1
|
Potier B, Lallemant L, Parrot S, Huguet-Lachon A, Gourdon G, Dutar P, Gomes-Pereira M. DM1 Transgenic Mice Exhibit Abnormal Neurotransmitter Homeostasis and Synaptic Plasticity in Association with RNA Foci and Mis-Splicing in the Hippocampus. Int J Mol Sci 2022; 23:ijms23020592. [PMID: 35054778 PMCID: PMC8775431 DOI: 10.3390/ijms23020592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.
Collapse
Affiliation(s)
- Brigitte Potier
- LuMIn, CNRS FRE2036, ENS Paris-Saclay, CentraleSupelec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (B.P.); (P.D.)
| | - Louison Lallemant
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
| | - Sandrine Parrot
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Université Lyon 1, 69500 Bron, France;
| | - Aline Huguet-Lachon
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
- Correspondence: (G.G.); (M.G.-P.)
| | - Patrick Dutar
- LuMIn, CNRS FRE2036, ENS Paris-Saclay, CentraleSupelec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (B.P.); (P.D.)
| | - Mário Gomes-Pereira
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
- Correspondence: (G.G.); (M.G.-P.)
| |
Collapse
|
2
|
Li N, Teng SW, Zhao L, Li JR, Xu JL, Li N, Shuai JC, Chen ZY. Carboxypeptidase E Regulates Activity-Dependent TrkB Neuronal Surface Insertion and Hippocampal Memory. J Neurosci 2021; 41:6987-7002. [PMID: 34266900 PMCID: PMC8372023 DOI: 10.1523/jneurosci.0236-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent insertion of the tropomyosin-related kinase B (TrkB) receptor into the plasma membrane can explain, in part, the preferential effect of brain-derived neurotrophic factor (BDNF) on active neurons and synapses; however, the underlying molecular mechanisms remain obscure. Here, we report a novel function for carboxypeptidase E (CPE) in controlling chemical long-term potentiation stimuli-induced TrkB surface delivery in hippocampal neurons. Total internal reflection fluorescence assays and line plot assays showed that CPE facilitates TrkB transport from dendritic shafts to the plasma membrane. The Box2 domain in the juxtamembrane region of TrkB and the C terminus of CPE are critical for the activity-dependent plasma membrane insertion of TrkB. Moreover, the transactivator of transcription TAT-CPE452-466, which could block the association between CPE and TrkB, significantly inhibited neuronal activity-enhanced BDNF signaling and dendritic spine morphologic plasticity in cultured hippocampal neurons. Microinfusion of TAT-CPE452-466 into the dorsal hippocampus of male C57BL/6 mice inhibited the endogenous interaction between TrkB and CPE and diminished fear-conditioning-induced TrkB phosphorylation, which might lead to an impairment in hippocampal memory acquisition and consolidation but not retrieval. These results suggest that CPE modulates activity-induced TrkB surface insertion and hippocampal-dependent memory and sheds light on our understanding of the role of CPE in TrkB-dependent synaptic plasticity and memory modulation.SIGNIFICANCE STATEMENT It is well known that BDNF acts preferentially on active neurons; however, the underlying molecular mechanism is not fully understood. In this study, we found that the cytoplasmic tail of CPE could interact with TrkB and facilitate the neuronal activity-dependent movement of TrkB vesicles to the plasma membrane. Blocking the association between CPE and TrkB decreased fear-conditioning-induced TrkB phosphorylation and led to hippocampal memory deficits. These findings provide novel insights into the role of CPE in TrkB intracellular trafficking as well as in mediating BDNF/TrkB function in synaptic plasticity and hippocampal memory.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | | | - Ling Zhao
- Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing-Rui Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Jia-Ling Xu
- Institution of Traditional Chinese Medicine Innovation Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Na Li
- Departments of Anatomy and Neurobiology and
| | | | - Zhe-Yu Chen
- Departments of Anatomy and Neurobiology and
- Institute of Brain Science, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institution of Traditional Chinese Medicine Innovation Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| |
Collapse
|
3
|
Lignani G, Baldelli P, Marra V. Homeostatic Plasticity in Epilepsy. Front Cell Neurosci 2020; 14:197. [PMID: 32676011 PMCID: PMC7333442 DOI: 10.3389/fncel.2020.00197] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022] Open
Abstract
In the healthy brain, neuronal excitability and synaptic strength are homeostatically regulated to keep neuronal network activity within physiological boundaries. Epilepsy is characterized by episodes of highly synchronized firing across in widespread neuronal populations, due to a failure in regulation of network activity. Here we consider epilepsy as a failure of homeostatic plasticity or as a maladaptive response to perturbations in the activity. How homeostatic compensation is involved in epileptogenic processes or in the chronic phase of epilepsy, is still debated. Although several theories have been proposed, there is relatively little experimental evidence to evaluate them. In this perspective, we will discuss recent results that shed light on the potential role of homeostatic plasticity in epilepsy. First, we will present some recent insights on how homeostatic compensations are probably active before and during epileptogenesis and how their actions are temporally regulated and closely dependent on the progression of pathology. Then, we will consider the dual role of transcriptional regulation during epileptogenesis, and finally, we will underline the importance of homeostatic plasticity in the context of therapeutic interventions for epilepsy. While classic pharmacological interventions may be counteracted by the epileptic brain to maintain its potentially dysfunctional set point, novel therapeutic approaches may provide the neuronal network with the tools necessary to restore its physiological balance.
Collapse
Affiliation(s)
- Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
Xiao L, Yang X, Loh YP. Neurotrophic, Gene Regulation, and Cognitive Functions of Carboxypeptidase E-Neurotrophic Factor-α1 and Its Variants. Front Neurosci 2019; 13:243. [PMID: 30941009 PMCID: PMC6433828 DOI: 10.3389/fnins.2019.00243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Carboxypeptidase E, also known as neurotrophic factor-α1 (CPE-NFα1), was first discovered as an exopeptidase and is known to work by cleaving C-terminal basic amino acids from prohormone intermediates to produce mature peptide hormones and neuropeptides in the endocrine and central nervous systems, respectively. CPE-NFα1 also plays a critical role in prohormone sorting and secretory vesicle transportation. Recently, emerging studies have indicated that CPE-NFα1 exerts multiple non-enzymatic physiological roles in maintaining normal central nervous system function and in neurodevelopment. This includes potent neuroprotective and anti-depressant activities, as well as stem cell differentiation functions. In addition, N-terminal truncated variants of CPE-NFα1 have been identified to regulate expression of important neurodevelopmental genes. This mini-review summarizes recent advances in understanding the mechanisms underlying CPE-NFα1’s function in neuroprotection during stress and aspects of neurodevelopment.
Collapse
Affiliation(s)
- Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Ilina EI, Armento A, Sanchez LG, Reichlmeir M, Braun Y, Penski C, Capper D, Sahm F, Jennewein L, Harter PN, Zukunft S, Fleming I, Schulte D, Le Guerroué F, Behrends C, Ronellenfitsch MW, Naumann U, Mittelbronn M. Effects of soluble CPE on glioma cell migration are associated with mTOR activation and enhanced glucose flux. Oncotarget 2017; 8:67567-67591. [PMID: 28978054 PMCID: PMC5620194 DOI: 10.18632/oncotarget.18747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/12/2017] [Indexed: 01/05/2023] Open
Abstract
Carboxypeptidase E (CPE) has recently been described as a multifunctional protein that regulates proliferation, migration and survival in several tumor entities. In glioblastoma (GBM), the most malignant primary brain tumor, secreted CPE (sCPE) was shown to modulate tumor cell migration. In our current study, we aimed at clarifying the underlying molecular mechanisms regulating anti-migratory as well as novel metabolic effects of sCPE in GBM. Here we show that sCPE activates mTORC1 signaling in glioma cells detectable by phosphorylation of its downstream target RPS6. Additionally, sCPE diminishes glioma cell migration associated with a negative regulation of Rac1 signaling via RPS6, since both inhibition of mTOR and stimulation of Rac1 results in a reversed effect of sCPE on migration. Knockdown of CPE leads to a decrease of active RPS6 associated with increased GBM cell motility. Apart from this, we show that sCPE enhances glucose flux into the tricarboxylic acid cycle at the expense of lactate production, thereby decreasing aerobic glycolysis, which might as well contribute to a less invasive behavior of tumor cells. Our data contributes to a better understanding of the complexity of GBM cell migration and sheds new light on how tumor cell invasion and metabolic plasticity are interconnected.
Collapse
Affiliation(s)
- Elena I Ilina
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg.,NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526 Luxembourg, Luxembourg
| | - Angela Armento
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Leticia Garea Sanchez
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Marina Reichlmeir
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Yannick Braun
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Cornelia Penski
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Capper
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Lukas Jennewein
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Francois Le Guerroué
- Institute of Biochemistry II, Medical School Goethe University, 60528 Frankfurt, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, 60528 Frankfurt, Germany.,Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Michael W Ronellenfitsch
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Senckenberg Institute of Neurooncology, Goethe University, 60528 Frankfurt, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg.,NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526 Luxembourg, Luxembourg.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Laboratoire National de Santé, Department of Pathology, 3555 Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4361 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
6
|
Ji L, Wu HT, Qin XY, Lan R. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr Connect 2017; 6:R18-R38. [PMID: 28348001 PMCID: PMC5434747 DOI: 10.1530/ec-17-0020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Since discovery in 1982, carboxypeptidase E (CPE) has been shown to be involved in the biosynthesis of a wide range of neuropeptides and peptide hormones in endocrine tissues, and in the nervous system. This protein is produced from pro-CPE and exists in soluble and membrane forms. Membrane CPE mediates the targeting of prohormones to the regulated secretory pathway, while soluble CPE acts as an exopeptidase and cleaves C-terminal basic residues from peptide intermediates to generate bioactive peptides. CPE also participates in protein internalization, vesicle transport and regulation of signaling pathways. Therefore, in two types of CPE mutant mice, Cpefat/Cpefat and Cpe knockout, loss of normal CPE leads to a lot of disorders, including diabetes, hyperproinsulinemia, low bone mineral density and deficits in learning and memory. In addition, the potential roles of CPE and ΔN-CPE, an N-terminal truncated form, in tumorigenesis and diagnosis were also addressed. Herein, we focus on dissecting the pathophysiological roles of CPE in the endocrine and nervous systems, and related diseases.
Collapse
Affiliation(s)
- Lin Ji
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| | - Huan-Tong Wu
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Cawley NX, Li Z, Loh YP. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. J Mol Endocrinol 2016; 56:T77-97. [PMID: 26880796 PMCID: PMC4899099 DOI: 10.1530/jme-15-0323] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Pro-opiomelanocortin (POMC) is a prohormone that encodes multiple smaller peptide hormones within its structure. These peptide hormones can be generated by cleavage of POMC at basic residue cleavage sites by prohormone-converting enzymes in the regulated secretory pathway (RSP) of POMC-synthesizing endocrine cells and neurons. The peptides are stored inside the cells in dense-core secretory granules until released in a stimulus-dependent manner. The complexity of the regulation of the biosynthesis, trafficking, and secretion of POMC and its peptides reflects an impressive level of control over many factors involved in the ultimate role of POMC-expressing cells, that is, to produce a range of different biologically active peptide hormones ready for action when signaled by the body. From the discovery of POMC as the precursor to adrenocorticotropic hormone (ACTH) and β-lipotropin in the late 1970s to our current knowledge, the understanding of POMC physiology remains a monumental body of work that has provided insight into many aspects of molecular endocrinology. In this article, we describe the intracellular trafficking of POMC in endocrine cells, its sorting into dense-core secretory granules and transport of these granules to the RSP. Additionally, we review the enzymes involved in the maturation of POMC to its various peptides and the mechanisms involved in the differential processing of POMC in different cell types. Finally, we highlight studies pertaining to the regulation of ACTH secretion in the anterior and intermediate pituitary and POMC neurons of the hypothalamus.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaojin Li
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Y Peng Loh
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Cheng Y, Cawley NX, Loh YP. Carboxypeptidase E (NF-α1): a new trophic factor in neuroprotection. Neurosci Bull 2014; 30:692-6. [PMID: 24691800 DOI: 10.1007/s12264-013-1430-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
Carboxypeptidase E (CPE) is a prohormone-processing enzyme and sorting receptor that functions intracellularly. However, recent studies have demonstrated that CPE acts as a trophic factor extracellularly to up-regulate the expression of a pro-survival gene. This mini-review summarizes the roles of CPE in neuroprotection and the implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
10
|
Kruer MC, Jepperson T, Dutta S, Steiner RD, Cottenie E, Sanford L, Merkens M, Russman BS, Blasco PA, Fan G, Pollock J, Green S, Woltjer RL, Mooney C, Kretzschmar D, Paisán-Ruiz C, Houlden H. Mutations in γ adducin are associated with inherited cerebral palsy. Ann Neurol 2014; 74:805-14. [PMID: 23836506 PMCID: PMC3952628 DOI: 10.1002/ana.23971] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 06/07/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Cerebral palsy is estimated to affect nearly 1 in 500 children, and although prenatal and perinatal contributors have been well characterized, at least 20% of cases are believed to be inherited. Previous studies have identified mutations in the actin-capping protein KANK1 and the adaptor protein-4 complex in forms of inherited cerebral palsy, suggesting a role for components of the dynamic cytoskeleton in the genesis of the disease. METHODS We studied a multiplex consanguineous Jordanian family by homozygosity mapping and exome sequencing, then used patient-derived fibroblasts to examine functional consequences of the mutation we identified in vitro. We subsequently studied the effects of adducin loss of function in Drosophila. RESULTS We identified a homozygous c.1100G>A (p.G367D) mutation in ADD3, encoding gamma adducin in all affected members of the index family. Follow-up experiments in patient fibroblasts found that the p.G367D mutation, which occurs within the putative oligomerization critical region, impairs the ability of gamma adducin to associate with the alpha subunit. This mutation impairs the normal actin-capping function of adducin, leading to both abnormal proliferation and migration in cultured patient fibroblasts. Loss of function studies of the Drosophila adducin ortholog hts confirmed a critical role for adducin in locomotion. INTERPRETATION Although likely a rare cause of cerebral palsy, our findings indicate a critical role for adducins in regulating the activity of the actin cytoskeleton, suggesting that impaired adducin function may lead to neuromotor impairment and further implicating abnormalities of the dynamic cytoskeleton as a pathogenic mechanism contributing to cerebral palsy.
Collapse
|
11
|
Cheng Y, Cawley NX, Loh YP. Carboxypeptidase E/NFα1: a new neurotrophic factor against oxidative stress-induced apoptotic cell death mediated by ERK and PI3-K/AKT pathways. PLoS One 2013; 8:e71578. [PMID: 23977080 PMCID: PMC3744492 DOI: 10.1371/journal.pone.0071578] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/07/2013] [Indexed: 12/23/2022] Open
Abstract
Mice lacking Carboxypeptidase E (CPE) exhibit degeneration of hippocampal neurons caused by stress at weaning while over-expression of CPE in hippocampal neurons protect them against hydrogen peroxide-induced cell death. Here we demonstrate that CPE acts as an extracellular trophic factor to protect neurons. Rat hippocampal neurons pretreated with purified CPE protected the cells against hydrogen peroxide-, staurosporine- and glutamate-induced cell death. This protection was observed even when hippocampal neurons were treated with an enzymatically inactive mutant CPE or with CPE in the presence of its inhibitor, GEMSA. Purified CPE added to the culture medium rescued CPE knock-out hippocampal neurons from cell death. Both ERK and AKT were phosphorylated within 15 min after CPE treatment of hippocampal neurons and, using specific inhibitors, both signaling pathways were shown to be required for the neuroprotective effect. The expression of the anti-apoptotic protein, B-cell lymphoma 2 (BCL-2), was up-regulated after hippocampal neurons were treated with CPE. Furthermore, hydrogen peroxide induced down-regulation of BCL-2 protein and subsequent activation of caspase-3 were inhibited by CPE treatment. Thus, this study has identified CPE as a new neurotrophic factor that can protect neurons against degeneration through the activation of ERK and AKT signaling pathways to up-regulate expression of BCL-2.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nelson JC, Stavoe AKH, Colón-Ramos DA. The actin cytoskeleton in presynaptic assembly. Cell Adh Migr 2013; 7:379-87. [PMID: 23628914 DOI: 10.4161/cam.24803] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dramatic morphogenetic processes underpin nearly every step of nervous system development, from initial neuronal migration and axon guidance to synaptogenesis. Underlying this morphogenesis are dynamic rearrangements of cytoskeletal architecture. Here we discuss the roles of the actin cytoskeleton in the development of presynaptic terminals, from the elaboration of terminal arbors to the recruitment of presynaptic vesicles and active zone components. The studies discussed here underscore the importance of actin regulation at every step in neuronal circuit assembly.
Collapse
Affiliation(s)
- Jessica C Nelson
- Program in Cellular Neuroscience, Neurodegeneration and Repair; Department of Cell Biology; Yale University; New Haven, CT USA
| | | | | |
Collapse
|
13
|
Lou H, Park JJ, Phillips A, Loh YP. γ-Adducin promotes process outgrowth and secretory protein exit from the Golgi apparatus. J Mol Neurosci 2013; 49:1-10. [PMID: 22706708 PMCID: PMC3681813 DOI: 10.1007/s12031-012-9827-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/30/2012] [Indexed: 12/19/2022]
Abstract
α, β, and γ adducins mediate F-actin remodeling of plasma membrane structures as heterotetramers. Here, we present two new functions of γ-adducin. (1) Overexpression of γ-adducin promoted formation of neurite-like processes in non-neuronal fibroblast COS7 cells. Conversely, overexpression of the C-terminal 38 amino acids of γ-adducin (γAdd(C38)) acting as a dominant negative inhibited formation of neurites/processes in Neuro2A cells and anterior pituitary AtT20 cells. (2) γ-Adducin appears to facilitate pro-opiomelanocortin (POMC) exit from the trans-Golgi network (TGN) by re-organizing the actin network around the Golgi complex. Filamentous actins (F-actins) which formed puncti around the Golgi complex in control cells were dispersed in AtT20 cells stably transfected with γAdd(C38). Furthermore, γAdd(C38)-transfectants showed significant accumulation of POMC/adrenocorticotropin (ACTH) in the Golgi complex and diminished POMC/ACTH vesicles in the cell processes. The C-terminal 38 amino acids of γ-adducin interacted with F-actins around the Golgi complex, to facilitate F-actin-mediated budding of POMC/ACTH vesicles from the TGN. Thus, we propose that γ-adducin, via its interaction with F-actins, plays a critical role in actin remodeling to facilitate process/neurite outgrowth, as well as budding of POMC/ACTH vesicles from the TGN via its interaction with peri-Golgi F-actins.
Collapse
Affiliation(s)
- Hong Lou
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg 49, Rm 5A22, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg 49, Rm 5A22, 49 Convent Drive, Bethesda, MD 20892, USA
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614, USA
| | - Andre Phillips
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg 49, Rm 5A22, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg 49, Rm 5A22, 49 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Chen A, Xiong LJ, Tong Y, Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep 2012; 1:167-176. [PMID: 24648914 DOI: 10.3892/br.2012.48] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury.
Collapse
Affiliation(s)
- Ai Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li-Jing Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Tong
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Chengdu, Sichuan 610041, P.R. China ; ; Laboratory of Early Developmental and Injuries, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Cawley NX, Wetsel WC, Murthy SRK, Park JJ, Pacak K, Loh YP. New roles of carboxypeptidase E in endocrine and neural function and cancer. Endocr Rev 2012; 33:216-53. [PMID: 22402194 PMCID: PMC3365851 DOI: 10.1210/er.2011-1039] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/18/2012] [Indexed: 01/14/2023]
Abstract
Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
16
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|