1
|
Nohesara S, Mostafavi Abdolmaleky H, Thiagalingam S. Substance-Induced Psychiatric Disorders, Epigenetic and Microbiome Alterations, and Potential for Therapeutic Interventions. Brain Sci 2024; 14:769. [PMID: 39199463 PMCID: PMC11352452 DOI: 10.3390/brainsci14080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
2
|
Pawar N, Dudhabhate BB, Borade V, Sahare DK, Bhute YV, Subhedar NK, Kokare DM, Sakharkar AJ. CREB-Binding Protein Regulates Cocaine- and Amphetamine-Regulated Transcript Peptide Expression in the Lateral Hypothalamus: Implication in Reward and Reinforcement. Mol Neurobiol 2024:10.1007/s12035-024-04338-7. [PMID: 38987488 DOI: 10.1007/s12035-024-04338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) is known to play an important role in reward processing. The rats conditioned to intra-cranial self-stimulation (ICSS) showed massive upregulation of CART protein and mRNA in the vicinity of the electrode implanted to deliver the electric current directly at the lateral hypothalamus (LH)-medial forebrain bundle (MFB) area. However, the underlying mechanisms leading to the upregulation of CART in ICSS animals remain elusive. We tested the putative role of CREB-binding protein (CBP), an epigenetic enzyme with intrinsic histone acetyltransferase (HAT) activity, in regulating CART expression during ICSS. An electrode was implanted in LH-MFB and the rats were conditioned to self-stimulation in an operant chamber. CBP siRNA was delivered ipsilaterally in the LH-MFB to knock-down CBP and the effects on lever press activity were monitored. While ICSS-conditioned rats showed distinct increase in CART, CBP and pCREB levels, enhanced CBP binding and histone acetylation (H3K9ac) were noticed on the CART promoter in chromatin immunoprecipitation assay. Direct infusion of CBP siRNA in the LH-MFB lowered lever press activity, CBP levels, histone acetylation at the CART promoter, and CART mRNA and peptide expression. Co-infusion of CARTp in LH-MFB rescued the waning effects of CBP siRNA on self-stimulation. We suggest that CBP-mediated histone acetylation may play a causal role in CART expression in LH, which in turn may drive the positive reinforcement of lever press activity.
Collapse
Affiliation(s)
- Namrata Pawar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Vaishnavi Borade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Dipak K Sahare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Yogesh V Bhute
- Department of Zoology, DRB Sindhu Mahavidyalaya, Nagpur, 440 017, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Pune, 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India.
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
3
|
Morelos-Santana E, Islas-Preciado D, Alcalá-Lozano R, González-Olvera J, Estrada-Camarena E. Peripheral neurotrophin levels during controlled crack/cocaine abstinence: a systematic review and meta-analysis. Sci Rep 2024; 14:1410. [PMID: 38228745 DOI: 10.1038/s41598-024-51901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Cocaine/crack abstinence periods have higher risk of relapse. Abstinence as initial part of the recovery process is affected by learning and memory changes that could preserve the addictive cycle. To further understand how the interruption of cocaine/crack consumption affects neurotrophin level we performed the present systematic review and meta-analysis following the PRISMA statement (number CRD42019121643). The search formula was conducted in PubMed, Web of Science, Embase, ScienceDirect, and Google Scholar databases. The inclusion criterion was cocaine use disorder in 18 to 60-year-old people, measuring at least one neurotrophin in blood before and after a controlled abstinence period. Studies without pre-post design were excluded. Five investigations had nine different reports, four of them were subjected to a meta-analysis (n = 146). GRADE risk of bias method was followed. Individual studies reported increased peripheral brain derived neurotrophic factor (BDNF) after abstinence, evidence pooled by Hedge's g showed no significant change in BDNF after abstinence. Relevant heterogeneity in the length of the abstinence period (12-32 days), last cocaine/crack consumption monitoring and blood processing were detected that could help to explain non-significant results. Further improved methods are suggested, and a potential BDNF augmentation hypothesis is proposed that, if true, would help to understand initial abstinence as a re-adaptation period influenced by neurotrophins such as the BDNF.
Collapse
Affiliation(s)
- E Morelos-Santana
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 101. Col. San Lorenzo Huipulco, CP 14370, Mexico City, Mexico
| | - R Alcalá-Lozano
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - J González-Olvera
- Secretariado Técnico del Consejo Nacional de Salud Mental, Mexico City, Mexico
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 101. Col. San Lorenzo Huipulco, CP 14370, Mexico City, Mexico.
| |
Collapse
|
4
|
Ornell F, Scherer JN, Schuch JB, Sordi AO, Halpern SC, Rebelatto FP, Bristot G, Kapczinski F, Roglio VS, Pechansky F, Kessler FHP, von Diemen L. Serum BDNF levels increase during early drug withdrawal in alcohol and crack cocaine addiction. Alcohol 2023; 111:1-7. [PMID: 37037287 DOI: 10.1016/j.alcohol.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in several drug-induced brain neuroadaptations. The impact of withdrawal from substances that have different neurological mechanisms on BDNF levels is unclear. Our goal was to compare serum BDNF levels in inpatients with alcohol or crack cocaine use disorders during the early withdrawal period, and to evaluate the association with substance-related outcomes. We performed a follow-up study with 101 men under detoxification treatment (drug preference: alcohol [n = 37] and crack cocaine [n = 64]). Blood samples were collected on the 1st and 15th days of hospitalization to measure serum BDNF levels. Serum BDNF levels increased during the early stage of withdrawal (28.2 ± 10.0 vs. 32.6 ± 13.3, p < 0.001), similarly in individuals with alcohol and crack cocaine use. In the alcohol group, BDNF levels on the 15th day of hospitalization were negatively correlated with age (r = -0.394, p = 0.023). Delta BDNF levels were also negatively correlated with BDNF on the 1st day of hospitalization (p = 0.011). No significant correlation was found regarding substance-related outcomes. This is the first study to compare BDNF levels in alcohol and crack cocaine users undergoing similar treatment conditions. These findings could be related to clinical improvement after abstinence or even to drug withdrawal itself, decreasing neuronal injury. Furthermore, age may be a crucial factor, hindering the recovery of neuroplasticity in alcohol users.
Collapse
Affiliation(s)
- Felipe Ornell
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana N Scherer
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Anne O Sordi
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia C Halpern
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando P Rebelatto
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Giovana Bristot
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flavio Kapczinski
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Department of Psychiatry and Behavioural Neurosciences, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Vinicius S Roglio
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Flavio Pechansky
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felix H P Kessler
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Cheng J, He Z, Chen Q, Lin J, Peng Y, Zhang J, Yan X, Yan J, Niu S. Histone modifications in cocaine, methamphetamine and opioids. Heliyon 2023; 9:e16407. [PMID: 37265630 PMCID: PMC10230207 DOI: 10.1016/j.heliyon.2023.e16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Cocaine, methamphetamine and opioids are leading causes of drug abuse-related deaths worldwide. In recent decades, several studies revealed the connection between and epigenetics. Neural cells acquire epigenetic alterations that drive the onset and progress of the SUD by modifying the histone residues in brain reward circuitry. Histone modifications, especially acetylation and methylation, participate in the regulation of gene expression. These alterations, as well as other host and microenvironment factors, are associated with a serious of negative neurocognitive disfunctions in various patient populations. In this review, we highlight the evidence that substantially increase the field's ability to understand the molecular actions underlying SUD and summarize the potential approaches for SUD pharmacotherapy.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei Province, 430074, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| |
Collapse
|
6
|
You H, Lu B. Diverse Functions of Multiple Bdnf Transcripts Driven by Distinct Bdnf Promoters. Biomolecules 2023; 13:655. [PMID: 37189402 PMCID: PMC10135494 DOI: 10.3390/biom13040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gene encoding brain-derived neurotrophic factor (Bdnf) consists of nine non-coding exons driven by unique promoters, leading to the expression of nine Bdnf transcripts that play different roles in various brain regions and physiological stages. In this manuscript, we present a comprehensive overview of the molecular regulation and structural characteristics of the multiple Bdnf promoters, along with a summary of the current knowledge on the cellular and physiological functions of the distinct Bdnf transcripts produced by these promoters. Specifically, we summarized the role of Bdnf transcripts in psychiatric disorders, including schizophrenia and anxiety, as well as the cognitive functions associated with specific Bdnf promoters. Moreover, we examine the involvement of different Bdnf promoters in various aspects of metabolism. Finally, we propose future research directions that will enhance our understanding of the complex functions of Bdnf and its diverse promoters.
Collapse
Affiliation(s)
- He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China;
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China;
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
7
|
Preventing incubation of drug craving to treat drug relapse: from bench to bedside. Mol Psychiatry 2023; 28:1415-1429. [PMID: 36646901 DOI: 10.1038/s41380-023-01942-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
In 1986, Gawin and Kleber reported a progressive increase in cue-induced drug craving in individuals with cocaine use disorders during prolonged abstinence. After years of controversy, as of 2001, this phenomenon was confirmed in rodent studies using self-administration model, and defined as the incubation of drug craving. The intensification of cue-induced drug craving after withdrawal exposes abstinent individuals to a high risk of relapse, which urged us to develop effective interventions to prevent incubated craving. Substantial achievements have been made in deciphering the neural mechanisms, with potential implications for reducing drug craving and preventing the relapse. The present review discusses promising drug targets that have been well investigated in animal studies, including some neurotransmitters, neuropeptides, neurotrophic factors, and epigenetic markers. We also discuss translational exploitation and challenges in the field of the incubation of drug craving, providing insights into future investigations and highlighting the potential of pharmacological interventions, environment-based interventions, and neuromodulation techniques.
Collapse
|
8
|
Lynch WJ, Bakhti-Suroosh A, Abel JM. Impact of high-access exercise prior to and during early adolescence on later vulnerability to opioid use and relapse in male rats. Transl Psychiatry 2022; 12:425. [PMID: 36192388 PMCID: PMC9529880 DOI: 10.1038/s41398-022-02180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Middle- and high-school athletes participating in certain team sports are at greater risk of opioid misuse and addiction than those who do not. While this risk is thought to be due to increased access to opioids, in this study we explored the possibility that the sensitizing effects of discontinued high-intensity exercise may also contribute. Specifically, using male rat models with fentanyl, we tested the hypothesis that high-access exercise (24 h/day access to a running wheel) during pre/early adolescence (two weeks, postnatal-day 24-37) would enhance vulnerability to opioid use and relapse during late adolescence/adulthood. Rats with a history of high-access exercise showed stronger fentanyl-associated lever discrimination during acquisition, greater motivation to obtain infusions of fentanyl following acquisition, and had an enhanced sensitivity to the reinstating effects of fentanyl-associated cues following extended (24 h/day), intermittent-access self-administration and protracted abstinence (14 days) compared to sedentary controls. In contrast, sedentary rats had greater overall responding (active- and inactive-lever) during acquisition and greater non-specific (inactive-lever) responding during extended-access self-administration. Molecular markers associated with opioid seeking/relapse were also differentially expressed in the nucleus accumbens core of rats with versus without a history of high-access exercise following relapse testing (e.g., Bdnf-IV and Drd2 expression). Together, these findings demonstrate that high-access exercise prior to and throughout early-adolescence enhances vulnerability to the reinforcing and cue-induced reinstating effects of opioids during later adolescence/adulthood. Thus, it is possible that the discontinuation of high intensity exercise contributes to the enhanced vulnerability observed in middle- and high-school athletes.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jean M Abel
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
9
|
Marrero-Cristobal G, Gelpi-Dominguez U, Morales-Silva R, Alvarado-Torres J, Perez-Torres J, Perez-Perez Y, Sepulveda-Orengo M. Aerobic exercise as a promising nonpharmacological therapy for the treatment of substance use disorders. J Neurosci Res 2022; 100:1602-1642. [PMID: 34850988 PMCID: PMC9156662 DOI: 10.1002/jnr.24990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Despite the prevalence and public health impact of substance use disorders (SUDs), effective long-term treatments remain elusive. Aerobic exercise is a promising, nonpharmacological treatment currently under investigation as a strategy for preventing drug relapse. Aerobic exercise could be incorporated into the comprehensive treatment regimens for people with substance abuse disorders. Preclinical studies of SUD with animal models have shown that aerobic exercise diminishes drug-seeking behavior, which leads to relapse, in both male and female rats. Nevertheless, little is known regarding the effects of substance abuse-induced cellular and physiological adaptations believed to be responsible for drug-seeking behavior. Accordingly, the overall goal of this review is to provide a summary and an assessment of findings to date, highlighting evidence of the molecular and neurological effects of exercise on adaptations associated with SUD.
Collapse
Affiliation(s)
| | - Ursula Gelpi-Dominguez
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, PR, USA
| | - Roberto Morales-Silva
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - John Alvarado-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Joshua Perez-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Yobet Perez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
10
|
Bowen MT, George O, Muskiewicz DE, Hall FS. FACTORS CONTRIBUTING TO THE ESCALATION OF ALCOHOL CONSUMPTION. Neurosci Biobehav Rev 2022; 132:730-756. [PMID: 34839930 PMCID: PMC8892842 DOI: 10.1016/j.neubiorev.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Understanding factors that contribute to the escalation of alcohol consumption is key to understanding how an individual transitions from non/social drinking to AUD and to providing better treatment. In this review, we discuss how the way ethanol is consumed as well as individual and environmental factors contribute to the escalation of ethanol consumption from intermittent low levels to consistently high levels. Moreover, we discuss how these factors are modelled in animals. It is clear a vast array of complex, interacting factors influence changes in alcohol consumption. Some of these factors act early in the acquisition of ethanol consumption and initial escalation, while others contribute to escalation of ethanol consumption at a later stage and are involved in the development of alcohol dependence. There is considerable need for more studies examining escalation associated with the formation of dependence and other hallmark features of AUD, especially studies examining mechanisms, as it is of considerable relevance to understanding and treating AUD.
Collapse
Affiliation(s)
- Michael T. Bowen
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, 2050, Australia,The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, 2006, Australia,Corresponding Author: Michael T. Bowen, Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia,
| | - Olivier George
- Department of Psychology, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Dawn E. Muskiewicz
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| | - F. Scott Hall
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| |
Collapse
|
11
|
Seo MK, Lee JG, Park SW. Early life stress induces age-dependent epigenetic changes in p11 gene expression in male mice. Sci Rep 2021; 11:10663. [PMID: 34471143 PMCID: PMC8410943 DOI: 10.1038/s41598-021-89593-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Early life stress (ELS) causes long-lasting changes in gene expression through epigenetic mechanisms. However, little is known about the effects of ELS in adulthood, specifically across different age groups. In this study, the epigenetic modifications of p11 expression in adult mice subjected to ELS were investigated in different stages of adulthood. Pups experienced maternal separation (MS) for 3 h daily from postnatal day 1 to 21. At young and middle adulthood, behavioral test, hippocampal p11 expression levels, and levels of histone acetylation and methylation and DNA methylation at the hippocampal p11 promoter were measured. Middle-aged, but not young adult, MS mice exhibited increased immobility time in the forced swimming test. Concurrent with reduced hippocampal p11 levels, mice in both age groups showed a decrease in histone acetylation (AcH3) and permissive histone methylation (H3K4me3) at the p11 promoter, as well as an increase in repressive histone methylation (H3K27me3). Moreover, our results showed that the expression, AcH3 and H3Kme3 levels of p11 gene in response to MS were reduced with age. DNA methylation analysis of the p11 promoter revealed increased CpG methylation in middle-aged MS mice only. The results highlight the age-dependent deleterious effects of ELS on the epigenetic modifications of p11 transcription.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea. .,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, 48108, Republic of Korea.
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea. .,Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, 47392, Republic of Korea.
| |
Collapse
|
12
|
Cheron J, Kerchove d'Exaerde AD. Drug addiction: from bench to bedside. Transl Psychiatry 2021; 11:424. [PMID: 34385417 PMCID: PMC8361217 DOI: 10.1038/s41398-021-01542-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug addiction is responsible for millions of deaths per year around the world. Still, its management as a chronic disease is shadowed by misconceptions from the general public. Indeed, drug consumers are often labelled as "weak", "immoral" or "depraved". Consequently, drug addiction is often perceived as an individual problem and not societal. In technical terms, drug addiction is defined as a chronic, relapsing disease resulting from sustained effects of drugs on the brain. Through a better characterisation of the cerebral circuits involved, and the long-term modifications of the brain induced by addictive drugs administrations, first, we might be able to change the way the general public see the patient who is suffering from drug addiction, and second, we might be able to find new treatments to normalise the altered brain homeostasis. In this review, we synthetise the contribution of fundamental research to the understanding drug addiction and its contribution to potential novel therapeutics. Mostly based on drug-induced modifications of synaptic plasticity and epigenetic mechanisms (and their behavioural correlates) and after demonstration of their reversibility, we tried to highlight promising therapeutics. We also underline the specific temporal dynamics and psychosocial aspects of this complex psychiatric disease adding parameters to be considered in clinical trials and paving the way to test new therapeutic venues.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium.
| |
Collapse
|
13
|
Skupien-Jaroszek A, Walczak A, Czaban I, Pels KK, Szczepankiewicz AA, Krawczyk K, Ruszczycki B, Wilczynski GM, Dzwonek J, Magalska A. The interplay of seizures-induced axonal sprouting and transcription-dependent Bdnf repositioning in the model of temporal lobe epilepsy. PLoS One 2021; 16:e0239111. [PMID: 34086671 PMCID: PMC8177504 DOI: 10.1371/journal.pone.0239111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.
Collapse
Affiliation(s)
- Anna Skupien-Jaroszek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Karolina Pels
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
14
|
Akbarabadi A, Sadat-Shirazi MS, Kabbaj M, Nouri Zadeh-Tehrani S, Khalifeh S, Pirri F, Zarrindast MR. Effects of Morphine and Maternal Care on Behaviors and Protein Expression of Male Offspring. Neuroscience 2021; 466:58-76. [PMID: 33915201 DOI: 10.1016/j.neuroscience.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/26/2023]
Abstract
Genes and environment interact during development to alter gene expression and behavior. Parental morphine exposure before conception has devastating effects on the offspring. In the present study, we evaluated the role of maternal care in the intergenerational effect of maternal morphine exposure. Female rats received morphine or saline for ten days and were drugfree for another ten days. Thereafter, they were allowed to mate with drug-naïve male rats. When pups were born, they were cross-fostered to assess the contribution of maternal care versus morphine effects on the offspring. Adult male offspring were examined for anxiety-like behavior, spatial memory, and obsessive-compulsive-like behavior. To determine the mechanisms underlying the observed behavioral changes, protein levels of acetylated histone H3, BDNF, Trk-B, NMDA subunits, p-CREB, and 5-HT3R were measured in the brain. Our results indicate that maternal caregiving is impaired in morphine-abstinent mothers. Interestingly, maternal care behaviors were also affected in drug-naïve mothers that raised offspring of morphine-exposed mothers. In addition, the offspring of morphine abstinent and non-drug dependent mothers, when raised by morphine abstinent mothers, exhibited more anxiety, obsessive-compulsive behaviors and impaired spatial memory. These altered behaviors were associated with alterations in the levels of the above-mentioned proteins. These data illustrate the intergenerational effects of maternal morphine exposure on offspring behaviors. Moreover, exposure to morphine before gestation not only affects maternal care and offspring behavior, but also has negative consequences on behaviors and protein expression in adoptive mothers of affected offspring.
Collapse
Affiliation(s)
- Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | | | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran
| | - Fardad Pirri
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
15
|
Shepard RD, Nugent FS. Early Life Stress- and Drug-Induced Histone Modifications Within the Ventral Tegmental Area. Front Cell Dev Biol 2020; 8:588476. [PMID: 33102491 PMCID: PMC7554626 DOI: 10.3389/fcell.2020.588476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Psychiatric illnesses are a major public health concern due to their prevalence and heterogeneity of symptom presentation resulting from a lack of efficacious treatments. Although dysregulated dopamine (DA) signaling has been observed in a myriad of psychiatric conditions, different pathophysiological mechanisms have been implicated which impede the development of adequate treatments that work across all patient populations. The ventral tegmental area (VTA), a major source of DA neurons in the brain reward pathway, has been shown to have altered activity that contributes to reward dysregulation in mental illnesses and drug addiction. It has now become better appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as through histone modifications, which dynamically regulate transcription rates of critical genes important in synaptic plasticity underlying learning and memory. Here, we provide a focused review on differential histone modifications within the VTA observed in both humans and animal models, as well as their relevance to disease-based phenotypes, specifically focusing on epigenetic dysregulation of histones in the VTA associated with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting of individual histone modifications at specific genes within the VTA presents novel therapeutic targets which can result in greater efficacy and better long-term health outcomes in susceptible individuals that are at increased risk for substance use and psychiatric disorders.
Collapse
Affiliation(s)
- Ryan D Shepard
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fereshteh S Nugent
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
16
|
Peregud D, Panchenko L, Gulyaeva N. Chronic morphine intoxication reduces binding of HuD to BDNF long 3'-UTR, while morphine withdrawal stimulates BDNF expression in the frontal cortex of male Wistar rats. Int J Neurosci 2020; 132:283-295. [PMID: 32783781 DOI: 10.1080/00207454.2020.1809395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) mediates opiate dependence phenomenon. In the brain of morphine dependent animals BDNF level is controlled transcriptionally, however, post-transcriptional mechanisms of BDNF regulation in this context remain unknown. Regulation of mRNA by binding of specific proteins to the 3'-untranslated region (3'-UTR) is one of such mechanisms. Among RNA-binding proteins neuronal Hu antigen D (HuD) is the best characterized positive regulator of BDNF, however its involvement in opiate dependence remains obscure. We suggested that HuD binding to the BDNF 3'-UTR may be linked to changes in BDNF expression induced by morphine. The aim of this study was to investigate potential association of HuD with BDNF 3'-UTR in relation to BDNF expression (Exon- and 3'-UTR-specific mRNA variants and protein level) in the frontal cortex and midbrain of male Wistar rats after chronic morphine intoxication and spontaneous withdrawal in dependent animals. RESULTS After chronic morphine intoxication but not during morphine withdrawal HuD binding to the long BDNF 3'-UTR in the frontal cortex decreased as compared with the corresponding control group, however after intoxication BDNF expression did not change. The level of BDNF Exon I as well as mature BDNF polypeptide increased in the frontal cortex upon morphine withdrawal, while no changes in HuD binding could be detected. CONCLUSION Thus, contrary to the assumption, HuD-BDNF 3'-UTR interaction and BDNF expression in the frontal cortex differentially change in a manner dependent on the context of morphine action.
Collapse
Affiliation(s)
- Danil Peregud
- Federal State Budgetary Institution "V. Serbsky National Medical Research Center for Psychiatry and Drug Addiction" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Leonid Panchenko
- Federal State Budgetary Institution "V. Serbsky National Medical Research Center for Psychiatry and Drug Addiction" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Natalia Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| |
Collapse
|
17
|
Petrozziello T, Mills AN, Vaine CA, Penney EB, Fernandez-Cerado C, Legarda GPA, Velasco-Andrada MS, Acuña PJ, Ang MA, Muñoz EL, Diesta CCE, Macalintal-Canlas R, Acuña-Sunshine G, Ozelius LJ, Sharma N, Bragg DC, Sadri-Vakili G. Neuroinflammation and histone H3 citrullination are increased in X-linked Dystonia Parkinsonism post-mortem prefrontal cortex. Neurobiol Dis 2020; 144:105032. [PMID: 32739252 DOI: 10.1016/j.nbd.2020.105032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation plays a pathogenic role in neurodegenerative diseases and recent findings suggest that it may also be involved in X-linked Dystonia-Parkinsonism (XDP) pathogenesis. Previously, fibroblasts and neuronal stem cells derived from XDP patients demonstrated hypersensitivity to TNF-α, dysregulation in NFκB signaling, and an increase in several pro-inflammatory markers. However, the role of inflammatory processes in XDP patient brain remains unknown. Here we demonstrate that there is a significant increase in astrogliosis and microgliosis in human post-mortem XDP prefrontal cortex (PFC) compared to control. Furthermore, there is a significant increase in histone H3 citrullination (H3R2R8R17cit3) with a concomitant increase in peptidylarginine deaminase 2 (PAD2) and 4 (PAD4), the enzymes catalyzing citrullination, in XDP post-mortem PFC. While there is a significant increase in myeloperoxidase (MPO) levels in XDP PFC, neutrophil elastase (NE) levels are not altered, suggesting that MPO may be released by activated microglia or reactive astrocytes in the brain. Similarly, there was an increase in H3R2R8R17cit3, PAD2 and PAD4 levels in XDP-derived fibroblasts. Importantly, treatment of fibroblasts with Cl-amidine, a pan inhibitor of PAD enzymes, reduced histone H3 citrullination and pro-inflammatory chemokine expression, without affecting cell survival. Taken together, our results demonstrate that inflammation is increased in XDP post-mortem brain and fibroblasts and unveil a new epigenetic potential therapeutic target.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Alexandra N Mills
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Christine A Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ellen B Penney
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | | | | | | | - Patrick J Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | | | - Geraldine Acuña-Sunshine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Laurie J Ozelius
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America.
| |
Collapse
|
18
|
Drinking Pattern in Intermittent Access Two-Bottle-Choice Paradigm in Male Wistar Rats Is Associated with Exon-Specific BDNF Expression in the Hippocampus During Early Abstinence. J Mol Neurosci 2020; 71:262-275. [DOI: 10.1007/s12031-020-01645-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
|
19
|
Petrozziello T, Mills AN, Farhan SM, Mueller KA, Granucci EJ, Glajch KE, Chan J, Chew S, Berry JD, Sadri‐Vakili G. Lipocalin‐2 is increased in amyotrophic lateral sclerosis. Muscle Nerve 2020; 62:272-283. [DOI: 10.1002/mus.26911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Alexandra N. Mills
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Sali M.K. Farhan
- Analytic and Translational Genetics Unit, Department of MedicineMassachusetts General Hospital and Harvard Medical School Boston Massachusetts
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard Cambridge Massachusetts
| | - Kaly A. Mueller
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Eric J. Granucci
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Kelly E. Glajch
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - James Chan
- Biostatistics Center, Department of MedicineMassachusetts General Hospital Boston Massachusetts
| | - Sheena Chew
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - James D. Berry
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Ghazaleh Sadri‐Vakili
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| |
Collapse
|
20
|
Vassoler FM, Toorie AM, Teceno DN, Walia P, Moore DJ, Patton TD, Byrnes EM. Paternal morphine exposure induces bidirectional effects on cocaine versus opioid self-administration. Neuropharmacology 2020; 162:107852. [PMID: 31726075 PMCID: PMC8274248 DOI: 10.1016/j.neuropharm.2019.107852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 01/07/2023]
Abstract
The United States is in the midst of an opioid epidemic and is thus experiencing unprecedented levels of opioid exposure. A growing body of evidence has demonstrated that this may have consequences on multiple generations. The current set of experiments examined the effect of male adolescent opioid exposure on cocaine and opioid self-administration in the F1 generation. Male Sprague Dawley rats were administered increasing doses of morphine (5-25 mg/kg, s.c.) for 10 days during adolescence (P30-39). Rats were then maintained drug free until adulthood (P70-80) at which point they were mated with drug-naïve females. Male and female F1 offspring were first examined for cocaine self-administration during adulthood. Naïve littermates were tested for morphine self-administration acquisition followed by a within subjects design progressive ratio test for morphine, oxycodone, and cocaine. Results show that male and female F1 rats have delayed acquisition and decreased intake of cocaine. In addition, they have blunted PR levels compared to Sal-F1 control rats. Female Mor-F1 rats also demonstrate increased levels of morphine intake during acquisition and increased PR responding for oxycodone. Surprisingly, even following acquisition of morphine self-administration, Mor-F1 males and females still demonstrate blunted effort for cocaine. There were no differences in sucrose self-administration in naïve littermates. MorF0 seminiferous tubules demonstrated increased levels of acetylated histone H3 and there were increased levels of BDNF mRNA in the mPFC in male and female F1 offspring. Together, these data identify systems that are vulnerable to the impact of opioids in the F0 generation.
Collapse
Affiliation(s)
- Fair M Vassoler
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA.
| | - Anika M Toorie
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Delaney N Teceno
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Pankhuri Walia
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Deion J Moore
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Trevor D Patton
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Elizabeth M Byrnes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| |
Collapse
|
21
|
Caffino L, Mottarlini F, Diniz DM, Verheij MM, Fumagalli F, Homberg JR. Deletion of the serotonin transporter perturbs BDNF signaling in the central amygdala following long-access cocaine self-administration. Drug Alcohol Depend 2019; 205:107610. [PMID: 31606593 DOI: 10.1016/j.drugalcdep.2019.107610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human neuroimaging studies indicate that the amygdala plays a key role in cocaine addiction. One key plasticity factor that modulates effects of cocaine on the brain is Brain-Derived Neurotrophic Factor (BDNF). A wealth of evidence shows that cocaine exposure alters BDNF signaling in corticolimbic structures, but, surprisingly, such evidence is very limited for the amygdala. Additionally, while BDNF is strongly regulated by serotonin levels and inherited serotonin transporter down-regulation is associated with increased vulnerability to cocaine addiction, the effects of serotonin transporter genotype on BDNF signaling in the amygdala under naïve and cocaine exposure conditions are unknown. METHODS We measured BDNF signaling in the central amygdala of wild-type and serotonin transporter knockout rats 24 h into withdrawal from long-access cocaine self-administration. RESULTS In wild-type rats mature BDNF (mBDNF) protein levels were decreased, whereas the phosphorylation of its receptor TrkB as well as of its intracellular signaling molecules Akt and ERK1 were increased. mBDNF protein expression and its signaling in cocaine-naïve serotonin transporter knockout rats resembled that of wild-type rats with a history of long-access cocaine self-administration. Interestingly, cocaine-exposed serotonin transporter knockout rats showed increased BDNF levels, with no signs of phospho-TrkB receptor coupling to phospho-Akt and phospho-ERK1. CONCLUSIONS Long-access cocaine self-administration dysregulates BDNF signaling in the central amygdala. Vulnerability to cocaine addiction is associated with dysregulation of this signaling.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Danielle Mendes Diniz
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands
| | - Michel M Verheij
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands.
| |
Collapse
|
22
|
The BDNF Protein and its Cognate mRNAs in the Rat Spinal Cord during Amylin-induced Reversal of Morphine Tolerance. Neuroscience 2019; 422:54-64. [PMID: 31689388 DOI: 10.1016/j.neuroscience.2019.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
The pancreatic peptide, Amylin (AMY), reportedly affects nociception in rodents. Here, we investigated the potential effect of AMY on the tolerance to morphine and on the expression of BDNF at both levels of protein and RNA in the lumbar spinal cord of morphine tolerant rats. Animals in both groups of control and test received a single daily dose of intrathecal (i.t.) morphine for 10 days. Rats in the test group received AMY (1, 10 and 60 pmoles) in addition to morphine from days 6 to10. Morphine tolerance was established at day 5. AMY alone showed enduring antinociceptive effects for 10 days. Real-Time PCR, western blotting and ELISA were used respectively to assess levels of BDNF transcripts and their encoded proteins. Rats tolerant to i.t. morphine showed increased expression of exons I, IV, and IX of the BDNF gene, and had elevated levels of pro-BDNF and BDNF protein in their lumbar spinal cord. AMY, when co-administered with morphine from days 6 to 10, reversed morphine tolerance and adversely affected the morphine-induced expression of the BDNF gene at both levels of protein and mRNAs containing exons I, IV and IX. AMY alone increased levels of exons I and IV transcripts. Levels of pro-BDNF and BDNF proteins remained unchanged in the lumbar spinal cord of rats treated by AMY alone. These results suggest that i.t. AMY not only abolished morphine tolerance, but also reduced the morphine induced increase in the expression of both BDNF transcripts and protein in the lumbar spinal cord.
Collapse
|
23
|
Harvey E, Blurton‐Jones M, Kennedy PJ. Hippocampal BDNF regulates a shift from flexible, goal-directed to habit memory system function following cocaine abstinence. Hippocampus 2019; 29:1101-1113. [PMID: 31206907 PMCID: PMC6851590 DOI: 10.1002/hipo.23127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
The transition from recreational drug use to addiction involves pathological learning processes that support a persistent shift from flexible, goal-directed to habit behavioral control. Here, we examined the molecular mechanisms supporting altered function in hippocampal (HPC) and dorsolateral striatum (DLS) memory systems following abstinence from repeated cocaine. After 3 weeks of cocaine abstinence (experimenter- or self-administered), we tested new behavioral learning in male rats using a dual-solution maze task, which provides an unbiased approach to assess HPC- versus DLS-dependent learning strategies. Dorsal hippocampus (dHPC) and DLS brain tissues were collected after memory testing to identify transcriptional adaptations associated with cocaine-induced shifts in behavioral learning. Our results demonstrate that following prolonged cocaine abstinence rats show a bias toward the use of an inflexible, habit memory system (DLS) in lieu of a more flexible, easily updated memory system involving the HPC. This memory system bias was associated with upregulation and downregulation of brain-derived neurotrophic factor (BDNF) gene expression and transcriptionally permissive histone acetylation (acetylated histone H3, AcH3) in the DLS and dHPC, respectively. Using viral-mediated gene transfer, we overexpressed BDNF in the dHPC during cocaine abstinence and new maze learning. This manipulation restored HPC-dependent behavioral control. These findings provide a system-level understanding of altered plasticity and behavioral learning following cocaine abstinence and inform mechanisms mediating the organization of learning and memory more broadly.
Collapse
Affiliation(s)
- Eric Harvey
- Department of PsychologyUniversity of California Los AngelesLos AngelesCalifornia
| | - Matthew Blurton‐Jones
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCalifornia
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineCalifornia
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineCalifornia
| | - Pamela J. Kennedy
- Department of PsychologyUniversity of California Los AngelesLos AngelesCalifornia
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCalifornia
| |
Collapse
|
24
|
Translational Molecular Approaches in Substance Abuse Research. Handb Exp Pharmacol 2019; 258:31-60. [PMID: 31628598 DOI: 10.1007/164_2019_259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Excessive abuse of psychoactive substances is one of the leading contributors to morbidity and mortality worldwide. In this book chapter, we review translational research strategies that are applied in the pursuit of new and more effective therapeutics for substance use disorder (SUD). The complex, multidimensional nature of psychiatric disorders like SUD presents difficult challenges to investigators. While animal models are critical for outlining the mechanistic relationships between defined behaviors and genetic and/or molecular changes, the heterogeneous pathophysiology of brain diseases is uniquely human, necessitating the use of human studies and translational research schemes. Translational research describes a cross-species approach in which findings from human patient-based data can be used to guide molecular genetic investigations in preclinical animal models in order to delineate the mechanisms of reward circuitry changes in the addicted state. Results from animal studies can then inform clinical investigations toward the development of novel treatments for SUD. Here we describe the strategies that are used to identify and functionally validate genetic variants in the human genome which may contribute to increased risk for SUD, starting from early candidate gene approaches to more recent genome-wide association studies. We will next examine studies aimed at understanding how transcriptional and epigenetic dysregulation in SUD can persistently alter cellular function in the disease state. In our discussion, we then focus on examples from the literature illustrating molecular genetic methodologies that have been applied to studies of different substances of abuse - from alcohol and nicotine to stimulants and opioids - in order to exemplify how these approaches can both delineate the underlying molecular systems driving drug addiction and provide insights into the genetic basis of SUD.
Collapse
|
25
|
Bobadilla AC, Garcia-Keller C, Chareunsouk V, Hyde J, Medina Camacho D, Heinsbroek JA, Kalivas PW. Accumbens brain-derived neurotrophic factor (BDNF) transmission inhibits cocaine seeking. Addict Biol 2019; 24:860-873. [PMID: 29890020 DOI: 10.1111/adb.12638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates a variety of physiological processes, and several studies have explored the role of BDNF in addiction-related brain regions like the nucleus accumbens core (NAcore). We sought to understand the rapid effects of endogenous BDNF on cocaine seeking. Rats were trained to self-administer cocaine and extinguished. We then microinjected two inhibitors of BDNF stimulation of tropomyosin receptor kinase B (TrkB), the non-competitive receptor antagonist ANA-12 and TrkB/Fc, a fusion protein that binds BDNF and prevents TrkB stimulation. Blocking TrkB or inactivating BDNF in NAcore potentiated active lever pressing, showing that endogenous BDNF tone was present and supplying inhibitory tone on cue-induced reinstatement. To determine if exogenous BDNF also negatively regulated reinstatement, BDNF was microinjected into NAcore 15 minutes before cue-induced reinstatement. BDNF decreased cocaine seeking through TrkB receptor binding, but had no effect on inactive lever pressing, spontaneous or cocaine-induced locomotion, or on reinstated sucrose seeking. BDNF-infusion potentiated within trial extinction when microinjected in the NAcore during cue- and context + cue induced reinstatement, and the inhibition of lever pressing lasted at least 3 days post injection. Although decreased reinstatement endured for 3 days when BDNF was administered prior to a reinstatement session, when microinjected before an extinction session or in the home cage, BDNF did not alter subsequent cued-reinstatement. Together, these data show that endogenous BDNF acts on TrKB to provide inhibitory tone on reinstated cocaine seeking, and this effect was recapitulated by exogenous BDNF.
Collapse
Affiliation(s)
- Ana-Clara Bobadilla
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | | | - Victoria Chareunsouk
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Jeffrey Hyde
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Western Washington University; Department of Psychology and Program in Behavioral Neuroscience; Bellingham WA USA
| | | | - Jasper A. Heinsbroek
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Peter W. Kalivas
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
26
|
Sartor GC, Malvezzi AM, Kumar A, Andrade NS, Wiedner HJ, Vilca SJ, Janczura KJ, Bagheri A, Al-Ali H, Powell SK, Brown PT, Volmar CH, Foster TC, Zeier Z, Wahlestedt C. Enhancement of BDNF Expression and Memory by HDAC Inhibition Requires BET Bromodomain Reader Proteins. J Neurosci 2019; 39:612-626. [PMID: 30504275 PMCID: PMC6343644 DOI: 10.1523/jneurosci.1604-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 11/11/2018] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors may have therapeutic utility in multiple neurological and psychiatric disorders, but the underlying mechanisms remain unclear. Here, we identify BRD4, a BET bromodomain reader of acetyl-lysine histones, as an essential component involved in potentiated expression of brain-derived neurotrophic factor (BDNF) and memory following HDAC inhibition. In in vitro studies, we reveal that pharmacological inhibition of BRD4 reversed the increase in BDNF mRNA induced by the class I/IIb HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Knock-down of HDAC2 and HDAC3, but not other HDACs, increased BDNF mRNA expression, whereas knock-down of BRD4 blocked these effects. Using dCas9-BRD4, locus-specific targeting of BRD4 to the BDNF promoter increased BDNF mRNA. In additional studies, RGFP966, a pharmacological inhibitor of HDAC3, elevated BDNF expression and BRD4 binding to the BDNF promoter, effects that were abrogated by JQ1 (an inhibitor of BRD4). Examining known epigenetic targets of BRD4 and HDAC3, we show that H4K5ac and H4K8ac modifications and H4K5ac enrichment at the BDNF promoter were elevated following RGFP966 treatment. In electrophysiological studies, JQ1 reversed RGFP966-induced enhancement of LTP in hippocampal slice preparations. Last, in behavioral studies, RGFP966 increased subthreshold novel object recognition memory and cocaine place preference in male C57BL/6 mice, effects that were reversed by cotreatment with JQ1. Together, these data reveal that BRD4 plays a key role in HDAC3 inhibitor-induced potentiation of BDNF expression, neuroplasticity, and memory.SIGNIFICANCE STATEMENT Some histone deacetylase (HDAC) inhibitors are known to have neuroprotective and cognition-enhancing properties, but the underlying mechanisms have yet to be fully elucidated. In the current study, we reveal that BRD4, an epigenetic reader of histone acetylation marks, is necessary for enhancing brain-derived neurotrophic factor (BDNF) expression and improved memory following HDAC inhibition. Therefore, by identifying novel epigenetic regulators of BDNF expression, these data may lead to new therapeutic targets for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory C Sartor
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136,
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Andrea M Malvezzi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ashok Kumar
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, and
| | - Nadja S Andrade
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Hannah J Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Samantha J Vilca
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Karolina J Janczura
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Amir Bagheri
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Samuel K Powell
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Peyton T Brown
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Claude H Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Thomas C Foster
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, and
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136,
| |
Collapse
|
27
|
López AJ, Siciliano CA, Calipari ES. Activity-Dependent Epigenetic Remodeling in Cocaine Use Disorder. Handb Exp Pharmacol 2019; 258:231-263. [PMID: 31628597 DOI: 10.1007/164_2019_257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Substance use disorder (SUD) is a behavioral disorder characterized by cycles of abstinence, drug seeking, and relapse. SUD is characterized by aberrant learning processes which develop after repeated exposure to drugs of abuse. At the core of this phenotype is the persistence of symptoms, such as craving and relapse to drug seeking, long after the cessation of drug use. The neural basis of these behavioral changes has been linked to dysfunction in neural circuits across the brain; however, the molecular drivers that allow for these changes to persist beyond the lifespan of any individual protein remain opaque. Epigenetic adaptations - where DNA is modified to increase or decrease the probability of gene expression at key genes - have been identified as a mechanism underlying the long-lasting nature of drug-seeking behavior. Thus, to understand SUD, it is critical to define the interplay between neuronal activation and longer-term changes in transcription and epigenetic remodeling and define their role in addictive behaviors. In this review, we discuss the current understanding of drug-induced changes to circuit function, recent discoveries in epigenetic mechanisms that mediate these changes, and, ultimately, how these adaptations drive the persistent nature of relapse, with emphasis on adaptations in models of cocaine use disorder. Understanding the complex interplay between epigenetic gene regulation and circuit activity will be critical in elucidating the neural mechanisms underlying SUD. This, with the advent of novel genetic-based techniques, will allow for the generation of novel therapeutic avenues to improve treatment outcomes in SUD.
Collapse
Affiliation(s)
- Alberto J López
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
28
|
Li X, Carreria MB, Witonsky KR, Zeric T, Lofaro OM, Bossert JM, Zhang J, Surjono F, Richie CT, Harvey BK, Son H, Cowan CW, Nestler EJ, Shaham Y. Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving. Biol Psychiatry 2018; 84:213-222. [PMID: 29397902 PMCID: PMC6026084 DOI: 10.1016/j.biopsych.2017.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Methamphetamine (meth) seeking progressively increases after withdrawal (incubation of meth craving). We previously demonstrated an association between histone deacetylase 5 (HDAC5) gene expression in the rat dorsal striatum and incubation of meth craving. Here we used viral constructs to study the causal role of dorsal striatum HDAC5 in this incubation. METHODS In experiment 1 (overexpression), we injected an adeno-associated virus bilaterally into dorsal striatum to express either green fluorescent protein (control) or a mutant form of HDAC5, which strongly localized to the nucleus. After training rats to self-administer meth (10 days, 9 hours/day), we tested the rats for relapse to meth seeking on withdrawal days 2 and 30. In experiment 2 (knockdown), we injected an adeno-associated virus bilaterally into the dorsal striatum to express a short hairpin RNA either against luciferase (control) or against HDAC5. After training rats to self-administer meth, we tested the rats for relapse on withdrawal days 2 and 30. We also measured gene expression of other HDACs and potential HDAC5 downstream targets. RESULTS We found that HDAC5 overexpression in dorsal striatum increased meth seeking on withdrawal day 30 but not day 2. In contrast, HDAC5 knockdown in the dorsal striatum decreased meth seeking on withdrawal day 30 but not on day 2; this manipulation also altered other HDACs (Hdac1 and Hdac4) and potential HDAC5 targets (Gnb4 and Suv39h1). CONCLUSIONS Results demonstrate a novel role of dorsal striatum HDAC5 in incubation of meth craving. These findings also set up future work to identify HDAC5 targets that mediate this incubation.
Collapse
Affiliation(s)
- Xuan Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland.
| | - Maria B Carreria
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kailyn R Witonsky
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Tamara Zeric
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Olivia M Lofaro
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Felicia Surjono
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Hyeon Son
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| |
Collapse
|
29
|
Mueller KA, Glajch KE, Huizenga MN, Wilson RA, Granucci EJ, Dios AM, Tousley AR, Iuliano M, Weisman E, LaQuaglia MJ, DiFiglia M, Kegel-Gleason K, Vakili K, Sadri-Vakili G. Hippo Signaling Pathway Dysregulation in Human Huntington's Disease Brain and Neuronal Stem Cells. Sci Rep 2018; 8:11355. [PMID: 30054496 PMCID: PMC6063913 DOI: 10.1038/s41598-018-29319-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
The Hippo signaling pathway is involved in organ size regulation and tumor suppression. Although inhibition of Hippo leads to tumorigenesis, activation of Hippo may play a role in neurodegeneration. Specifically, activation of the upstream regulator, mammalian sterile 20 (STE20)-like kinase 1 (MST1), reduces activity of the transcriptional co-activator Yes-Associated Protein (YAP), thereby mediating oxidative stress-induced neuronal death. Here, we investigated the possible role of this pathway in Huntington's disease (HD) pathogenesis. Our results demonstrate a significant increase in phosphorylated MST1, the active form, in post-mortem HD cortex and in the brains of CAG knock-in HdhQ111/Q111 mice. YAP nuclear localization was also decreased in HD post-mortem cortex and in neuronal stem cells derived from HD patients. Moreover, there was a significant increase in phosphorylated YAP, the inactive form, in HD post-mortem cortex and in HdhQ111/Q111 brain. In addition, YAP was found to interact with huntingtin (Htt) and the chaperone 14-3-3, however this interaction was not altered in the presence of mutant Htt. Lastly, YAP/TEAD interactions and expression of Hippo pathway genes were altered in HD. Together, these results demonstrate that activation of MST1 together with a decrease in nuclear YAP could significantly contribute to transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Kaly A Mueller
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Kelly E Glajch
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Megan N Huizenga
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Remi A Wilson
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Eric J Granucci
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Amanda M Dios
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Adelaide R Tousley
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Maria Iuliano
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Elizabeth Weisman
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | | | - Marian DiFiglia
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Kimberly Kegel-Gleason
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | | | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA.
| |
Collapse
|
30
|
Stepanichev M, Manolova A, Peregud D, Onufriev M, Freiman S, Aniol V, Moiseeva Y, Novikova M, Lazareva N, Gulyaeva N. Specific Activity Features in the Forced Swim Test: Brain Neurotrophins and Development of Stress-induced Depressive-like Behavior in Rats. Neuroscience 2018; 375:49-61. [DOI: 10.1016/j.neuroscience.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
|
31
|
Smith MA, Fronk GE, Abel JM, Lacy RT, Bills SE, Lynch WJ. Resistance exercise decreases heroin self-administration and alters gene expression in the nucleus accumbens of heroin-exposed rats. Psychopharmacology (Berl) 2018; 235:1245-1255. [PMID: 29396617 PMCID: PMC5871570 DOI: 10.1007/s00213-018-4840-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/21/2018] [Indexed: 12/11/2022]
Abstract
RATIONALE Preclinical studies consistently report that aerobic exercise decreases drug self-administration and other forms of drug-seeking behavior; however, relatively few studies have examined other types of physical activity. OBJECTIVES The purpose of the present study was to examine the effects of resistance exercise (i.e., strength training) on heroin self-administration and mRNA expression of genes known to mediate opioid reinforcement and addictive behavior in the nucleus accumbens (NAc) of heroin-exposed rats. METHODS Female rats were obtained during late adolescence and divided into two groups. Resistance exercise rats were trained to climb a vertical ladder wearing a weighted vest; sedentary control rats were placed repeatedly on the ladder oriented horizontally on its side. All rats were implanted with intravenous catheters and trained to self-administer heroin on a fixed ratio (FR1) schedule of reinforcement. mRNA expression in the NAc core and shell was examined following behavioral testing. RESULTS Resistance exercise significantly decreased heroin self-administration, resulting in a downward shift in the dose-effect curve. Resistance exercise also reduced mRNA expression for mu opioid receptors and dopamine D1, D2, and D3 receptors in the NAc core. Resistance exercise increased mRNA expression of dopamine D5 receptors in the NAc shell and increased mRNA expression of brain-derived neurotrophic factor (exons I, IIB, IIC, IV, VI, IX) in the NAc core. CONCLUSIONS These data indicate that resistance exercise decreases the positive reinforcing effects of heroin and produces changes in opioid and dopamine systems in the NAc of heroin-exposed rats.
Collapse
Affiliation(s)
- Mark A Smith
- Department of Psychology, Davidson College, Davidson, NC, 28035, USA.
- Program in Neuroscience, Davidson College, Davidson, NC, USA.
| | - Gaylen E Fronk
- Department of Psychology, Davidson College, Davidson, NC, 28035, USA
| | - Jean M Abel
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Ryan T Lacy
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, USA
| | - Sarah E Bills
- Department of Psychology, Davidson College, Davidson, NC, 28035, USA
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
32
|
Murakami G, Edamura M, Furukawa T, Kawasaki H, Kosugi I, Fukuda A, Iwashita T, Nakahara D. MHC class I in dopaminergic neurons suppresses relapse to reward seeking. SCIENCE ADVANCES 2018; 4:eaap7388. [PMID: 29546241 PMCID: PMC5851664 DOI: 10.1126/sciadv.aap7388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/07/2018] [Indexed: 05/12/2023]
Abstract
Major histocompatibility complex class I (MHCI) is an important immune protein that is expressed in various brain regions, with its deficiency leading to extensive synaptic transmission that results in learning and memory deficits. Although MHCI is highly expressed in dopaminergic neurons, its role in these neurons has not been examined. We show that MHCI expressed in dopaminergic neurons plays a key role in suppressing reward-seeking behavior. In wild-type mice, cocaine self-administration caused persistent reduction of MHCI specifically in dopaminergic neurons, which was accompanied by enhanced glutamatergic synaptic transmission and relapse to cocaine seeking. Functional MHCI knockout promoted this addictive phenotype for cocaine and a natural reward, namely, sucrose. In contrast, wild-type mice overexpressing a major MHCI gene (H2D) in dopaminergic neurons showed suppressed cocaine seeking. These results show that persistent cocaine-induced reduction of MHCI in dopaminergic neurons is necessary for relapse to cocaine seeking.
Collapse
Affiliation(s)
- Gen Murakami
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Mitsuhiro Edamura
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Daiichiro Nakahara
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
33
|
Abstract
Drug addiction involves long-term behavioral abnormalities that arise in response to repeated exposure to drugs of abuse in vulnerable individuals. It is a multifactorial syndrome involving a complex interplay between genes and the environment. Evidence suggests that the underlying mechanisms regulating these persistent behavioral abnormalities involve changes in gene expression throughout the brain's reward circuitry, in particular, in the mesolimbic dopamine system. In the past decade, investigations have begun to reveal potential genes involved in the risk for addiction through genomewide association studies. Additionally, a crucial role for epigenetic mechanisms, which mediate the enduring effects of drugs of abuse on the brain in animal models of addiction, has been established. This chapter focuses on recent evidence that genetic and epigenetic regulatory events underlie the changes throughout the reward circuitry in humans, as well as animal models of addiction. While further investigations are necessary, a picture of genetic and epigenetic mechanisms involved in addiction is beginning to emerge and the insight gained from these studies will be key to the identification of novel targets for improved diagnosis and treatment of addiction syndromes in humans.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
34
|
Kim HD, Call T, Magazu S, Ferguson D. Drug Addiction and Histone Code Alterations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:127-143. [PMID: 28523544 DOI: 10.1007/978-3-319-53889-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute and prolonged exposure to drugs of abuse induces changes in gene expression, synaptic function, and neural plasticity in brain regions involved in reward. Numerous genes are involved in this process, and persistent changes in gene expression coincide with epigenetic histone modifications and DNA methylation. Histone modifications are attractive regulatory mechanisms, which can encode complex environmental signals in the genome of postmitotic cells, like neurons. Recently, it has been demonstrated that specific histone modifications are involved in addiction-related gene regulatory mechanisms, by a diverse set of histone-modifying enzymes and readers. These histone modifiers and readers may prove to be valuable pharmacological targets for effective treatments for drug addiction.
Collapse
Affiliation(s)
- Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Tanessa Call
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Samantha Magazu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Deveroux Ferguson
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
35
|
Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: a link between addiction and social environment. Cell Mol Life Sci 2017; 74:2735-2747. [PMID: 28255755 PMCID: PMC11107568 DOI: 10.1007/s00018-017-2493-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.
Collapse
Affiliation(s)
- Duyilemi C Ajonijebu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oualid Abboussi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Vivienne A Russell
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - William M U Daniels
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Differences in biomarkers of crack-cocaine adolescent users before/after abstinence. Drug Alcohol Depend 2017; 177:207-213. [PMID: 28618284 DOI: 10.1016/j.drugalcdep.2017.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/28/2017] [Accepted: 03/25/2017] [Indexed: 01/19/2023]
Abstract
AIMS To measure the variation in Brain-Derived Neurotrophic Factor (BDNF), Thiobarbituric Acid Reactive Substances (TBARS) and interleukin (IL) levels in crack-cocaine dependent adolescents after 21days of abstinence, comparing to levels found in a group of healthy controls. DESIGN Cross-sectional nested on a short follow-up study. SETTING Two inpatient treatment units for adolescents, and a low-income neighborhood. PARTICIPANTS 90 adolescents, of both genders, with diagnosis of crack cocaine dependence, and 81 healthy adolescents. MEASUREMENTS Serum levels of IL-6, IL-10, TBARS and BDNF were assessed on admission and discharge. Drug addiction severity was assessed by the Addiction Severity Index - Teen Version (T-ASI) and Cocaine Craving Questionnaire - Brief version (CCQ-b). Psychiatric comorbidities were assessed by the Schedule for Affective Disorders and Schizophrenia for School-Age Children - Present and Lifetime Version (K-SADS-PL). Generalized Estimating Equations (GEE) were used to estimate the IL-6, IL-10, TBARS and BDNF levels, adjusted for confounders. Hedges' g was used to estimate effect size. FINDINGS TBARS (p=0.005, d=0.04), IL-6 (p=0.027, d=0.40) and IL-10 (p=0.025, d=0.41) were elevated and BDNF (p<0.001, d=0.62) was reduced (p<0.001), in patients, in comparison to controls, at admission time. Variation in those levels between admission and discharge were not significant. CONCLUSIONS Crack-cocaine use seems to be associated with inflammatory and oxidative imbalances in adolescents.
Collapse
|
37
|
Systemic Delivery of a Brain-Penetrant TrkB Antagonist Reduces Cocaine Self-Administration and Normalizes TrkB Signaling in the Nucleus Accumbens and Prefrontal Cortex. J Neurosci 2017; 36:8149-59. [PMID: 27488635 DOI: 10.1523/jneurosci.2711-14.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 06/10/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood-brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxic transduction domain of the tat protein from human immunodeficiency virus type 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocaine taking in rats allowed either short or long access to cocaine self-administration. In contrast, the treatment did not affect operant responding for a highly palatable sweet solution, demonstrating that the effects of tat-cyclotraxin-B are specific for cocaine reinforcement. Cocaine self-administration increased TrkB signaling and activated the downstream Akt pathway in the nucleus accumbens, and had opposite effects in the prefrontal cortex. Pretreatment with tat-cyclotraxin-B normalized protein levels in these two dopamine-innervated brain regions. Cocaine self-administration also increased TrkB signaling in the ventral tegmental area, where the dopaminergic projections originate, but pretreatment with tat-cyclotraxin-B did not alter this effect. Altogether, our data show that systemic administration of a brain-penetrant TrkB antagonist leads to brain region-specific effects and may be a potential pharmacological strategy for the treatment of cocaine addiction. SIGNIFICANCE STATEMENT Brain-derived neurotrophic factor (BDNF) signaling through TrkB receptors plays a well established role in cocaine reinforcement. However, local manipulation of BDNF signaling yields divergent effects, depending on the brain region, thereby questioning the viability of systemic TrkB targeting for the treatment of cocaine use disorders. Our study provides first-time evidence that systemic administration of a brain-penetrant TrkB antagonist (tat-cyclotraxin-B) reduces several behavioral measures of cocaine dependence, without altering motor performance or reinforcement by a sweet palatable solution. In addition, although cocaine self-administration produced opposite effects on TrkB signaling in the nucleus accumbens and prefrontal cortex, tat-cyclotraxin-B administration normalized these cocaine-induced changes in both brain regions.
Collapse
|
38
|
Peregud DI, Freiman SV, Tishkina AO, Sokhranyaeva LS, Lazareva NA, Onufriev MV, Stepanichev MY, Gulyaeva NV. Effects of early neonatal proinflammatory stress on the expression of BDNF transcripts in the brain regions of prepubertal male rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717010117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Todd SM, Zhou C, Clarke DJ, Chohan TW, Bahceci D, Arnold JC. Interactions between cannabidiol and Δ 9-THC following acute and repeated dosing: Rebound hyperactivity, sensorimotor gating and epigenetic and neuroadaptive changes in the mesolimbic pathway. Eur Neuropsychopharmacol 2017; 27:132-145. [PMID: 28043732 DOI: 10.1016/j.euroneuro.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
The evidence base for the use of medical cannabis preparations containing specific ratios of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) is limited. While there is abundant data on acute interactions between CBD and THC, few studies have assessed the impact of their repeated co-administration. We previously reported that CBD inhibited or potentiated the acute effects of THC dependent on the measure being examined at a 1:1 CBD:THC dose ratio. Further, CBD decreased THC effects on brain regions involved in memory, anxiety and body temperature regulation. Here we extend on these finding by examining over 15 days of treatment whether CBD modulated the repeated effects of THC on behaviour and neuroadaption markers in the mesolimbic dopamine pathway. After acute locomotor suppression, repeated THC caused rebound locomotor hyperactivity that was modestly inhibited by CBD. CBD also slightly reduced the acute effects of THC on sensorimotor gating. These subtle effects were found at a 1:1 CBD:THC dose ratio but were not accentuated by a 5:1 dose ratio. CBD did not alter the trajectory of enduring THC-induced anxiety nor tolerance to the pharmacological effects of THC. There was no evidence of CBD potentiating the behavioural effects of THC. However we demonstrated for the first time that repeated co-administration of CBD and THC increased histone 3 acetylation (H3K9/14ac) in the VTA and ΔFosB expression in the nucleus accumbens. These changes suggest that while CBD may have protective effects acutely, its long-term molecular actions on the brain are more complex and may be supradditive.
Collapse
Affiliation(s)
- Stephanie M Todd
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Cilla Zhou
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Dilara Bahceci
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; The Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; The Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia.
| |
Collapse
|
40
|
|
41
|
Peregud DI, Panchenko LF, Gulyaeva NV. MicroRNA may regulate the content of the brain-derived neurotrophic factor in the frontal cortex of rats after spontaneous morphine withdrawal. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
LaQuaglia MJ, Grijalva JL, Mueller KA, Perez-Atayde AR, Kim HB, Sadri-Vakili G, Vakili K. YAP Subcellular Localization and Hippo Pathway Transcriptome Analysis in Pediatric Hepatocellular Carcinoma. Sci Rep 2016; 6:30238. [PMID: 27605415 PMCID: PMC5015017 DOI: 10.1038/srep30238] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022] Open
Abstract
Pediatric hepatocellular carcinoma (HCC) is a rare tumor which is associated with an extremely high mortality rate due to lack of effective chemotherapy. Recently, the Hippo pathway and its transcriptional co-activator Yes-associated protein (YAP) have been shown to play a role in hepatocyte proliferation and development of HCC in animal models. Therefore, we sought to examine the activity of YAP and the expression of Hippo pathway components in tumor and non-neoplastic liver tissue from 7 pediatric patients with moderately differentiated HCC. None of the patients had underlying cirrhosis or viral hepatitis, which is commonly seen in adults with HCC. This highlights a major difference in the pathogenesis of HCC between children and adults. We found a statistically significant increase in YAP nuclear localization in 100% of tumors. YAP target gene (CCNE1, CTGF, Cyr61) mRNA expression was also increased in the tumors that had the most significant increase in YAP nuclear localization. Based on Ki67 co-localization studies YAP nuclear localization was not simply a marker of proliferation. Our results demonstrate a clear increase in YAP activity in moderately differentiated pediatric HCC, providing evidence that it may play an important role in tumor survival and propagation.
Collapse
Affiliation(s)
- Michael J LaQuaglia
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - James L Grijalva
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Kaly A Mueller
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129-4404 USA
| | - Antonio R Perez-Atayde
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Heung Bae Kim
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Ghazaleh Sadri-Vakili
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129-4404 USA
| | - Khashayar Vakili
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
43
|
Wang J, Bastle RM, Bass CE, Hammer RP, Neisewander JL, Nikulina EM. Overexpression of BDNF in the ventral tegmental area enhances binge cocaine self-administration in rats exposed to repeated social defeat. Neuropharmacology 2016; 109:121-130. [PMID: 27154426 DOI: 10.1016/j.neuropharm.2016.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/12/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022]
Abstract
Stress is a major risk factor for substance abuse. Intermittent social defeat stress increases drug self-administration (SA) and elevates brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA) in rats. Intra-VTA BDNF overexpression enhances social defeat stress-induced cross-sensitization to psychostimulants and induces nucleus accumbens (NAc) ΔFosB expression. Therefore, increased VTA BDNF may mimic or augment the development of drug abuse-related behavior following social stress. To test this hypothesis, adeno-associated virus (AAV) was infused into the VTA to overexpress either GFP alone (control) or GFP + BDNF. Rats were then either handled or exposed to intermittent social defeat stress before beginning cocaine SA training. The SA acquisition and maintenance phases were followed by testing on a progressive ratio (PR) schedule of cocaine reinforcement, and then during a 12-h access "binge" cocaine SA session. BDNF and ΔFosB were quantified postmortem in regions of the mesocorticolimbic circuitry using immunohistochemistry. Social defeat stress increased cocaine intake on a PR schedule, regardless of virus treatment. While stress alone increased intake during the 12-h binge session, socially-defeated rats that received VTA BDNF overexpression exhibited even greater cocaine intake compared to the GFP-stressed group. However, VTA BDNF overexpression alone did not alter binge intake. BDNF expression in the VTA was also positively correlated with total cocaine intake during binge session. VTA BDNF overexpression increased ΔFosB expression in the NAc, but not in the dorsal striatum. Here we demonstrate that VTA BDNF overexpression increases long-access cocaine intake, but only under stressful conditions. Therefore, enhanced VTA-BDNF expression may be a facilitator for stress-induced increases in drug abuse-related behavior specifically under conditions that capture compulsive-like drug intake.
Collapse
Affiliation(s)
- Junshi Wang
- University of Arizona College of Medicine, Phoenix, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ
| | - Ryan M Bastle
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Caroline E Bass
- School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Ronald P Hammer
- University of Arizona College of Medicine, Phoenix, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ
| | | | | |
Collapse
|
44
|
Exercise during early, but not late abstinence, attenuates subsequent relapse vulnerability in a rat model. Transl Psychiatry 2016; 6:e792. [PMID: 27115123 PMCID: PMC4872415 DOI: 10.1038/tp.2016.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022] Open
Abstract
Exercise has shown promise as a nonpharmacological intervention for addiction, with evidence suggesting a potential utility for relapse prevention. In humans, exercise as an intervention is typically introduced well after the initiation of abstinence, yet neurobiological data from preclinical studies suggest that it may be more effective if initiated during early abstinence. Here, using rat models, we determined whether the beneficial effects of exercise on relapse vulnerability depends on when exercise is first initiated, during early versus late abstinence. Once rats (n=47) acquired cocaine self-administration, they were given 24-h access to cocaine (1.5 mg/kg per infusion) under a discrete trial procedure (four infusions per hour) for 10 days. The rats then began a 14-day abstinence period in which they had access (2 h per day) to a locked wheel throughout abstinence (sedentary) or an unlocked wheel during early (days 1-7), late (days 8-14) or throughout (days 1-14) abstinence (n=10-14 per group). Cocaine seeking, as assessed under an extinction/cued-induced reinstatement procedure, was examined on day 15 of abstinence. Exercise beginning during early abstinence robustly attenuated subsequent cocaine seeking, and this effect persisted even when exercise ended on the seventh day of abstinence. In contrast, exercise during late abstinence was not effective and these animals displayed high levels of cocaine seeking similar to those observed in sedentary animals. These results indicate that the timing of exercise availability differentially impacts cocaine seeking with results suggesting that exercise during early, but not late, abstinence may provide long-term protection against cocaine relapse.
Collapse
|
45
|
Abstract
UNLABELLED Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic "reader" proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the "readout" of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and BET inhibitors are currently being studied in several clinical trials. However, their role in addiction-related phenomena remains unknown. In the current studies, we revealed that BRD4 is elevated in the nucleus accumbens and recruited to promoter regions of addiction-related genes following repeated cocaine administration, and that inhibition of BRD4 attenuates transcriptional and behavioral responses to cocaine. Together, these studies reveal that BET inhibitors may have therapeutic utility in the treatment of cocaine addiction.
Collapse
|
46
|
Cadet JL. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Mol Neurobiol 2016; 53:545-560. [PMID: 25502297 PMCID: PMC4703633 DOI: 10.1007/s12035-014-9040-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 12/12/2022]
Abstract
Substance use disorders (SUDs) are highly prevalent. SUDs involve vicious cycles of binges followed by occasional periods of abstinence with recurrent relapses despite treatment and adverse medical and psychosocial consequences. There is convincing evidence that early and adult stressful life events are risks factors for the development of addiction and serve as cues that trigger relapses. Nevertheless, the fact that not all individuals who face traumatic events develop addiction to licit or illicit drugs suggests the existence of individual and/or familial resilient factors that protect these mentally healthy individuals. Here, I give a brief overview of the epigenetic bases of responses to stressful events and of epigenetic changes associated with the administration of drugs of abuse. I also discuss the psychobiology of resilience and alterations in epigenetic markers that have been observed in models of resilience. Finally, I suggest the possibility that treatment of addiction should involve cognitive and pharmacological approaches that enhance resilience in at risk individuals. Similar approaches should also be used with patients who have already succumbed to the nefarious effects of addictive substances.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
47
|
Shojaei S, Ghavami S, Panjehshahin MR, Owji AA. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats. Int J Mol Sci 2015; 16:30422-37. [PMID: 26703578 PMCID: PMC4691182 DOI: 10.3390/ijms161226242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 01/19/2023] Open
Abstract
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.
Collapse
Affiliation(s)
- Shahla Shojaei
- Department of Biochemistry and Recombinant Protein Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Health Research Policy Centre, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Mohammad Reza Panjehshahin
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Ali Akbar Owji
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| |
Collapse
|
48
|
Schmidt HD, McFarland KN, Darnell SB, Huizenga MN, Sangrey GR, Cha JHJ, Pierce RC, Sadri-Vakili G. ADAR2-dependent GluA2 editing regulates cocaine seeking. Mol Psychiatry 2015; 20:1460-6. [PMID: 25349168 PMCID: PMC4412769 DOI: 10.1038/mp.2014.134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 01/15/2023]
Abstract
Activation of AMPA receptors (AMPARs) in the nucleus accumbens is necessary for the reinstatement of cocaine-seeking behavior, an animal model of drug craving and relapse. AMPARs are tetrameric protein complexes that consist of GluA1-4 subunits, of which GluA2 imparts calcium permeability. Adenosine deaminase acting on RNA 2 (ADAR2) is a nuclear enzyme that is essential for editing GluA2 pre-mRNA at Q/R site 607. Unedited GluA2(Q) subunits form calcium-permeable AMPARs (CP-AMPARs), whereas edited GluA2(R) subunits form calcium-impermeable channels (CI-AMPARs). Emerging evidence suggests that the reinstatement of cocaine seeking is associated with increased synaptic expression of CP-AMPARs in the nucleus accumbens. However, the role of GluA2 Q/R site editing and ADAR2 in cocaine seeking is unclear. In the present study, we investigated the effects of forced cocaine abstinence on GluA2 Q/R site editing and ADAR2 expression in the nucleus accumbens. Our results demonstrate that 7 days of cocaine abstinence is associated with decreased GluA2 Q/R site editing and reduced ADAR2 expression in the accumbens shell, but not core, of cocaine-experienced rats compared with yoked saline controls. To examine the functional significance of ADAR2 and GluA2 Q/R site editing in cocaine seeking, we used viral-mediated gene delivery to overexpress ADAR2b in the accumbens shell. Increased ADAR2b expression in the shell attenuated cocaine priming-induced reinstatement of drug seeking and was associated with increased GluA2 Q/R site editing and surface expression of GluA2-containing AMPARs. Taken together, these findings support the novel hypothesis that an increased contribution of accumbens shell CP-AMPARs containing unedited GluA2(Q) promotes cocaine seeking. Therefore, CP-AMPARs containing unedited GluA2(Q) represent a novel target for cocaine addiction pharmacotherapies.
Collapse
Affiliation(s)
- H D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K N McFarland
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - S B Darnell
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - M N Huizenga
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - G R Sangrey
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | | | - R C Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Sadri-Vakili
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
49
|
Blum K, Thanos PK, Badgaiyan RD, Febo M, Oscar-Berman M, Fratantonio J, Demotrovics Z, Gold MS. Neurogenetics and gene therapy for reward deficiency syndrome: are we going to the Promised Land? Expert Opin Biol Ther 2015; 15:973-85. [PMID: 25974314 DOI: 10.1517/14712598.2015.1045871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Addiction is a substantial health issue with limited treatment options approved by the FDA and as such currently available. The advent of neuroimaging techniques that link neurochemical and neurogenetic mechanisms to the reward circuitry brain function provides a framework for potential genomic-based therapies. AREAS COVERED Through candidate and genome-wide association studies approaches, many gene polymorphisms and clusters have been implicated in drug, food and behavioral dependence linked by the common rubric reward deficiency syndrome (RDS). The results of selective studies that include the role of epigenetics, noncoding micro RNAs in RDS behaviors especially drug abuse involving alcohol, opioids, cocaine, nicotine, pain and feeding are reviewed in this article. New targets for addiction treatment and relapse prevention, treatment alternatives such as gene therapy in animal models, and pharmacogenomics and nutrigenomics methods to manipulate transcription and gene expression are explored. EXPERT OPINION The recognition of the clinical benefit of early genetic testing to determine addiction risk stratification and dopaminergic agonistic, rather than antagonistic therapies are potentially the genomic-based wave of the future. In addition, further development, especially in gene transfer work and viral vector identification, could make gene therapy for RDS a possibility in the future.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine , Gainesville, FL , USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kalda A, Zharkovsky A. Epigenetic Mechanisms of Psychostimulant-Induced Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 120:85-105. [PMID: 26070754 DOI: 10.1016/bs.irn.2015.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychostimulant-induced addiction involves potentially life-long behavioral abnormalities that are caused by repeated exposure to a drug of abuse in vulnerable individuals. The persistence of these behavioral changes suggests that long-lasting alterations in gene expression, particularly within the brain's reward regions, may contribute significantly to the addiction phenotype. An increasing number of works over the past decade have demonstrated the important role of epigenetic regulatory events in mediating the lasting effects of drugs of abuse (including psychostimulants, such as cocaine and amphetamine) in animal models of drug addiction. In this review, we have introduced the importance of epigenetic processes in regulating gene expression and have described the role that dynamic epigenetic changes may play in psychostimulant-induced addiction via long-lasting transcriptional changes following repeated drug exposure. We overviewed the evidence showing that repeated exposure to psychostimulants induces three major modes of epigenetic regulation within the brain's reward regions-histone modification, DNA methylation, and noncoding RNAs. In several instances, it has been possible to demonstrate directly the contribution of these epigenetic changes to psychostimulant-related behavioral abnormalities. Studies of epigenetics may also help to determine the role environmental factors play in an individual's vulnerability to addiction. Further studies are required to validate these epigenetic changes in human addiction and to evaluate the possibility of developing new diagnostic tests and more effective treatments for addiction syndromes.
Collapse
Affiliation(s)
- Anti Kalda
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|