pERK(1/2) in each brain region was confirmed. Therefore, the increase in pERK(1/2) IR in the amygdala following systemic alcohol administration may be reflective of the widespread effects of alcohol on the brain (activation/inhibition of brain circuits), whereas the site specific microinjection studies confirmed functional involvement of intra-amygdala ERK(1/2). These findings show that activity of the ERK signaling pathway in the amygdala can influence the discriminative stimulus effects of alcohol.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
35
|
Felton CM, Johnson CM. Modulation of dopamine-dependent behaviors by the Caenorhabditis elegans Olig homolog HLH-17. J Neurosci Res 2011; 89:1627-36. [DOI: 10.1002/jnr.22694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/12/2011] [Accepted: 04/15/2011] [Indexed: 11/08/2022]
|
36
|
Midde NM, Gomez AM, Harrod SB, Zhu J. Genetically expressed HIV-1 viral proteins attenuate nicotine-induced behavioral sensitization and alter mesocorticolimbic ERK and CREB signaling in rats. Pharmacol Biochem Behav 2011; 98:587-97. [PMID: 21420997 DOI: 10.1016/j.pbb.2011.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/07/2011] [Accepted: 03/12/2011] [Indexed: 12/29/2022]
Abstract
The prevalence of tobacco smoking in HIV-1 positive individuals is 3-fold greater than that in the HIV-1 negative population; however, whether HIV-1 viral proteins and nicotine together produce molecular changes in mesolimbic structures that mediate psychomotor behavior has not been studied. This study determined whether HIV-1 viral proteins changed nicotine-induced behavioral sensitization in HIV-1 transgenic (HIV-1Tg) rats. Further, we examined cAMP response element binding protein (CREB) and extracellular regulated kinase (ERK1/2) signaling in the prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). HIV-1Tg rats exhibited a transient decrease of activity during habituation, but showed attenuated nicotine (0.35mg/kg, s.c.)-induced behavioral sensitization compared to Fisher 344 (F344) rats. The basal levels of phosphorylated CREB and ERK2 were lower in the PFC of HIV-1Tg rats, but not in the NAc and VTA, relative to the controls. In the nicotine-treated groups, the levels of phosphorylated CREB and ERK2 in the PFC were increased in HIV-1Tg rats, but decreased in F344 animals. Moreover, repeated nicotine administration reduced phosphorylated ERK2 in the VTA of HIV-1Tg rats and in the NAc of F344 rats, but had no effect on phosphorylated CREB, indicating a region-specific change of intracellular signaling. These results demonstrate that HIV-1 viral proteins produce differences in basal and nicotine-induced alterations in CREB and ERK signaling that may contribute to the alteration in psychomotor sensitization. Thus, HIV-1 positive smokers are possibly more vulnerable to alterations in CREB and ERK signaling and this has implications for motivated behavior, including tobacco smoking, in HIV-1 positive individuals who self-administer nicotine.
Collapse
Affiliation(s)
- Narasimha M Midde
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
37
|
Kong H, Kuang W, Li S, Xu M. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine. Neuroscience 2010; 176:152-61. [PMID: 21168475 DOI: 10.1016/j.neuroscience.2010.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 01/10/2023]
Abstract
Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain.
Collapse
Affiliation(s)
- H Kong
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | | | | | | |
Collapse
|