1
|
Zhang H, Tian Y, Ma S, Ji Y, Wang Z, Xiao P, Xu Y. Chaperone-Mediated Autophagy in Brain Injury: A Double-Edged Sword with Therapeutic Potentials. Mol Neurobiol 2024; 61:10671-10683. [PMID: 38775879 DOI: 10.1007/s12035-024-04230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 11/24/2024]
Abstract
Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.
Collapse
Affiliation(s)
- Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihang Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Kaushik A, Parashar S, Ambasta RK, Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer. Ageing Res Rev 2024; 96:102279. [PMID: 38521359 DOI: 10.1016/j.arr.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
E3 ligases, essential components of the ubiquitin-proteasome-mediated protein degradation system, play a critical role in cellular regulation. By covalently attaching ubiquitin (Ub) molecules to target proteins, these ligases mark them for degradation, influencing various bioprocesses. With over 600 E3 ligases identified, there is a growing realization of their potential as therapeutic candidates for addressing proteinopathies in cancer and neurodegenerative disorders (NDDs). Recent research has highlighted the need to delve deeper into the intricate roles of E3 ligases as nexus points in the pathogenesis of both cancer and NDDs. Their dysregulation is emerging as a common thread linking these seemingly disparate diseases, necessitating a comprehensive understanding of their molecular intricacies. Herein, we have discussed (i) the fundamental mechanisms through which different types of E3 ligases actively participate in selective protein degradation in cancer and NDDs, followed by an examination of common E3 ligases playing pivotal roles in both situations, emphasising common players. Moving to, (ii) the functional domains and motifs of E3 ligases involved in ubiquitination, we have explored their interactions with specific substrates in NDDs and cancer. Additionally, (iii) we have explored techniques like PROTAC, molecular glues, and other state-of-the-art methods for hijacking neurotoxic and oncoproteins. Lastly, (iv) we have provided insights into ongoing clinical trials, offering a glimpse into the evolving landscape of E3-based therapeutics for cancer and NDDs. Unravelling the intricate network of E3 ligase-mediated regulation holds the key to unlocking targeted therapies that address the specific molecular signatures of individual patients, heralding a new era in personalized medicines.
Collapse
Affiliation(s)
- Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University-Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
3
|
Asamu MO, Oladipo OO, Abayomi OA, Adebayo AA. Alzheimer's disease: The role of T lymphocytes in neuroinflammation and neurodegeneration. Brain Res 2023; 1821:148589. [PMID: 37734576 DOI: 10.1016/j.brainres.2023.148589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's disease, the leading cause of progressive cognitive decline globally, has been reported to be enhanced by neuroinflammation. Brain-resident innate immune cells and adaptive immune cells work together to produce neuroinflammation. Studies over the past decade have established the neuroimmune axis present in Alzheimer's disease; the crosstalk between adaptive and innate immune cells within and outside the brain is crucial to the onset and progression of Alzheimer's disease. Although the role of the adaptive immune system in Alzheimer's disease is not fully understood, it has been hypothesized that the brain's immune homeostasis is significantly disrupted, which greatly contributes to neuroinflammation. Brain-infiltrating T cells possess proinflammatory phenotypes and activities that directly contribute to neuroinflammation. The pro-inflammatory activities of the adaptive immune system in Alzheimer's disease are characterized by the upregulation of effector T cell activities and the downregulation of regulatory T cell activities in the brain, blood, and cerebrospinal fluid. In this review, we discuss the major impact of T lymphocytes on the pathogenesis and progression of Alzheimer's disease. Understanding the role and mechanism of action of T cells in Alzheimer's disease would significantly contribute to the identification of novel biomarkers for diagnosing and monitoring the progression of the disease. This knowledge could also be crucial to the development of immunotherapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Moses O Asamu
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Oluseun A Abayomi
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Olabisi Onabanjo University Teaching Hospital (OOUTH), Sagamu, Ogun State, Nigeria
| | - Afeez A Adebayo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
4
|
Zhao Z, Li Z, Du F, Wang Y, Wu Y, Lim KL, Li L, Yang N, Yu C, Zhang C. Linking Heat Shock Protein 70 and Parkin in Parkinson's Disease. Mol Neurobiol 2023; 60:7044-7059. [PMID: 37526897 DOI: 10.1007/s12035-023-03481-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that affects millions of elderly people worldwide and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The precise mechanisms underlying the pathogenesis of PD are still not fully understood, but it is well accepted that the misfolding, aggregation, and abnormal degradation of proteins are the key causative factors of PD. Heat shock protein 70 (Hsp70) is a molecular chaperone that participates in the degradation of misfolded and aggregated proteins in living cells and organisms. Parkin, an E3 ubiquitin ligase, participates in the degradation of proteins via the proteasome pathway. Recent studies have indicated that both Hsp70 and Parkin play pivotal roles in PD pathogenesis. In this review, we focus on discussing how dysregulation of Hsp70 and Parkin leads to PD pathogenesis, the interaction between Hsp70 and Parkin in the context of PD and their therapeutic applications in PD.
Collapse
Affiliation(s)
- Zhongting Zhao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Zheng Li
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117054, Singapore
| | - Fangning Du
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yixin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Lin Li
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, People's Republic of China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
5
|
Reis MC, Patrun J, Ackl N, Winter P, Scheifele M, Danek A, Nolte D. A Severe Dementia Syndrome Caused by Intron Retention and Cryptic Splice Site Activation in STUB1 and Exacerbated by TBP Repeat Expansions. Front Mol Neurosci 2022; 15:878236. [PMID: 35493319 PMCID: PMC9048483 DOI: 10.3389/fnmol.2022.878236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Heterozygous pathogenic variants in the STIP1 homologous and U-box containing protein 1 (STUB1) gene have been identified as causes of autosomal dominant inherited spinocerebellar ataxia type 48 (SCA48). SCA48 is characterized by an ataxic movement disorder that is often, but not always, accompanied by a cognitive affective syndrome. We report a severe early onset dementia syndrome that mimics frontotemporal dementia and is caused by the intronic splice donor variant c.524+1G>A in STUB1. Impaired splicing was demonstrated by RNA analysis and in minigene assays of mutated and wild-type constructs of STUB1. The most striking consequence of this splicing impairment was retention of intron 3 in STUB1, which led to an in-frame insertion of 63 amino acids (aa) (p.Arg175_Glu176ins63) into the highly conserved coiled-coil domain of its encoded protein, C-terminus of HSP70-interacting protein (CHIP). To a lesser extent, activation of two cryptic splice sites in intron 3 was observed. The almost exclusively used one, c.524+86, was not predicted by in silico programs. Variant c.524+86 caused a frameshift (p.Arg175fs*93) that resulted in a truncated protein and presumably impairs the C-terminal U-box of CHIP, which normally functions as an E3 ubiquitin ligase. The cryptic splice site c.524+99 was rarely used and led to an in-frame insertion of 33 aa (p.Arg175_Glu176ins33) that resulted in disruption of the coiled-coil domain, as has been previously postulated for complete intron 3 retention. We additionally detected repeat expansions in the range of reduced penetrance in the TATA box-binding protein (TBP) gene by excluding other genes associated with dementia syndromes. The repeat expansion was heterozygous in one patient but compound heterozygous in the more severely affected patient. Therefore, we concluded that the observed severe dementia syndrome has a digenic background, making STUB1 and TBP important candidate genes responsible for early onset dementia syndromes.
Collapse
Affiliation(s)
- Marlen Colleen Reis
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Julia Patrun
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Nibal Ackl
- Psychiatrische Dienste Thurgau, Münsterlingen, Switzerland
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Pia Winter
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | - Adrian Danek
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Dagmar Nolte
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
- *Correspondence: Dagmar Nolte,
| |
Collapse
|
6
|
Kanack AJ, Olp MD, Newsom OJ, Scaglione JB, Gooden DM, McMahon K, Smith BC, Scaglione KM. Chemical Regulation of the Protein Quality Control E3 Ubiquitin Ligase C-Terminus of Hsc70 Interacting Protein (CHIP). Chembiochem 2022; 23:e202100633. [PMID: 35061295 PMCID: PMC9016715 DOI: 10.1002/cbic.202100633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Indexed: 11/09/2022]
Abstract
The ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) is an important regulator of proteostasis. Despite playing an important role in maintaining proteostasis, little progress has been made in developing small molecules that regulate ubiquitin transfer by CHIP. Here we used differential scanning fluorimetry to identify compounds that bound CHIP. Compounds that bound CHIP were then analyzed by quantitative ubiquitination assays to identify those that altered CHIP function. One compound, MS.001, inhibited both the chaperone binding and ubiquitin ligase activity of CHIP at low micromolar concentrations. Interestingly, we found that MS.001 did not have activity against isolated U-box or tetratricopeptide (TPR) domains, but instead only inhibited full-length CHIP. Using in silico docking we identified a potential MS.001 binding site on the linker domain of CHIP and mutation of this site rendered CHIP resistant to MS.001. Together our data identify an inhibitor of the E3 ligase CHIP and provides insight into the development of compounds that regulate CHIP activity.
Collapse
Affiliation(s)
- Adam J Kanack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oliver J Newsom
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jamie B Scaglione
- Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - David M Gooden
- Department of Chemistry, SMSF Lab, Duke University, Durham, NC 27710, USA
| | - Kevin McMahon
- Department of Computational and Physical Sciences, Carroll University, Waukesha, WI 53186, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
7
|
Guo J, Xue J, Ding Z, Li X, Wang X, Xue H. Activated Phosphoinositide 3-Kinase/Akt/Mammalian Target of Rapamycin Signal and Suppressed Autophagy Participate in Protection Offered by Licochalcone A Against Amyloid-β Peptide Fragment 25-35-Induced Injury in SH-SY5Y Cells. World Neurosurg 2021; 157:e390-e400. [PMID: 34662660 DOI: 10.1016/j.wneu.2021.10.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To assess effect of licochalcone A (LicA) on amyloid-β (Aβ) peptide fragment 25-35-induced nerve injury and reveal the potential molecular mechanisms involved. METHODS Viability of SH-SY5Y cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay after treatment with Aβ25-35 and/or LicA, following which apoptosis was detected by flow cytometry and Hoechst staining. Then, reactive oxygen species, glutathione, and superoxide dismutase were measured with flow cytometry and spectrophotometry. The ultrastructure of mitochondria was examined by transmission electron microscopy, and the biomarker proteins of autophagy, apoptosis, and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway were measured with Western blotting. RESULTS LicA improved cell viability and decreased lactate dehydrogenase leakage remarkably in Aβ25-35-induced injury in SH-SY5Y cells. After treatment with LicA, reactive oxygen species, glutathione, and superoxide dismutase levels in cells all were significantly decreased, which indicated that LicA has an antioxidative effect on Aβ25-35-induced oxidative injury. LicA could also significantly reduce Aβ25-35-induced autophagy in SH-SY5Y cells. In the cells injured by Aβ25-35, LicA prevented the transformation from light chain protein 3-I to light chain protein 3-II and reduced the levels of proteins GRP78, GRP94, CHOP, and Bax, but increased the levels of antiapoptotic protein and phosphorylation of PI3K, Akt, and mTOR. These effects of LicA were restored or suppressed by mTOR inhibitor rapamycin or PI3K inhibitor LY294002. CONCLUSIONS LicA protects SH-SY5Y cells against Aβ25-35-induced injury, wherein suppressed autophagy and activated PI3K/Akt/mTOR signaling pathway are involved, and mTOR-dependent autophagy at least plays some role.
Collapse
Affiliation(s)
- Jing Guo
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China
| | - Jing Xue
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China
| | | | - Xiang Li
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China
| | - Xiaoxin Wang
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China
| | - Hong Xue
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China.
| |
Collapse
|
8
|
Hu Z, Mao C, Wang H, Zhang Z, Zhang S, Luo H, Tang M, Yang J, Yuan Y, Wang Y, Liu Y, Fan L, Zhang Q, Yao D, Liu F, Schisler JC, Shi C, Xu Y. CHIP protects against MPP +/MPTP-induced damage by regulating Drp1 in two models of Parkinson's disease. Aging (Albany NY) 2021; 13:1458-1472. [PMID: 33472166 PMCID: PMC7834979 DOI: 10.18632/aging.202389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 09/18/2020] [Indexed: 04/22/2023]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD). Carboxyl terminus of Hsp70-interacting protein (CHIP) is a key regulator of mitochondrial dynamics, and mutations in CHIP or deficits in its expression have been associated with various neurological diseases. This study explores the protective role of CHIP in cells and murine PD models. In SH-SY5Y cell line, overexpression of CHIP improved the cell viability and increased the ATP levels upon treatment with 1-methyl-4-phenylpyridinium (MPP+). To achieve CHIP overexpression in animal models, we intravenously injected mice with AAV/BBB, a new serotype of adeno-associated virus that features an enhanced capacity to cross the blood-brain barrier. We also generated gene knock-in mice that overexpressed CHIP in neural tissue. Our results demonstrated that CHIP overexpression in mice suppressed 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage, including movement impairments, motor coordination, and spontaneous locomotor activity, as well as loss of dopaminergic neurons. In vitro and in vivo experiments showed that overexpression of CHIP inhibited the pathological increase in Drp1 observed in the PD models, suggesting that CHIP regulates Drp1 degradation to attenuate MPP+/MPTP-induced injury. We conclude that CHIP plays a protective role in MPP+/MPTP-induced PD models. Our experiments further revealed that CHIP maintains the integrity of mitochondria.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Qimeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dabao Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jonathan C. Schisler
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, and Department of Pathology and Lab Medicine at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Mohammed NA, Abdou HM, Tass MA, Alfwuaires M, Abdel-Moneim AM, Essawy AE. Oral Supplements of <i>Ginkgo biloba</i> Extract Alleviate Neuroinflammation, Oxidative Impairments and Neurotoxicity in Rotenone-Induced Parkinsonian Rats. Curr Pharm Biotechnol 2020; 21:1259-1268. [PMID: 32196446 DOI: 10.2174/1389201021666200320135849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ginkgo biloba extract (GbE) is known to contain several bioactive compounds and exhibits free radical scavenging activity. Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and is associated with oxidative stress, neuroinflammation and apoptosis. OBJECTIVE The current study aimed to investigate the neuroprotective effect of GbE in a rat model of PD induced by rotenone (ROT; a neurotoxin). METHODS Twenty-four male albino rats were randomly divided into four groups of six rats each: normal control, GbE treated, toxin control (ROT treated) and GbE+ROT group. RESULTS Oral administration of ROT (2.5 mg/kg b.w.) for 50 days caused an increased generation of lipid peroxidation products and significant depletion of reduced glutathione, total thiol content and activities of enzymatic antioxidants, i.e., superoxide dismutase and glutathione peroxidase in the brains of treated rats. Furthermore, ROT caused an elevation in acetylcholinesterase, interleukin-1β, interleukin- 6 and tumor necrosis factor-α and a significant reduction in dopamine in the stratum and substantia nigra. Immunohistochemical results illustrated that ROT treatment reduced the expression of tyrosine hydroxylase (TH). GbE treatment (150 mg/kg b.w./day) significantly reduced the elevated oxidative stress markers and proinflammatory cytokines and restored the reduced antioxidant enzyme activities, DA level and TH expression. These results were confirmed by histological observations that clearly indicated a neuroprotective effect of GbE against ROT-induced PD. CONCLUSION GbE mitigated ROT-induced PD via the inhibition of free-radical production, scavenging of ROS, and antioxidant enhancement.
Collapse
Affiliation(s)
- Nema A Mohammed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona A Tass
- Faculty of Art and Science- Badr, Al-Jabal Al-Gharbi University, Gherian, Libya
| | - Manal Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Hofuf-31982, Al-Ahsa, Saudi Arabia
| | | | - Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Momtaz S, Memariani Z, El-Senduny FF, Sanadgol N, Golab F, Katebi M, Abdolghaffari AH, Farzaei MH, Abdollahi M. Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Front Physiol 2020; 11:361. [PMID: 32411012 PMCID: PMC7199656 DOI: 10.3389/fphys.2020.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Misfolded proteins are the main common feature of neurodegenerative diseases, thereby, normal proteostasis is an important mechanism to regulate the neural survival and the central nervous system functionality. The ubiquitin-proteasome system (UPS) is a non-lysosomal proteolytic pathway involved in numerous normal functions of the nervous system, modulation of neurotransmitter release, synaptic plasticity, and recycling of membrane receptors or degradation of damaged and regulatory intracellular proteins. Aberrant accumulation of intracellular ubiquitin-positive inclusions has been implicated to a variety of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease (HD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Myeloma (MM). Genetic mutation in deubiquitinating enzyme could disrupt UPS and results in destructive effects on neuron survival. To date, various agents were characterized with proteasome-inhibitory potential. Proteins of the ubiquitin-proteasome system, and in particular, E3 ubiquitin ligases, may be promising molecular targets for neurodegenerative drug discovery. Phytochemicals, specifically polyphenols (PPs), were reported to act as proteasome-inhibitors or may modulate the proteasome activity. PPs modify the UPS by means of accumulation of ubiquitinated proteins, suppression of neuronal apoptosis, reduction of neurotoxicity, and improvement of synaptic plasticity and transmission. This is the first comprehensive review on the effect of PPs on UPS. Here, we review the recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders. This review attempts to summarize the latest reports on the neuroprotective properties involved in the proper functioning of natural polyphenolic compounds with implication for targeting ubiquitin-proteasome pathway in the neurodegenerative diseases. We highlight the evidence suggesting that polyphenolic compounds have a dose and disorder dependent effects in improving neurological dysfunctions, and so their mechanism of action could stimulate the UPS, induce the protein degradation or inhibit UPS and reduce protein degradation. Future studies should focus on molecular mechanisms by which PPs can interfere this complex regulatory system at specific stages of the disease development and progression.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran.,Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Kumar D, Kumar P. Aβ, Tau, and α-Synuclein aggregation and integrated role of PARK2 in the regulation and clearance of toxic peptides. Neuropeptides 2019; 78:101971. [PMID: 31540705 DOI: 10.1016/j.npep.2019.101971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's and Parkinson's diseases are one of the world's leading causes of death. >50 million people throughout the world are suffering with these diseases. They are two distinct progressive neurodegenerative disorders affecting different regions of the brain with diverse symptoms, including memory and motor loss respectively, but with the advancement of diseases, both affect the whole brain and exhibit some common biological symptoms. For instance, >50% PD patients develop dementia in their later stages, though it is a hallmark of Alzheimer's disease. In fact, latest research has suggested the involvement of some common pathophysiological and genetic links between these diseases, including the deposition of pathological Aβ, Tau, and α-synuclein in both the cases. Therefore, it is pertinent to diagnose the shared biomarkers, their aggregation mechanism, their intricate relationships in the pathophysiology of disease and therapeutic markers to target them. This would enable us to identify novel markers for the early detection of disease and targets for the future therapies. Herein, we investigated molecular aspects of Aβ, Tau, and α-Synuclein aggregation, and characterized their functional partners involved in the pathology of AD and PD. Moreover, we identified the molecular-crosstalk between AD and PD associated with their pathogenic proteins- Aβ, Tau, and α-Synuclein. Furthermore, we characterized their ubiquitinational enzymes and associated interaction network regulating the proteasomal clearance of these pathological proteins.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
12
|
Kumar D, Kumar P. Integrated Mechanism of Lysine 351, PARK2, and STUB1 in AβPP Ubiquitination. J Alzheimers Dis 2019; 68:1125-1150. [DOI: 10.3233/jad-181219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
13
|
Wang H, Cheung F, Stoll AC, Rockwell P, Figueiredo-Pereira ME. Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer 65Parkin reducing its calpain-cleavage. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1436-1450. [PMID: 30796971 DOI: 10.1016/j.bbadis.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Mitochondrial impairment and calcium (Ca++) dyshomeostasis are associated with Parkinson's disease (PD). When intracellular ATP levels are lowered, Ca++-ATPase pumps are impaired causing cytoplasmic Ca++ to be elevated and calpain activation. Little is known about the effect of calpain activation on Parkin integrity. To address this gap, we examined the effects of mitochondrial inhibitors [oligomycin (Oligo), antimycin and rotenone] on endogenous Parkin integrity in rat midbrain and cerebral cortical cultures. All drugs induced calpain-cleavage of Parkin to ~36.9/43.6 kDa fragments. In contrast, treatment with the proinflammatory prostaglandin J2 (PGJ2) and the proteasome inhibitor epoxomicin induced caspase-cleavage of Parkin to fragments of a different size, previously shown by others to be triggered by apoptosis. Calpain-cleaved Parkin was enriched in neuronal mitochondrial fractions. Pre-treatment with the phosphatase inhibitor okadaic acid prior to Oligo-treatment, stabilized full-length Parkin phosphorylated at Ser65, and reduced calpain-cleavage of Parkin. Treatment with the Ca++ ionophore A23187, which facilitates Ca++ transport across the plasma membrane, mimicked the effect of Oligo by inducing calpain-cleavage of Parkin. Removing extracellular Ca++ from the media prevented oligomycin- and ionophore-induced calpain-cleavage of Parkin. Computational analysis predicted that calpain-cleavage of Parkin liberates its UbL domain. The phosphagen cyclocreatine moderately mitigated Parkin cleavage by calpain. Moreover, the pituitary adenylate cyclase activating peptide (PACAP27), which stimulates cAMP production, prevented caspase but not calpain-cleavage of Parkin. Overall, our data support a link between Parkin phosphorylation and its cleavage by calpain. This mechanism reflects the impact of mitochondrial impairment and Ca++-dyshomeostasis on Parkin integrity and could influence PD pathogenesis.
Collapse
Affiliation(s)
- Hu Wang
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Fanny Cheung
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Anna C Stoll
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA.
| |
Collapse
|
14
|
Lizama BN, Palubinsky AM, McLaughlin B. Alterations in the E3 ligases Parkin and CHIP result in unique metabolic signaling defects and mitochondrial quality control issues. Neurochem Int 2018; 117:139-155. [PMID: 28851515 PMCID: PMC5826822 DOI: 10.1016/j.neuint.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023]
Abstract
E3 ligases are essential scaffold proteins, facilitating the transfer of ubiquitin from E2 enzymes to lysine residues of client proteins via isopeptide bonds. The specificity of substrate binding and the expression and localization of E3 ligases can, however, endow these proteins with unique features with variable effects on mitochondrial, metabolic and CNS function. By comparing and contrasting two E3 ligases, Parkin and C-terminus of HSC70-Interacting protein (CHIP) we seek to highlight the biophysical properties that may promote mitochondrial dysfunction, acute stress signaling and critical developmental periods to cease in response to mutations in these genes. Encoded by over 600 human genes, RING-finger proteins are the largest class of E3 ligases. Parkin contains three RING finger domains, with R1 and R2 separated by an in-between region (IBR) domain. Loss-of-function mutations in Parkin were identified in patients with early onset Parkinson's disease. CHIP is a member of the Ubox family of E3 ligases. It contains an N-terminal TPR domain and forms unique asymmetric homodimers. While CHIP can substitute for mutated Parkin and enhance survival, CHIP also has unique functions. The differences between these proteins are underscored by the observation that unlike Parkin-deficient animals, CHIP-null animals age prematurely and have significantly impaired motor function. These properties make these E3 ligases appealing targets for clinical intervention. In this work, we discuss how biophysical and metabolic properties of these E3 ligases have driven rapid progress in identifying roles for E3 ligases in development, proteostasis, mitochondrial biology, and cell health, as well as new data about how these proteins alter the CNS proteome.
Collapse
Affiliation(s)
- Britney N Lizama
- Neuroscience Graduate Group, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States.
| | - Amy M Palubinsky
- Neuroscience Graduate Group, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States
| | - BethAnn McLaughlin
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Department of Pharmacology, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States
| |
Collapse
|
15
|
Neuronal Preconditioning Requires the Mitophagic Activity of C-terminus of HSC70-Interacting Protein. J Neurosci 2018; 38:6825-6840. [PMID: 29934347 DOI: 10.1523/jneurosci.0699-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
The C terminus of HSC70-interacting protein (CHIP, STUB1) is a ubiquitously expressed cytosolic E3-ubiquitin ligase. CHIP-deficient mice exhibit cardiovascular stress and motor dysfunction before premature death. This phenotype is more consistent with animal models in which master regulators of autophagy are affected rather than with the mild phenotype of classic E3-ubiquitin ligase mutants. The cellular and biochemical events that contribute to neurodegeneration and premature aging in CHIP KO models remain poorly understood. Electron and fluorescent microscopy demonstrates that CHIP deficiency is associated with greater numbers of mitochondria, but these organelles are swollen and misshapen. Acute bioenergetic stress triggers CHIP induction and relocalization to mitochondria, where it plays a role in the removal of damaged organelles. This mitochondrial clearance is required for protection following low-level bioenergetic stress in neurons. CHIP expression overlaps with stabilization of the redox stress sensor PTEN-inducible kinase 1 (PINK1) and is associated with increased LC3-mediated mitophagy. Introducing human promoter-driven vectors with mutations in either the E3 ligase or tetracopeptide repeat domains of CHIP in primary neurons derived from CHIP-null animals enhances CHIP accumulation at mitochondria. Exposure to autophagy inhibitors suggests that the increase in mitochondrial CHIP is likely due to diminished clearance of these CHIP-tagged organelles. Proteomic analysis of WT and CHIP KO mouse brains (four male, four female per genotype) reveals proteins essential for maintaining energetic, redox, and mitochondrial homeostasis undergo significant genotype-dependent expression changes. Together, these data support the use of CHIP-deficient animals as a predictive model of age-related degeneration with selective neuronal proteotoxicity and mitochondrial failure.SIGNIFICANCE STATEMENT Mitochondria are recognized as central determinants of neuronal function and survival. We demonstrate that C terminus of HSC70-Interacting Protein (CHIP) is critical for neuronal responses to stress. CHIP upregulation and localization to mitochondria is required for mitochondrial autophagy (mitophagy). Unlike other disease-associated E3 ligases such as Parkin and Mahogunin, CHIP controls homeostatic and stress-induced removal of mitochondria. Although CHIP deletion results in greater numbers of mitochondria, these organelles have distorted inner membranes without clear cristae. Neuronal cultures derived from animals lacking CHIP are more vulnerable to acute injuries and transient loss of CHIP renders neurons incapable of mounting a protective response after low-level stress. Together, these data suggest that CHIP is an essential regulator of mitochondrial number, cell signaling, and survival.
Collapse
|
16
|
Post-translational modification of OCT4 in breast cancer tumorigenesis. Cell Death Differ 2018; 25:1781-1795. [PMID: 29511337 PMCID: PMC6180041 DOI: 10.1038/s41418-018-0079-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 01/06/2023] Open
Abstract
Recurrence and drug resistance of breast cancer are still the main reasons for breast cancer-associated deaths. Cancer stem cell (CSC) model has been proposed as a hypothesis for the lethality of breast cancer. Molecular mechanisms underlying CSC maintenance are still unclear. In this study, we generated mammospheres derived from breast cancer MDA-MB231 cells and MCF7 cells to enrich CSCs and performed DNA microarray analysis. We found that the expression of carboxy terminus of HSP70-interacting protein (CHIP) E3 ubiquitin ligase was significantly downregulated in breast CSCs. CHIP depletion increased mammosphere formation, whereas CHIP overexpression reversed this effect. We identified interactomes by mass spectrometry and detected CHIP directly interacted with OCT4, a stemness factor. CHIP overexpression decreased OCT4 stability through proteasomal degradation. CHIP induced OCT4 ubiquitination, whereas H260Q, a catalytic CHIP mutant, did not. Interestingly, we determined that OCT4 was ubiquitinated at lysine 284, and CHIP overexpression did not degrade K284R mutant OCT4. CHIP overexpression decreased the proliferation and side population of breast cancer cells, but these were not occurred in K284R mutant OCT4 overexpressed cells. Only 1000 cells showing CHIP depletion or OCT4 overexpression sufficiently generated breast tumors and lung metastases in xenografted mice. Ubiquitination-defective mutant of OCT4(K284R) overexpressed cells drastically generated tumor burdens in mice. Patients with breast cancer who showed low CHIP expression had poor survival probability. Taken together, we suggest that CHIP-induced OCT4 ubiquitination is important in breast CSCs. Regulation of CHIP expression and OCT4 protein stability is a considerable approach for breast cancer therapy.
Collapse
|
17
|
Morey TM, Winick-Ng W, Seah C, Rylett RJ. Chaperone-Mediated Regulation of Choline Acetyltransferase Protein Stability and Activity by HSC/HSP70, HSP90, and p97/VCP. Front Mol Neurosci 2017; 10:415. [PMID: 29311808 PMCID: PMC5733026 DOI: 10.3389/fnmol.2017.00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 11/13/2022] Open
Abstract
Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine in cholinergic neurons, and mutations of this enzyme are linked to the neuromuscular disorder congenital myasthenic syndrome (CMS). One CMS-related mutation, V18M, reduces ChAT enzyme activity and cellular protein levels, and is located within a highly-conserved N-terminal proline-rich motif at residues 14PKLPVPP20. We showed previously that disruption of this proline-rich motif by either proline-to-alanine mutation (P17A/P19A) or mutation of residue Val18 (V18M) enhances ubiquitination and degradation of these mutant ChAT proteins expressed in cholinergic SN56 cells by an unknown mechanism. In this study, using proximity-dependent biotin identification (BioID), co-immunoprecipitation and in situ proximity-ligation assay (PLA), we identified the heat shock proteins (HSPs) HSC/HSP70 and HSP90 as novel ChAT protein-interactors. These molecular chaperones are well-known for promoting the folding and stabilization of cellular proteins. Thus, we found that inhibition of HSPs by treatment of cells with either the HSC/HSP70 inhibitors 2-phenylethynesulfonamide (PES) or VER-155008, or the HSP90 inhibitor 17-AAG reduced cellular ChAT activity and solubility, and enhanced the ubiquitination and proteasome-dependent loss of ChAT protein. Importantly, the effects of HSP inhibition were greater for mutant ChAT proteins (P17A/P19A-ChAT and CMS-related V18M- and A513T-ChAT) compared to wild-type ChAT. HSPs can promote ubiquitination and degradation of terminally misfolded proteins through cooperative interaction with the E3 ubiquitin ligase CHIP/Stub1, and while we show that ChAT interacts with CHIP in situ, siRNA-mediated knock-down of CHIP had no effect on either wild-type or mutant ChAT protein levels. However, inhibition of the endoplasmic reticulum (ER)- and HSP-associated co-chaperone p97/VCP prevented degradation of ubiquitinated ChAT. Together, these results identify novel mechanisms for the functional regulation of wild-type and CMS-related mutant ChAT by pro-stabilizing HSPs and the pro-degradative co-chaperone p97/VCP that may have broader implications for ChAT function during cellular stress and disease.
Collapse
Affiliation(s)
- Trevor M Morey
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Warren Winick-Ng
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Claudia Seah
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
18
|
Activation mechanisms of the E3 ubiquitin ligase parkin. Biochem J 2017; 474:3075-3086. [PMID: 28860335 DOI: 10.1042/bcj20170476] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Monogenetic, familial forms of Parkinson's disease (PD) only account for 5-10% of the total number of PD cases, but analysis of the genes involved therein is invaluable to understanding PD-associated neurodegenerative signaling. One such gene, parkin, encodes a 465 amino acid E3 ubiquitin ligase. Of late, there has been considerable interest in the role of parkin signaling in PD and in identifying its putative substrates, as well as the elucidation of the mechanisms through which parkin itself is activated. Its dysfunction underlies both inherited and idiopathic PD-associated neurodegeneration. Here, we review recent literature that provides a model of activation of parkin in the setting of mitochondrial damage that involves PINK1 (PTEN-induced kinase-1) and phosphoubiquitin. We note that neuronal parkin is primarily a cytosolic protein (with various non-mitochondrial functions), and discuss potential cytosolic parkin activation mechanisms.
Collapse
|
19
|
Kevei É, Pokrzywa W, Hoppe T. Repair or destruction-an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett 2017; 591:2616-2635. [PMID: 28699655 PMCID: PMC5601288 DOI: 10.1002/1873-3468.12750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Cellular differentiation, developmental processes, and environmental factors challenge the integrity of the proteome in every eukaryotic cell. The maintenance of protein homeostasis, or proteostasis, involves folding and degradation of damaged proteins, and is essential for cellular function, organismal growth, and viability 1, 2. Misfolded proteins that cannot be refolded by chaperone machineries are degraded by specialized proteolytic systems. A major degradation pathway regulating cellular proteostasis is the ubiquitin (Ub)/proteasome system (UPS), which regulates turnover of damaged proteins that accumulate upon stress and during aging. Despite a large number of structurally unrelated substrates, Ub conjugation is remarkably selective. Substrate selectivity is mainly provided by the group of E3 enzymes. Several observations indicate that numerous E3 Ub ligases intimately collaborate with molecular chaperones to maintain the cellular proteome. In this review, we provide an overview of specialized quality control E3 ligases playing a critical role in the degradation of damaged proteins. The process of substrate recognition and turnover, the type of chaperones they team up with, and the potential pathogeneses associated with their malfunction will be further discussed.
Collapse
Affiliation(s)
- Éva Kevei
- School of Biological Sciences, University of Reading, Whiteknights, UK
| | - Wojciech Pokrzywa
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
20
|
Xiao M, Yan M, Zhang J, Xu Q, Chen W. Carboxy-terminus Hsc70 interacting protein exerts a tumor inhibition function in head and neck cancer. Oncol Rep 2017; 38:1629-1636. [PMID: 28731191 DOI: 10.3892/or.2017.5827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/07/2017] [Indexed: 11/05/2022] Open
Abstract
Several independent studies have reported the roles of the E3 ubiquitin ligase, carboxy-terminus Hsc70 interacting protein (CHIP) in various types of cancers. However, the biological effects of CHIP vary in regards to different cancers, and the role of CHIP in head and neck cancers (HNCs) remains unknown. In the present study, CHIP overexpression plasmids and CHIP knockdown lentivirus were constructed to affect the expression levels of CHIP protein and biological behaviors in HNC cell lines bilaterally. The biological behaviors regulated by CHIP in HNCs were investigated both in vivo and in vitro with a series of assays and analyses. A tissue microarray was stained and analyzed for the clinical significance of CHIP expression in HNCs. We identified that CHIP suppressed the malignant behaviors of HNCs in a series of in vitro and in vivo experiments, but not its two loss-of-function mutants. However, we observed an altered expression pattern of CHIP from a well, moderate, to poor differentiation pathological status in HNC specimens. In a retrospective cohort of HNCs, lower expression of CHIP indicated a poor differentiation status in tumors and a lower overall survival rate. The present study demonstrated that CHIP functions as a tumor suppressor in HNCs. In conclusion, we demonstrated that suppressed expression of CHIP may result in the progression of HNCs.
Collapse
Affiliation(s)
- Meng Xiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
21
|
Brown DI, Parry TL, Willis MS. Ubiquitin Ligases and Posttranslational Regulation of Energy in the Heart: The Hand that Feeds. Compr Physiol 2017. [PMID: 28640445 DOI: 10.1002/cphy.c160024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) is a costly and deadly syndrome characterized by the reduced capacity of the heart to adequately provide systemic blood flow. Mounting evidence implicates pathological changes in cardiac energy metabolism as a contributing factor in the development of HF. While the main source of fuel in the healthy heart is the oxidation of fatty acids, in the failing heart the less energy efficient glucose and glycogen metabolism are upregulated. The ubiquitin proteasome system plays a key role in regulating metabolism via protein-degradation/regulation of autophagy and regulating metabolism-related transcription and cell signaling processes. In this review, we discuss recent research that describes the role of the ubiquitin-proteasome system (UPS) in regulating metabolism in the context of HF. We focus on ubiquitin ligases (E3s), the component of the UPS that confers substrate specificity, and detail the current understanding of how these E3s contribute to cardiac pathology and metabolism. © 2017 American Physiological Society. Compr Physiol 7:841-862, 2017.
Collapse
Affiliation(s)
- David I Brown
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A. A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? Front Mol Neurosci 2016; 9:93. [PMID: 27757073 PMCID: PMC5047891 DOI: 10.3389/fnmol.2016.00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with the help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their associations with multiple pathologies make it a key molecule to work upon and focus for future therapeutic interventions. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside cells by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore Madhya Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| |
Collapse
|
23
|
Kim C, Yun N, Lee J, Youdim MBH, Ju C, Kim WK, Han PL, Oh YJ. Phosphorylation of CHIP at Ser20 by Cdk5 promotes tAIF-mediated neuronal death. Cell Death Differ 2015. [PMID: 26206088 DOI: 10.1038/cdd.2015.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase and its dysregulation is implicated in neurodegenerative diseases. Likewise, C-terminus of Hsc70-interacting protein (CHIP) is linked to neurological disorders, serving as an E3 ubiquitin ligase for targeting damaged or toxic proteins for proteasomal degradation. Here, we demonstrate that CHIP is a novel substrate for Cdk5. Cdk5 phosphorylates CHIP at Ser20 via direct binding to a highly charged domain of CHIP. Co-immunoprecipitation and ubiquitination assays reveal that Cdk5-mediated phosphorylation disrupts the interaction between CHIP and truncated apoptosis-inducing factor (tAIF) without affecting CHIP's E3 ligase activity, resulting in the inhibition of CHIP-mediated degradation of tAIF. Lentiviral transduction assay shows that knockdown of Cdk5 or overexpression of CHIP(S20A), but not CHIP(WT), attenuates tAIF-mediated neuronal cell death induced by hydrogen peroxide. Thus, we conclude that Cdk5-mediated phosphorylation of CHIP negatively regulates its neuroprotective function, thereby contributing to neuronal cell death progression following neurotoxic stimuli.
Collapse
Affiliation(s)
- C Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - N Yun
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - J Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - M B H Youdim
- Technion Rapport Faculty of Medicine, Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Haifa, Haifa 30196, Israel
| | - C Ju
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Korea
| | - W-K Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Korea
| | - P-L Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Y J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| |
Collapse
|
24
|
Hu Z, Scott HS, Qin G, Zheng G, Chu X, Xie L, Adelson DL, Oftedal BE, Venugopal P, Babic M, Hahn CN, Zhang B, Wang X, Li N, Wei C. Revealing Missing Human Protein Isoforms Based on Ab Initio Prediction, RNA-seq and Proteomics. Sci Rep 2015; 5:10940. [PMID: 26156868 PMCID: PMC4496727 DOI: 10.1038/srep10940] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/05/2015] [Indexed: 01/02/2023] Open
Abstract
Biological and biomedical research relies on comprehensive understanding of protein-coding transcripts. However, the total number of human proteins is still unknown due to the prevalence of alternative splicing. In this paper, we detected 31,566 novel transcripts with coding potential by filtering our ab initio predictions with 50 RNA-seq datasets from diverse tissues/cell lines. PCR followed by MiSeq sequencing showed that at least 84.1% of these predicted novel splice sites could be validated. In contrast to known transcripts, the expression of these novel transcripts were highly tissue-specific. Based on these novel transcripts, at least 36 novel proteins were detected from shotgun proteomics data of 41 breast samples. We also showed L1 retrotransposons have a more significant impact on the origin of new transcripts/genes than previously thought. Furthermore, we found that alternative splicing is extraordinarily widespread for genes involved in specific biological functions like protein binding, nucleoside binding, neuron projection, membrane organization and cell adhesion. In the end, the total number of human transcripts with protein-coding potential was estimated to be at least 204,950.
Collapse
Affiliation(s)
- Zhiqiang Hu
- 1] School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China [2] Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China
| | - Hamish S Scott
- 1] Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia [2] School of Biological Sciences, University of Adelaide, SA 5005, Australia [3] School of Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia [4] School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, SA, Australia [5] ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | - Guangrong Qin
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China
| | - Guangyong Zheng
- 1] Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China [2] CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xixia Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Bergithe E Oftedal
- 1] Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia [2] Department of Biomedical Informatics (DBMI), Vanderbilt University Medical Center (VUMC), 2525 West End Ave, Suite 800, Nashville, TN 37203, USA
| | - Parvathy Venugopal
- 1] Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia [2] School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia
| | - Christopher N Hahn
- 1] Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia [2] School of Biological Sciences, University of Adelaide, SA 5005, Australia [3] School of Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - Bing Zhang
- Department of Biomedical Informatics (DBMI), Vanderbilt University Medical Center (VUMC), 2525 West End Ave, Suite 800, Nashville, TN 37203, USA
| | - Xiaojing Wang
- Department of Biomedical Informatics (DBMI), Vanderbilt University Medical Center (VUMC), 2525 West End Ave, Suite 800, Nashville, TN 37203, USA
| | - Nan Li
- Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Chaochun Wei
- 1] School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China [2] Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China
| |
Collapse
|
25
|
Rauniyar N, Subramanian K, Lavallée-Adam M, Martínez-Bartolomé S, Balch WE, Yates JR. Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann-Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis. Mol Cell Proteomics 2015; 14:1734-49. [PMID: 25873482 DOI: 10.1074/mcp.m114.045609] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartments. Mutations in the NPC1 protein are implicated in 95% of patients with NPC disease. The most prevalent mutation is the missense mutation I1061T that occurs in ∼ 15-20% of the disease alleles. In our study, an isobaric labeling-based quantitative analysis of proteome of NPC1(I1061T) primary fibroblasts when compared with wild-type cells identified 281 differentially expressed proteins based on stringent data analysis criteria. Gene ontology enrichment analysis revealed that these proteins play important roles in diverse cellular processes such as protein maturation, energy metabolism, metabolism of reactive oxygen species, antioxidant activity, steroid metabolism, lipid localization, and apoptosis. The relative expression level of a subset of differentially expressed proteins (TOR4A, DHCR24, CLGN, SOD2, CHORDC1, HSPB7, and GAA) was independently and successfully substantiated by Western blotting. We observed that treating NPC1(I1061T) cells with four classes of seven different compounds that are potential NPC drugs increased the expression level of SOD2 and DHCR24. We have also shown an abnormal accumulation of glycogen in NPC1(I1061T) fibroblasts possibly triggered by defective processing of lysosomal alpha-glucosidase. Our study provides a starting point for future more focused investigations to better understand the mechanisms by which the reported dysregulated proteins triggers the pathological cascade in NPC, and furthermore, their effect upon therapeutic interventions.
Collapse
Affiliation(s)
| | - Kanagaraj Subramanian
- §Department of Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California-92037
| | | | | | - William E Balch
- §Department of Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California-92037.
| | | |
Collapse
|
26
|
Ping Y, Hahm ET, Waro G, Song Q, Vo-Ba DA, Licursi A, Bao H, Ganoe L, Finch K, Tsunoda S. Linking aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer's model. PLoS Genet 2015; 11:e1005025. [PMID: 25774758 PMCID: PMC4361604 DOI: 10.1371/journal.pgen.1005025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. β-amyloid (Aβ) accumulation in the brain is thought to be a primary event leading to eventual cognitive and motor dysfunction in AD. Aβ has been shown to promote neuronal hyperactivity, which is consistent with enhanced seizure activity in mouse models and AD patients. Little, however, is known about whether, and how, increased excitability contributes to downstream pathologies of AD. Here, we show that overexpression of human Aβ42 in a Drosophila model indeed induces increased neuronal activity. We found that the underlying mechanism involves the selective degradation of the A-type K+ channel, Kv4. An age-dependent loss of Kv4 leads to an increased probability of AP firing. Interestingly, we find that loss of Kv4 alone results in learning and locomotion defects, as well as a shortened lifespan. To test whether the Aβ42-induced increase in neuronal excitability contributes to, or exacerbates, downstream pathologies, we transgenically over-expressed Kv4 to near wild-type levels in Aβ42-expressing animals. We show that restoration of Kv4 attenuated age-dependent learning and locomotor deficits, slowed the onset of neurodegeneration, and partially rescued premature death seen in Aβ42-expressing animals. We conclude that Aβ42-induced hyperactivity plays a critical role in the age-dependent cognitive and motor decline of this Aβ42-Drosophila model, and possibly in AD.
Collapse
Affiliation(s)
- Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Dai-An Vo-Ba
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ashley Licursi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Han Bao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Logan Ganoe
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kelly Finch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kim MN, Choi J, Ryu HW, Ryu KY. Disruption of polyubiquitin gene Ubc leads to attenuated resistance against arsenite-induced toxicity in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:996-1009. [PMID: 25701757 DOI: 10.1016/j.bbamcr.2015.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 12/30/2022]
Abstract
The polyubiquitin gene Ubc is upregulated under oxidative stress induced by arsenite [As(III)]. However, the detailed mechanism of Ubc upregulation and the exact role of ubiquitin (Ub) to protect cells against As(III)-induced toxicity remain unknown. Here, we found that Ubc-/- mouse embryonic fibroblasts (MEFs) exhibited reduced viability under As(III) exposure, although the Nrf2-Keap1 pathway was activated as a cytoprotective response. Intriguingly, due to the reduced polyubiquitination and delayed onset of degradation of Nrf2 in Ubc-/- MEFs, the basal expression levels of Nrf2 target genes were elevated. As(III)-induced accumulation of Ub conjugates occurred in an Nrf2-independent manner, probably due to cellular stress conditions, including reduced proteasomal activity. Increased cellular Ub levels were essential to polyubiquitinate misfolded proteins generated under As(III) exposure and to degrade them by the proteasome. However, when cellular Ub levels decreased, these misfolded proteins were not efficiently polyubiquitinated, but rather accumulated as large protein aggregates inside the cells, causing cytotoxicity. Furthermore, increased activity of the autophagic pathway to clear these aggregates was not observed in Ubc-/- MEFs. Therefore, reduced viability of Ubc-/- MEFs under As(III) exposure may not be due to dysregulation of the Nrf2-Keap1 pathway, but mostly to reduced efficacy to polyubiquitinate and degrade misfolded protein aggregates.
Collapse
Affiliation(s)
- Mi-Nam Kim
- Department of Life Science, University of Seoul, Seoul 130-743, Republic of Korea
| | - Juhee Choi
- Department of Life Science, University of Seoul, Seoul 130-743, Republic of Korea
| | - Han-Wook Ryu
- Department of Life Science, University of Seoul, Seoul 130-743, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul 130-743, Republic of Korea.
| |
Collapse
|
28
|
Falsone A, Falsone SF. Legal but lethal: functional protein aggregation at the verge of toxicity. Front Cell Neurosci 2015; 9:45. [PMID: 25741240 PMCID: PMC4332346 DOI: 10.3389/fncel.2015.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/30/2015] [Indexed: 12/21/2022] Open
Abstract
Many neurodegenerative disorders are linked to irreversible protein aggregation, a process that usually comes along with toxicity and serious cellular damage. However, it is emerging that protein aggregation can also serve for physiological purposes, as impressively shown for prions. While the aggregation of this protein family was initially considered exclusively toxic in mammalians organisms, it is now almost clear that many other proteins adopt prion-like attributes to rationally polymerize into higher order complexes with organized physiologic roles. This implies that cells can tolerate at least in some measure the accumulation of inherently dangerous protein aggregates for functional profit. This review summarizes currently known strategies that living organisms adopt to preserve beneficial aggregation, and to prevent the catastrophic accumulation of toxic aggregates that frequently accompany neurodegeneration.
Collapse
Affiliation(s)
- Angelika Falsone
- Institute of Pharmaceutical Sciences, University of Graz Graz, Austria
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz Graz, Austria
| |
Collapse
|
29
|
Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, Della Valle F, Borreca A, Manca A, Meli G, Ferraina C, Feligioni M, D'Aguanno S, Bussani R, Ammassari-Teule M, Nicolin V, Calissano P, Amadoro G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet 2015; 24:3058-81. [PMID: 25687137 DOI: 10.1093/hmg/ddv059] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/10/2015] [Indexed: 01/26/2023] Open
Abstract
Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance.
Collapse
Affiliation(s)
- V Corsetti
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy
| | - F Florenzano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Atlante
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - A Bobba
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - M T Ciotti
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Natale
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Della Valle
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Borreca
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Manca
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Meli
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - C Ferraina
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - M Feligioni
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - S D'Aguanno
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - R Bussani
- UCO Pathological Anatomy and Histopathology Unit, Cattinara Hospital Strada di Fiume 447, 34149 Trieste, Italy and
| | - M Ammassari-Teule
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - V Nicolin
- Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 449, 34149 Trieste, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Amadoro
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
30
|
Trehalose improves human fibroblast deficits in a new CHIP-mutation related ataxia. PLoS One 2014; 9:e106931. [PMID: 25259530 PMCID: PMC4178022 DOI: 10.1371/journal.pone.0106931] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/10/2014] [Indexed: 11/19/2022] Open
Abstract
In this work we investigate the role of CHIP in a new CHIP-mutation related ataxia and the therapeutic potential of trehalose. The patient's fibroblasts with a new form of hereditary ataxia, related to STUB1 gene (CHIP) mutations, and three age and sex-matched controls were treated with epoxomicin and trehalose. The effects on cell death, protein misfolding and proteostasis were evaluated. Recent studies have revealed that mutations in STUB-1 gene lead to a growing list of molecular defects as deregulation of protein quality, inhibition of proteasome, cell death, decreased autophagy and alteration in CHIP and HSP70 levels. In this CHIP-mutant patient fibroblasts the inhibition of proteasome with epoxomicin induced severe pathophysiological age-associated changes, cell death and protein ubiquitination. Additionally, treatment with epoxomicin produced a dose-dependent increase in the number of cleaved caspase-3 positive cells. However, co-treatment with trehalose, a disaccharide of glucose present in a wide variety of organisms and known as a autophagy enhancer, reduced these pathological events. Trehalose application also increased CHIP and HSP70 expression and GSH free radical levels. Furthermore, trehalose augmented macro and chaperone mediated autophagy (CMA), rising the levels of LC3, LAMP2, CD63 and increasing the expression of Beclin-1 and Atg5-Atg12. Trehalose treatment in addition increased the percentage of immunoreactive cells to HSC70 and LAMP2 and reduced the autophagic substrate, p62. Although this is an individual case based on only one patient and the statistical comparisons are not valid between controls and patient, the low variability among controls and the obvious differences with this patient allow us to conclude that trehalose, through its autophagy activation capacity, anti-aggregation properties, anti-oxidative effects and lack of toxicity, could be very promising for the treatment of CHIP-mutation related ataxia, and possibly a wide spectrum of neurodegenerative disorders related to protein disconformation.
Collapse
|
31
|
Watanabe S, Ageta-Ishihara N, Nagatsu S, Takao K, Komine O, Endo F, Miyakawa T, Misawa H, Takahashi R, Kinoshita M, Yamanaka K. SIRT1 overexpression ameliorates a mouse model of SOD1-linked amyotrophic lateral sclerosis via HSF1/HSP70i chaperone system. Mol Brain 2014; 7:62. [PMID: 25167838 PMCID: PMC4237944 DOI: 10.1186/s13041-014-0062-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 02/06/2023] Open
Abstract
Background Dominant mutations in superoxide dismutase 1 (SOD1) cause degeneration of motor neurons in a subset of inherited amyotrophic lateral sclerosis (ALS). The pathogenetic process mediated by misfolded and/or aggregated mutant SOD1 polypeptides is hypothesized to be suppressed by protein refolding. This genetic study is aimed to test whether mutant SOD1-mediated ALS pathology recapitulated in mice could be alleviated by overexpressing a longevity-related deacetylase SIRT1 whose substrates include a transcription factor heat shock factor 1 (HSF1), the master regulator of the chaperone system. Results We established a line of transgenic mice that chronically overexpress SIRT1 in the brain and spinal cord. While inducible HSP70 (HSP70i) was upregulated in the spinal cord of SIRT1 transgenic mice (PrP-Sirt1), no neurological and behavioral alterations were detected. To test hypothetical benefits of SIRT1 overexpression, we crossbred PrP-Sirt1 mice with two lines of ALS model mice: A high expression line that exhibits a severe phenotype (SOD1G93A-H) or a low expression line with a milder phenotype (SOD1G93A-L). The Sirt1 transgene conferred longer lifespan without altering the time of symptomatic onset in SOD1G93A-L. Biochemical analysis of the spinal cord revealed that SIRT1 induced HSP70i expression through deacetylation of HSF1 and that SOD1G93A-L/PrP-Sirt1 double transgenic mice contained less insoluble SOD1 than SOD1G93A-L mice. Parallel experiments showed that Sirt1 transgene could not rescue a more severe phenotype of SOD1G93A-H transgenic mice partly because their HSP70i level had peaked out. Conclusions The genetic supplementation of SIRT1 can ameliorate a mutant SOD1-linked ALS mouse model partly through the activation of the HSF1/HSP70i chaperone system. Future studies shall include testing potential benefits of pharmacological enhancement of the deacetylation activity of SIRT1 after the onset of the symptom.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Makoto Kinoshita
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikus, Nagoya 464-8601, Japan.
| | | |
Collapse
|
32
|
Budini M, Romano V, Quadri Z, Buratti E, Baralle FE. TDP-43 loss of cellular function through aggregation requires additional structural determinants beyond its C-terminal Q/N prion-like domain. Hum Mol Genet 2014; 24:9-20. [PMID: 25122661 PMCID: PMC4262490 DOI: 10.1093/hmg/ddu415] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TDP-43 aggregates are the neurohistological landmark of diseases like amyotrophic lateral sclerosis and frontotemporal dementia. Their role in the pathogenesis of these conditions is not yet clear mainly due to the lack of proper models of aggregation that may allow the study of the mechanism of formation, their interactions with other cellular components and their effect on the cell metabolism. In this work, we have used tandem repeats of the prion like Q/N-rich region of TAR DNA-binding protein (TDP-43) fused to additional TDP-43 protein sequences to trigger aggregate formation in neuronal and non-neuronal cell lines. At the functional level, these aggregates are able to sequester endogenous TDP-43 depleting its nuclear levels and inducing loss of function at the pre-mRNA splicing level. No apparent direct cellular toxicity of the aggregates seems to be present beyond the lack of functional TDP-43. To our knowledge, this is the only system that achieves full functional TDP 43 depletion with effects similar to RNAi depletion or gene deletion. As a result, this model will prove useful to investigate the loss-of-function effects mediated by TDP-43 aggregation within cells without affecting the expression of the endogenous gene. We have identified the N-terminus sequence of TDP-43 as the domain that enhances its interaction with the aggregates and its insolubilization. These data show for the first time that cellular TDP-43 aggregation can lead to total loss of function and to defective splicing of TDP-43-dependent splicing events in endogenous genes.
Collapse
Affiliation(s)
- Mauricio Budini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy
| | - Valentina Romano
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy
| | - Zainuddin Quadri
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy
| | - Francisco E Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy
| |
Collapse
|
33
|
iTRAQ-based quantitative proteomics study on the neuroprotective effects of extract of Acanthopanax senticosus harm on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neurochem Int 2014; 72:37-47. [DOI: 10.1016/j.neuint.2014.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 01/10/2023]
|
34
|
Du B, Zhang Z, Li N. Madecassoside prevents Aβ25–35-induced inflammatory responses and autophagy in neuronal cells through the class III PI3K/Beclin-1/Bcl-2 pathway. Int Immunopharmacol 2014; 20:221-8. [DOI: 10.1016/j.intimp.2014.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 02/07/2023]
|
35
|
The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton. Int J Alzheimers Dis 2013; 2013:910502. [PMID: 24416616 PMCID: PMC3876695 DOI: 10.1155/2013/910502] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/07/2013] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic dystrophy remain unclear. Mounting evidence indicates that the AD-causative agent, β-amyloid protein (Aβ), induces neuritic dystrophy. Indeed, neuritic dystrophy is commonly found decorating Aβ-rich amyloid plaques (APs) in the AD brain. Furthermore, disruption and degeneration of the neuronal microtubule system in neurons forming dystrophic neurites may occur as a consequence of Aβ-mediated downstream signaling. This review defines potential molecular pathways, which may be modulated subsequent to Aβ-dependent interactions with the neuronal membrane as a consequence of increasing amyloid burden in the brain.
Collapse
|
36
|
Sonia Angeline M, Sarkar A, Anand K, Ambasta R, Kumar P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 2013; 254:379-94. [DOI: 10.1016/j.neuroscience.2013.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 01/05/2023]
|
37
|
Shi CH, Schisler JC, Rubel CE, Tan S, Song B, McDonough H, Xu L, Portbury AL, Mao CY, True C, Wang RH, Wang QZ, Sun SL, Seminara SB, Patterson C, Xu YM. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet 2013; 23:1013-24. [PMID: 24113144 DOI: 10.1093/hmg/ddt497] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder characterized by ataxia and hypogonadism. Recently, it was suggested that disordered ubiquitination underlies GHS though the discovery of exome mutations in the E3 ligase RNF216 and deubiquitinase OTUD4. We performed exome sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and identified a homozygous mutation in STUB1 (NM_005861) c.737C→T, p.Thr246Met, a gene that encodes the protein CHIP (C-terminus of HSC70-interacting protein). CHIP plays a central role in regulating protein quality control, in part through its ability to function as an E3 ligase. Loss of CHIP function has long been associated with protein misfolding and aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS can be caused by a loss-of-function mutation in CHIP. Our findings further highlight the role of disordered ubiquitination and protein quality control in the pathogenesis of neurodegenerative disease and demonstrate the utility of combining whole-exome sequencing with molecular analyses and animal models to define causal disease polymorphisms.
Collapse
Affiliation(s)
- Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gillingwater TH, Wishart TM. Mechanisms underlying synaptic vulnerability and degeneration in neurodegenerative disease. Neuropathol Appl Neurobiol 2013; 39:320-34. [PMID: 23289367 DOI: 10.1111/nan.12014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/21/2012] [Indexed: 02/06/2023]
Abstract
Recent developments in our understanding of events underlying neurodegeneration across the central and peripheral nervous systems have highlighted the critical role that synapses play in the initiation and progression of neuronal loss. With the development of increasingly accurate and versatile animal models of neurodegenerative disease it has become apparent that disruption of synaptic form and function occurs comparatively early, preceding the onset of degenerative changes in the neuronal cell body. Yet, despite our increasing awareness of the importance of synapses in neurodegeneration, the mechanisms governing the particular susceptibility of distal neuronal processes are only now becoming clear. In this review we bring together recent developments in our understanding of cellular and molecular mechanisms regulating synaptic vulnerability. We have placed a particular focus on three major areas of research that have gained significant interest over the last few years: (i) the contribution of synaptic mitochondria to neurodegeneration; (ii) the contribution of pathways that modulate synaptic function; and (iii) regulation of synaptic degeneration by local posttranslational modifications such as ubiquitination. We suggest that targeting these organelles and pathways may be a productive way to develop synaptoprotective strategies applicable to a range of neurodegenerative conditions.
Collapse
Affiliation(s)
- T H Gillingwater
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
39
|
Margolin DH, Kousi M, Chan YM, Lim ET, Schmahmann JD, Hadjivassiliou M, Hall JE, Adam I, Dwyer A, Plummer L, Aldrin SV, O'Rourke J, Kirby A, Lage K, Milunsky A, Milunsky JM, Chan J, Hedley-Whyte ET, Daly MJ, Katsanis N, Seminara SB. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Engl J Med 2013; 368:1992-2003. [PMID: 23656588 PMCID: PMC3738065 DOI: 10.1056/nejmoa1215993] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The combination of ataxia and hypogonadism was first described more than a century ago, but its genetic basis has remained elusive. METHODS We performed whole-exome sequencing in a patient with ataxia and hypogonadotropic hypogonadism, followed by targeted sequencing of candidate genes in similarly affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase and a deubiquitinase, respectively, were found in three affected siblings in a consanguineous family. Additional screening identified compound heterozygous truncating mutations in RNF216 in an unrelated patient and single heterozygous deleterious mutations in four other patients. Knockdown of rnf216 or otud4 in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil genetic interactions that cause disease. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- David H Margolin
- Department of Neurology, Massachusetts General Hospital, Boston 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Su L, Zhang Y, Zhang CY, Zhang AL, Mei XL, Zhao ZJ, Han JG, Zhao LJ. Genetic screening for mutations in the chip gene in intracranial aneurysm patients of Chinese Han nationality. Asian Pac J Cancer Prev 2013; 14:1687-9. [PMID: 23679257 DOI: 10.7314/apjcp.2013.14.3.1687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We performed a case-control study to investigate whether SNPs of CHIP might affect the development of IA in Chinese Han nationality. We believe we are the first to have screened IA patients for mutations in the CHIP gene to determine the association with these variants. The study group comprised 224 Chinese Han nationality patients with at least one intracranial aneurysm and 238 unrelated healthy Han nationality controls. Genomic DNA was isolated from blood leukocytes. The entire coding regions of CHIP were genotyped by PCR amplification and DNA sequencing. Differences in genotype and allele frequencies between patients and controls were tested by the chi-square method. Genotype and allele frequencies of the SNP rs116166850 was demonstrated to be in Hardy-Weinberg equilibrium. No significant difference in genotype or allele frequencies between case and control groups was detected at the SNP. Our data do not support the hypothesis of a major role for the CHIP gene in IA development in the Chinese Han population.
Collapse
Affiliation(s)
- Li Su
- Department of Neurosurgery, the First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Su Y, Duan J, Ying Z, Hou Y, Zhang Y, Wang R, Deng Y. Increased vulnerability of parkin knock down PC12 cells to hydrogen peroxide toxicity: the role of salsolinol and NM-salsolinol. Neuroscience 2013; 233:72-85. [PMID: 23291452 DOI: 10.1016/j.neuroscience.2012.12.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/21/2022]
Abstract
Dopamine-derived neurotoxins, 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) and 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (NM-salsolinol) are the two most possible 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like endogenous neurotoxin candidates that involved in the pathogenesis of Parkinson's disease (PD). The levels of endogenously synthesized salsolinol and NM-salsolinol are increased in the cerebrospinal fluid (CSF) of PD patients. Both of them lead to neurotoxicity in dopaminergic cells by inhibiting mitochondrial electron transport chain. To study the role of salsolinol and NM-salsolinol in Parkin deficiency-induced dopaminergic cell damage, we determined the cellular level of oxidative stress, the formation of salsolinol and NM-salsolinol, the level of mitochondrial damage and cell viability with/without the presence of exogenous H₂O₂ using differentiated dopaminergic PC12 cells. Our data show that parkin knock down elevates cellular oxidative stress, salsolinol and NM-salsolinol levels, which are responsible for the higher cell mortality in Parkin-deficient cells upon exposure to exogenous H₂O₂. The level of mitochondrial membrane potential loss, cristae disruption and the release of cytochrome c increased significantly along with the increased level of salsolinol and NM-salsolinol, whereas compared to parkin knock down cells in the presence of H₂O₂, the mitochondrial damage and higher cell mortality were both diminished when the levels of salsolinol and NM-salsolinol was reduced. The results not only indicate the elevated level of salsolinol and NM-salsolinol, but also reveal the potential role of salsolinol and NM-salsolinol in parkin knock down-induced cell vulnerability. We assume that parkin deficiency is the trigger of excessive oxidative stress, elevated endogenous neurotoxin levels and mitochondrial damage, which eventually results in cell death of dopaminergic cells.
Collapse
Affiliation(s)
- Yang Su
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.
Collapse
|
43
|
Liu Z, Taylor A, Liu Y, Wu M, Gong X, Shang F. Enhancement of ubiquitin conjugation activity reduces intracellular aggregation of V76D mutant γD-crystallin. Invest Ophthalmol Vis Sci 2012; 53:6655-65. [PMID: 22915036 PMCID: PMC3460391 DOI: 10.1167/iovs.12-9744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/19/2012] [Accepted: 08/16/2012] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The ubiquitin-proteasome pathway (UPP) is an important protein quality control mechanism for selective degradation of abnormal proteins. The objective of this study was to test the hypothesis that enhancement of the UPP capacity could attenuate the accumulation and aggregation of misfolded proteins using V76D-γD-crystallin as a model substrate. METHODS Wild type (wt) and V76D mutant γD-crystallin were fused to red fluorescence protein (RFP) and expressed in human lens epithelial cells. The cellular distribution of the expressed proteins was compared by fluorescence microscopy. The solubility of wt- and V76D-γD-crystallin was determined by cellular fractionation and Western blotting. Wt-γD-RFP and V76D-γD-RFP were also cotransfected along with a ubiquitin ligase (CHIP) or a ubiquitin-conjugating enzyme (Ubc5) into cells. Levels of wt- and V76D-γD-crystallin, the percentage of transfected cells with aggregates, and aggregate size were quantified and compared among different groups. RESULTS Wt-γD-crystallin was evenly distributed in cells, whereas V76D-γD-crystallin formed intracellular aggregates. Eighty percent of wt-γD-crystallin was detected in the soluble fraction, whereas only 7% of V76D-γD-crystallin was soluble. CHIP or Ubc5 coexpression reduced the protein level of V76D-γD and concomitantly its aggregation in transfected cells; these effects could be attenuated by proteasome inhibitor. Mutant CHIP with defect TPR (tetratricopeptide repeat) or U-box domain failed to reduce levels of V76D-γD-crystallin. CONCLUSIONS Enhancing ubiquitin conjugation activity reduces accumulation and aggregation of V76D-γD-crystallin by promoting its degradation. Upregulation of ubiquitin-conjugating activity could be an effective strategy to maintain lens transparency by eliminating other forms of misfolded proteins.
Collapse
Affiliation(s)
- Zhenzhen Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Yizhi Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
| | - Mingxing Wu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California
| | - Fu Shang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| |
Collapse
|
44
|
Sonia Angeline M, Chaterjee P, Anand K, Ambasta RK, Kumar P. Rotenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat. Neuroscience 2012; 220:291-301. [PMID: 22710069 DOI: 10.1016/j.neuroscience.2012.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 02/07/2023]
Abstract
Rotenone is a pesticide that inhibits mitochondrial complex I activity, thus creating an environment of oxidative stress in the cell. Many studies have employed rotenone to generate an experimental animal model of Parkinson's disease (PD) that mimics and elicits PD-like symptoms, such as motor and cognitive decline. Cytoprotective proteins including parkin and heat shock proteins (HSPs) play major roles in slowing PD progression. Moreover, evidence suggests that mitochondrial dysfunction and oxidative stress-dependent apoptotic pathways contribute to dopaminergic neuron degeneration in PD. Here, rats were chronically exposed to rotenone to confirm that it causes a debilitating phenotype and various behavioral defects. We also performed histopathological examinations of nigrostriatal, cortical and cerebellar regions of rotenone-treated brain to elucidate a plausible neurodegenerative mechanism. The results of silver, tyrosine hydroxylase (TH), parkin, ubiquitin and caspase staining of brain tissue sections further validated our findings. The stress response is known to trigger HSP in response to pharmacological insult. These protective proteins help maintain cellular homeostasis and may be capable of rescuing cells from death. Therefore, we assessed the levels of different HSPs in the rotenone-treated animals. Collectively, our studies indicated the following findings in the striatum and substantia nigra following chronic rotenone exposure in an experimental PD model: (i) behavioral deficit that correlated with histopathological changes and down regulation of TH signaling, (ii) decreased levels of the cytoprotective proteins parkin, DJ1 and Hsp70 and robust expression of mitochondrial chaperone Hsp60 according to Western blot, (iii) increased immunoreactivity for caspase 9, caspase 3 and ubiquitin and decreased parkin immunoreactivity.
Collapse
Affiliation(s)
- M Sonia Angeline
- Functional Genomics and Cancer Biology Laboratory, Center for Medical Engineering, Vellore Institute of Technology, Vellore, TN 632014, India
| | | | | | | | | |
Collapse
|
45
|
Pashkov BM. [Peculiarities of the clinical picture of some dermatoses localized in the buccal mucosa]. Exp Cell Res 1970; 353:46-53. [PMID: 28279658 PMCID: PMC5381905 DOI: 10.1016/j.yexcr.2017.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/22/2017] [Accepted: 03/04/2017] [Indexed: 01/14/2023]
|