1
|
Delgado-Ramírez M, López-Serrano AL, Rodríguez-Menchaca AA. Inhibition of Kv2.1 potassium channels by the antidepressant drug sertraline. Eur J Pharmacol 2024; 970:176487. [PMID: 38458411 DOI: 10.1016/j.ejphar.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In this study, we have used the patch-clamp technique to assess the effects of sertraline on Kv2.1 channels heterologously expressed in HEK-293 cells and on the voltage-gated potassium currents (IKv) of Neuro 2a cells, which are predominantly mediated by Kv2.1 channels. Our results reveal that sertraline inhibits Kv2.1 channels in a concentration-dependent manner. The sertraline-induced inhibition was not voltage-dependent and did not require the channels to be open. The kinetics of activation and deactivation were accelerated and decelerated, respectively, by sertraline. Moreover, the inhibition by this drug was use-dependent. Notably, sertraline significantly modified the inactivation mechanism of Kv2.1 channels; the steady-state inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was enhanced and accelerated, and the recovery from inactivation was slowed, suggesting that this is the main mechanism by which sertraline inhibits Kv2.1 channels. Overall, this study provides novel insights into the pharmacological actions of sertraline on Kv2.1 channels, shedding light on the intricate interaction between SSRIs and ion channel function.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico.
| | - Ana Laura López-Serrano
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| |
Collapse
|
2
|
Marinho LSR, Chiarantin GMD, Ikebara JM, Cardoso DS, de Lima-Vasconcellos TH, Higa GSV, Ferraz MSA, De Pasquale R, Takada SH, Papes F, Muotri AR, Kihara AH. The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Semin Cell Dev Biol 2023; 144:67-76. [PMID: 36115764 DOI: 10.1016/j.semcdb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. In utero exposure to selective serotonin reuptake inhibitors (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids - self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental animal models for testing drug efficacy and side effects. For example, single-cell RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the transcriptome and neuronal activity signatures in developing neurons. While the analysis of large-scale transcriptomic data depends on dimensionality reduction methods, electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.
Collapse
Affiliation(s)
| | | | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | | | - Guilherme Shigueto Vilar Higa
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil; Department of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, São Paulo, SP 05508-000, Brazil
| | | | - Roberto De Pasquale
- Department of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, São Paulo, SP 05508-000, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Fabio Papes
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil; Center for Medicinal Chemistry, University of Campinas, Campinas, SP 13083-875, Brazil; Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037, USA.
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil.
| |
Collapse
|
3
|
van der Vinne N, Vollebregt MA, Rush AJ, Eebes M, van Putten MJAM, Arns M. EEG biomarker informed prescription of antidepressants in MDD: a feasibility trial. Eur Neuropsychopharmacol 2021; 44:14-22. [PMID: 33509659 DOI: 10.1016/j.euroneuro.2020.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022]
Abstract
Using pre-treatment biomarkers to guide patients to the preferred antidepressant medication treatment could be a promising approach to enhance its current modest response and remission rates. This open-label prospective study assessed the feasibility of using such pre-treatment biomarkers, by using previously identified EEG features (paroxysmal activity; alpha peak frequency; frontal alpha asymmetry) to inform the clinician in selecting among three different antidepressants (ADs; escitalopram, sertraline, venlafaxine) as compared to Treatment As Usual (TAU). EEG data were obtained from 195 outpatients with major depressive disorder prior to eight weeks of AD treatment. Primary outcome measure was the percentage change between before and after treatment on the Beck Depression Inventory-II (BDI-II). We compared TAU and EEG-informed prescription through AN(C)OVAs. Recruitment started with patients receiving TAU to establish baseline effectiveness, after which we recruited patients receiving EEG-informed prescription. 108 patients received EEG-informed prescription and 87 patients received TAU. Clinicians and patients were satisfied with the protocol. Overall, 70 (65%) of the EEG-informed clinicians followed recommendations (compared to 52 (60%) following prescriptions in the TAU group), establishing feasibility. We here confirm that treatment allocation informed by EEG variables previously reported in correlational studies, was feasible.
Collapse
Affiliation(s)
- Nikita van der Vinne
- Synaeda Psycho Medisch Centrum, Leeuwarden, the Netherlands; Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands; Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| | - Madelon A Vollebregt
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands
| | - A John Rush
- National University of Singapore, Singapore; Duke University School of Medicine, Durham, NC, USA; Texas Tech Health Sciences Center, Odessa, TX, USA
| | - Michiel Eebes
- Synaeda Psycho Medisch Centrum, Leeuwarden, the Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, Enschede, the Netherlands; Department of Clinical Neurophysiology and Neurology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Neurological Disorders and Risk of Arrhythmia. Int J Mol Sci 2020; 22:ijms22010188. [PMID: 33375447 PMCID: PMC7795827 DOI: 10.3390/ijms22010188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023] Open
Abstract
Neurological disorders including depression, anxiety, post-traumatic stress disorder (PTSD), schizophrenia, autism and epilepsy are associated with an increased incidence of cardiovascular disorders and susceptibility to heart failure. The underlying molecular mechanisms that link neurological disorders and adverse cardiac function are poorly understood. Further, a lack of progress is likely due to a paucity of studies that investigate the relationship between neurological disorders and cardiac electrical activity in health and disease. Therefore, there is an important need to understand the spatiotemporal behavior of neurocardiac mechanisms. This can be advanced through the identification and validation of neurological and cardiac signaling pathways that may be adversely regulated. In this review we highlight how dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system (ANS) activity and inflammation, predispose to psychiatric disorders and cardiac dysfunction. Moreover, antipsychotic and antidepressant medications increase the risk for adverse cardiac events, mostly through the block of the human ether-a-go-go-related gene (hERG), which plays a critical role in cardiac repolarization. Therefore, understanding how neurological disorders lead to adverse cardiac ion channel remodeling is likely to have significant implications for the development of effective therapeutic interventions and helps improve the rational development of targeted therapeutics with significant clinical implications.
Collapse
|
5
|
Toniolo S, Di Lorenzo F, Bozzali M, Yogarajah M. The impact of lacosamide on mood disorders in adult patients with epilepsy: A systematic review. Epilepsy Behav 2020; 111:107179. [PMID: 32534419 DOI: 10.1016/j.yebeh.2020.107179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023]
Abstract
Mood disorders such as depression and anxiety have a high prevalence in adult patients with epilepsy, and their evaluation is crucial in choosing the most appropriate antiepileptic drug (AED) with regard to side effects, which can account for long-term discontinuation, poor compliance, and ultimately, failure of seizure control. While more evidence is provided for older AEDs on their effect on mood changes, newer AEDs such as lacosamide have not yet been extensively studied. We performed a systematic review of the literature available on the impact of lacosamide on mood in adult patients with epilepsy. A literature search on MEDLINE, COCHRANE, Scielo, and Clinicaltrials.gov databases was performed, and articles where mood scales where specifically reported as primary or secondary outcome measures were included. Articles differed greatly in terms of inclusion criteria, concomitant AEDs, seizure reduction control, and outcome measures. If lacosamide is used as add-on, two studies point towards a beneficial effect on depressive and anxiety symptoms, two studies claim no effects on mood, and one reports a positive effect only in patients with major depressive symptoms at baseline. Additional evidence from either retrospective or comparative drug studies indicates no effects of lacosamide on mood. Even though presently, a negative effect on mood seems unlikely, whether lacosamide could exert a beneficial impact on mood remains controversial. Multicenter, randomized, controlled, double-blind studies are needed to assess the impact on lacosamide on mood disorders, given the low evidence level (Class III and IV) of currently available studies.
Collapse
Affiliation(s)
- Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.
| | - Francesco Di Lorenzo
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Non-invasive Brain Stimulation Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy; Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Mahinda Yogarajah
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Neuroscience Research Centre, St. George's University of London, London, UK
| |
Collapse
|
6
|
|
7
|
Brennecke A, Weaver DF. Anticonvulsant effects of sertraline: a case report. Seizure 2020; 80:1-2. [DOI: 10.1016/j.seizure.2020.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
|
8
|
Abbas R, Riley S, LaBadie RR, Bachinsky M, Chappell PB, Crownover PH, Damle B. A Thorough QT Study to Evaluate the Effects of a Supratherapeutic Dose of Sertraline on Cardiac Repolarization in Healthy Subjects. Clin Pharmacol Drug Dev 2020; 9:307-320. [PMID: 31777203 PMCID: PMC7187253 DOI: 10.1002/cpdd.749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023]
Abstract
The effect of steady-state supratherapeutic sertraline (Zoloft) on QT interval was assessed in a single-center, randomized, 3-way crossover, double-blind, placebo- and moxifloxacin-controlled thorough QT study. Healthy adults received sertraline 400 mg/day, moxifloxacin 400 mg, and placebo, with a washout period (≥14 days) between treatments. A 12-lead electrocardiogram was recorded in triplicate before dosing and at selected time points up to 72 hours after dosing. Analysis of covariance using a mixed-effect model with sequence, period, treatment, time, and treatment-by-time interaction as fixed effects; subject within sequence as a random effect; and baseline QT corrected for heart rate using Fridericia formula (QTcF) as a covariate was conducted. A 90% confidence interval for the least squares (LS) mean difference in QTcF between active treatment and placebo was computed for each postdose time point. Exposure-response was assessed using linear mixed-effect modeling. Fifty-four subjects were enrolled. Over 24 hours after dosing, the LS mean difference in QTcF for sertraline versus placebo ranged from 5.597 milliseconds to 9.651 milliseconds. The upper bound of the 90% confidence interval for the LS mean difference exceeded a predefined 10-millisecond significance threshold at the 4-hour postdose time point only (LS mean, 9.651 milliseconds [90% confidence interval, 7.635-11.666]). In the exposure-response analysis, QTcF values increased significantly with increasing sertraline concentration (slope = 0.036 milliseconds/ng/mL; P < .0001). Predicted change from baseline in QTcF at therapeutic maximum plasma sertraline concentration was 3.57 milliseconds. This thorough QTc study demonstrated a positive signal for QTc prolongation for sertraline at the steady-state 400-mg/day dose.
Collapse
Affiliation(s)
- Richat Abbas
- Clinical PharmacologyPfizer Essential HealthPfizer IncCollegevillePennsylvaniaUSA
| | - Steve Riley
- Clinical PharmacologyPfizer IncGrotonConnecticutUSA
| | | | - Mary Bachinsky
- CNS Clinical AffairsPfizer Essential HealthPfizer IncNew YorkNew YorkUSA
| | | | | | - Bharat Damle
- Clinical PharmacologyPfizer IncNew YorkNew YorkUSA
| |
Collapse
|
9
|
Abstract
Selective serotonin reuptake inhibitor (SSRI) drugs, targeting serotonin transport, are widely used. A puzzling and biomedically important phenomenon concerns the persistent sexual dysfunction following SSRI use seen in some patients. What could be the mechanism of a persistent physiological state brought on by a transient exposure to serotonin transport blockers? In this study, we briefly review the clinical facts concerning this side effect of serotonin reuptake inhibitors and suggest a possible mechanism. Bioelectric circuits (among neural or non-neural cells) could persistently maintain alterations of bioelectric cell properties (resting potential), resulting in long-term changes in electrophysiology and signaling. We present new data revealing this phenomenon in planarian flatworms, in which brief SSRI exposures induce long-lasting changes in resting potential profile. We also briefly review recent data linking neurotransmitter signaling to developmental bioelectrics. Further study of tissue bioelectric memory could enable the design of ionoceutical interventions to counteract side effects of SSRIs and similar drugs.
Collapse
Affiliation(s)
- David Healy
- Hergest Unit, Department of Psychiatry, Bangor University, Bangor, Wales
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| |
Collapse
|
10
|
Bérard A, Levin M, Sadler T, Healy D. Selective Serotonin Reuptake Inhibitor Use During Pregnancy and Major Malformations: The Importance of Serotonin for Embryonic Development and the Effect of Serotonin Inhibition on the Occurrence of Malformations. Bioelectricity 2019; 1:18-29. [PMID: 34471805 DOI: 10.1089/bioe.2018.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bioelectric signaling is transduced by neurotransmitter pathways in many cell types. One of the key mediators of bioelectric control mechanisms is serotonin, and its transporter SERT, which is targeted by a broad class of blocker drugs (selective serotonin reuptake inhibitors [SSRIs]). Studies showing an increased risk of multiple malformations associated with gestational use of SSRI have been accumulating but debate remains on whether SSRI as a class has the potential to generate these malformations. This review highlights the importance of serotonin for embryonic development; the effect of serotonin inhibition during early pregnancy on the occurrence of multiple diverse malformations that have been shown to occur in human pregnancies; that the risks outweigh the benefits of SSRI use during gestation in populations of mild to moderately depressed pregnant women, which encompass the majority of pregnant depressed women; and that the malformations seen in human pregnancies constitute a pattern of malformations consistent with the known mechanisms of action of SSRIs. We present at least three mechanisms by which SSRI can affect development. These studies highlight the relevance of basic bioelectric and neurotransmitter mechanism for biomedicine.
Collapse
Affiliation(s)
- Anick Bérard
- Faculty of Pharmacy, University of Montreal; Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology, Medford, Massachusetts
| | - Thomas Sadler
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah
| | - David Healy
- Department of Psychiatry, Hergest Unit, Bangor, United Kingdom
| |
Collapse
|
11
|
Frizzo ME. Can a Selective Serotonin Reuptake Inhibitor Act as a Glutamatergic Modulator? Curr Ther Res Clin Exp 2017; 87:9-12. [PMID: 28912901 PMCID: PMC5583143 DOI: 10.1016/j.curtheres.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 01/05/2023] Open
Abstract
Sertraline (Zoloft) and fluoxetine (Prozac) are selective serotonin reuptake inhibitors whose antidepressant mechanism of action is classically attributed to an elevation of the extracellular levels of serotonin in the synaptic cleft. However, the biological effects of these drugs seem to be more complex than their traditionally described mechanism of action. Among their actions is the inhibition of different types of Na+ and K+ channels, as well as of glutamate uptake activity. The clearance of extracellular glutamate is essential to maintain the central nervous system within physiological conditions, and this excitatory neurotransmitter is removed from the synaptic cleft by astrocyte transporters. This transport depends upon a hyperpolarized membrane potential in astrocytes that is mainly maintained by Kir4.1 K+ channels. The impairment of the Kir4.1 channel activity reduces driving force for the glutamate transporter, resulting in an accumulation of extracellular glutamate. It has been shown that sertraline and fluoxetine inhibit Kir4.1 K+ channels. Recently, we demonstrated that sertraline reduces glutamate uptake in human platelets, which contain a high-affinity Na+-dependent glutamate uptake system, with kinetic and pharmacological properties similar to astrocytes in the central nervous system. Considering these similarities between human platelets and astrocytes, one might ask if sertraline could potentially reduce glutamate clearance in the synaptic cleft and consequently modulate glutamatergic transmission. This possibility merits investigation, since it may provide additional information regarding the mechanism of action and perhaps the side effects of these antidepressants.
Collapse
Affiliation(s)
- Marcos Emilio Frizzo
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500. CEP 90050-170, Porto Alegre, Brazil
| |
Collapse
|
12
|
Abstract
Toxicity attributed to sertraline has been demonstrated recently in different cell types and also in some organisms. We investigated the effect of sertraline on planarians, which are considered suitable for investigations in neurotoxicology and currently are widely used as an animal model in neuropharmacological studies. Planarians treated with 10 µM sertraline showed a rapid reduction in their spontaneous movement until they became completely motionless and then showed a series of asynchronous paroxysms (seizures) followed by progressive tissue damage, beginning 48 h after the sertraline treatment, and died approximately 72 h later. Our data showed that sertraline does not cause planarian death within the range of therapeutic concentrations; however, behavioral alterations were observed with concentrations that can be considered compatible with therapeutic ones, such as a significant reduction in planarian locomotory activity at 0.4 µM. Treatment with 4 µM sertraline had a significant effect, reducing planarian locomotory activity and increasing the number of asynchronous paroxysms; both effects were significantly maintained even 24 h after the sertraline was withdrawn. These behavioral changes observed at low micromolar concentrations suggest that sertraline might have residual biological consequences for planarians, even after it is withdrawn.
Collapse
|
13
|
Eugene AR, Masiak J. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging. INTERNATIONAL JOURNAL OF CLINICAL PHARMACOLOGY & TOXICOLOGY 2016; 5:216-219. [PMID: 27468379 PMCID: PMC4959607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. METHODS A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). RESULTS At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. CONCLUSION Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants.
Collapse
Affiliation(s)
- Andy R. Eugene
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Gonda 19, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jolanta Masiak
- Neurophysiology Laboratory, Medical University of Lublin, ul. Gluska 1 (SPSK Nr 1), Lublin 20-439, Poland
| |
Collapse
|
14
|
Lee HM, Hahn SJ, Choi BH. Blockade of Kv1.5 channels by the antidepressant drug sertraline. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:193-200. [PMID: 26937216 PMCID: PMC4770110 DOI: 10.4196/kjpp.2016.20.2.193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 11/15/2022]
Abstract
Sertraline, a selective serotonin reuptake inhibitor (SSRI), has been reported to lead to cardiac toxicity even at therapeutic doses including sudden cardiac death and ventricular arrhythmia. And in a SSRI-independent manner, sertraline has been known to inhibit various voltage-dependent channels, which play an important role in regulation of cardiovascular system. In the present study, we investigated the action of sertraline on Kv1.5, which is one of cardiac ion channels. The eff ect of sertraline on the cloned neuronal rat Kv1.5 channels stably expressed in Chinese hamster ovary cells was investigated using the whole-cell patch-clamp technique. Sertraline reduced Kv1.5 whole-cell currents in a reversible concentration-dependent manner, with an IC 50 value and a Hill coefficient of 0.71 µM and 1.29, respectively. Sertraline accelerated the decay rate of inactivation of Kv1.5 currents without modifying the kinetics of current activation. The inhibition increased steeply between -20 and 0 mV, which corresponded with the voltage range for channel opening. In the voltage range positive to +10 mV, inhibition displayed a weak voltage dependence, consistent with an electrical distance δ of 0.16. Sertraline slowed the deactivation time course, resulting in a tail crossover phenomenon when the tail currents, recorded in the presence and absence of sertraline, were superimposed. Inhibition of Kv1.5 by sertraline was use-dependent. The present results suggest that sertraline acts on Kv1.5 currents as an open-channel blocker.
Collapse
Affiliation(s)
- Hyang Mi Lee
- Department of Pharmacology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54097, Korea
| | - Sang June Hahn
- Department of Physiology, Medical Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Bok Hee Choi
- Department of Pharmacology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54097, Korea
| |
Collapse
|
15
|
Sitges M, Aldana BI, Reed RC. Effect of the Anti-depressant Sertraline, the Novel Anti-seizure Drug Vinpocetine and Several Conventional Antiepileptic Drugs on the Epileptiform EEG Activity Induced by 4-Aminopyridine. Neurochem Res 2016; 41:1365-74. [PMID: 26830290 DOI: 10.1007/s11064-016-1840-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/25/2022]
Abstract
Seizures are accompanied by an exacerbated activation of cerebral ion channels. 4-aminopyridine (4-AP) is a pro-convulsive agent which mechanism of action involves activation of Na(+) and Ca(2+) channels, and several antiepileptic drugs control seizures by reducing these channels permeability. The antidepressant, sertraline, and the anti-seizure drug vinpocetine are effective inhibitors of cerebral presynaptic Na(+) channels. Here the effectiveness of these compounds to prevent the epileptiform EEG activity induced by 4-AP was compared with the effectiveness of seven conventional antiepileptic drugs. For this purpose, EEG recordings before and at three intervals within the next 30 min following 4-AP (2.5 mg/kg, i.p.) were taken in anesthetized animals; and the EEG-highest peak amplitude values (HPAV) calculated. In control animals, the marked increase in the EEG-HPAV observed near 20 min following 4-AP reached its maximum at 30 min. Results show that this epileptiform EEG activity induced by 4-AP is prevented by sertraline and vinpocetine at a dose of 2.5 mg/kg, and by carbamazepine, phenytoin, lamotrigine and oxcarbazepine at a higher dose (25 mg/kg). In contrast, topiramate (25 mg/kg), valproate (100 mg/kg) and levetiracetam (100 mg/kg) failed to prevent the epileptiform EEG activity induced by 4-AP. It is concluded that 4-AP is a useful tool to elicit the mechanism of action of anti-seizure drugs at clinical meaningful doses. The particular efficacy of sertraline and vinpocetine to prevent seizures induced by 4-AP is explained by their high effectiveness to reduce brain presynaptic Na(+) and Ca(2+) channels permeability.
Collapse
Affiliation(s)
- Maria Sitges
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, Ciudad Universitaria, 04510, Mexico, DF, Mexico.
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronald Charles Reed
- Department of Pharmacy Practice, Husson University, One College Circle, Bangor, ME, 04401-2999, USA
| |
Collapse
|
16
|
Effects of Levetiracetam, Carbamazepine, Phenytoin, Valproate, Lamotrigine, Oxcarbazepine, Topiramate, Vinpocetine and Sertraline on Presynaptic Hippocampal Na(+) and Ca(2+) Channels Permeability. Neurochem Res 2015; 41:758-69. [PMID: 26542150 DOI: 10.1007/s11064-015-1749-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
Ion channels are targets of various antiepileptic drugs. In cerebral presynaptic nerve endings Na(+) and Ca(2+) channels are particularly abundant, as they control neurotransmitter release, including the release of glutamate (Glu), the most concentrated excitatory amino acid neurotransmitter in the brain. Several pre-synaptic channels are implicated in the mechanism of action of the pro-convulsive agent, 4-aminopyridine (4-AP). In the present study the effects of levetiracetam and other established and newer (vinpocetine) anti-epileptic drugs, as well as of the anti-depressant, sertraline on the increase in Ca(2+) induced by 4-AP in hippocampal isolated nerve endings were investigated. Also the effects of some of the anti-seizure drugs on the selective increase in Ca(2+) induced by high K(+), or on the selective increase in Na(+) induced by veratridine were tested. Sertraline and vinpocetine effectively inhibited the rise in Ca(2+) induced by 4-AP, which was dependent on the out-in Na(+) gradient and tetrodotoxin sensitive. Carbamazepine, phenytoin, lamotrigine and oxcarbazepine inhibited the rise in Ca(2+) induced by 4-AP too, but at higher concentrations than sertraline and vinpocetine, whereas levetiracetam, valproic acid and topiramate did not. The three latter antiepileptic drugs also failed in modifying other responses mediated by the activation of brain presynaptic Na(+) or Ca(2+) channels, including Glu release. This indicates that levetiracetam, valproic acid and topiramate mechanisms of action are unrelated with a decrease in presynaptic Na(+) or Ca(2+) channels permeability. It is concluded that depolarized cerebral isolated nerve endings represent a useful tool to unmask potential antiepileptic drugs targeting presynaptic Na(+) and/or Ca(2+) channels in the brain; such as vinpocetine or the anti-depressant sertraline, which high effectiveness to control seizures in the animal in vivo has been demonstrated.
Collapse
|
17
|
Rodrigues DO, Bristot IJ, Klamt F, Frizzo ME. Sertraline reduces glutamate uptake in human platelets. Neurotoxicology 2015; 51:192-7. [PMID: 26529290 DOI: 10.1016/j.neuro.2015.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
Mitochondrial damage and declines in ATP levels have been recently attributed to sertraline. The effects of sertraline on different parameters were investigated in washed platelets from 18 healthy male volunteers, after 24h of drug exposure. Sertraline toxicity was observed only at the highest concentrations, 30 and 100 μM, which significantly reduced platelet viability to 76 ± 3% and 20 ± 2%, respectively. The same concentrations significantly decreased total ATP to 73 ± 3% and 13 ± 2%, respectively. Basal values of glycogen were not significantly affected by sertraline treatment. Glutamate uptake was significantly reduced after treatment with 3, 30 and 100 μM, by 28 ± 6%, 32 ± 5% and 54 ± 4%, respectively. Our data showed that sertraline at therapeutic concentrations does not compromise platelet viability and ATP levels, but they suggest that in a situation where extracellular glutamate levels are potentially increased, sertraline might aggravate an excitotoxic condition.
Collapse
Affiliation(s)
- Débora Olmedo Rodrigues
- Laboratory of Cellular Neurobiology, Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivi Juliana Bristot
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcos Emílio Frizzo
- Laboratory of Cellular Neurobiology, Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Wakita M, Kotani N, Akaike N. Tetrodotoxin abruptly blocks excitatory neurotransmission in mammalian CNS. Toxicon 2015; 103:12-8. [PMID: 25959619 DOI: 10.1016/j.toxicon.2015.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
The present study utilised a 'synaptic bouton' preparation of mechanically isolated rat hippocampal CA3 pyramidal neurons, which permits direct physiological and pharmacological quantitative analyses at the excitatory and inhibitory single synapse level. Evoked excitatory and inhibitory postsynaptic currents (eEPSCs and eIPSCs) were generated by focal paired-pulse electrical stimulation of single boutons. The sensitivity of eEPSC to tetrodotoxin (TTX) was higher than that of the voltage-dependent Na(+) channel whole-cell current (INa) in the postsynaptic CA3 soma membrane. The synaptic transmission was strongly inhibited by 3 nM TTX, at which concentration the INa was hardly suppressed. The IC50 values of eEPSC and INa for TTX were 2.8 and 37.9 nM, respectively, and complete inhibition was 3-10 nM for eEPSC and 1000 nM for INa. On the other hand, both eEPSC and eIPSC were equally and gradually inhibited by decreasing the external Na(+) concentration ([Na]o), which decreases the Na(+)gradient across the cell membrane. The results indicate that TTX at 3-10 nM could block most of voltage-dependent Na(+) channels on presynaptic nerve terminal, resulting in abruptly inhibition of action potential dependent excitatory neurotransmission.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Clinical Pharmacology, Medical Corporation, Jyuryokai, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto, 860-8518, Japan; Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kitaku, Kumamoto, 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, 343-0821, Japan
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Jyuryokai, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto, 860-8518, Japan; Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kitaku, Kumamoto, 861-5598, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, 343-0821, Japan.
| |
Collapse
|
19
|
Sitges M, Gómez CD, Aldana BI. Sertraline reduces IL-1β and TNF-α mRNA expression and overcomes their rise induced by seizures in the rat hippocampus. PLoS One 2014; 9:e111665. [PMID: 25364907 PMCID: PMC4218797 DOI: 10.1371/journal.pone.0111665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/30/2014] [Indexed: 12/26/2022] Open
Abstract
We recently discovered that the antidepressant sertraline is an effective inhibitor of hippocampus presynaptic Na+ channel permeability invitro and of tonic-clonic seizures in animals invivo. Several studies indicate that the pro-inflammatory cytokines in the central nervous system are increased in epilepsy and depression. On the other hand inhibition of Na+ channels has been shown to decrease pro-inflammatory cytokines in microglia. Therefore, the possibility that sertraline could overcome the rise in pro-inflammatory cytokine expression induced by seizures has been investigated. For this purpose, IL-1β and TNF-α mRNA expression was determined by RT-PCR in the hippocampus of rats administered once, or for seven consecutive days with sertraline at a low dose (0.75 mg/kg). The effect of sertraline at doses within the range of 0.75 to 25 mg/kg on the increase in IL-1β and TNF-α mRNA expression accompanying generalized tonic-clonic seizures, and increase in the pro-inflammatory cytokines expression induced by lipopolysaccharide was also investigated. We found that under basal conditions, a single 0.75 mg/kg sertraline dose decreased IL-1β mRNA expression, and also TNF-α expression after repeated doses. The increase in IL-1β and TNF-α expression induced by the convulsive agents and by the inoculation of lipopolysaccharide in the hippocampus was markedly reduced by sertraline also. Present results indicate that a reduction of brain inflammatory processes may contribute to the anti-seizure sertraline action, and that sertraline can be safely and successfully used at low doses to treat depression in epileptic patients.
Collapse
Affiliation(s)
- María Sitges
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
- * E-mail:
| | - Carlos D. Gómez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Blanca I. Aldana
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| |
Collapse
|
20
|
Imbrici P, Camerino DC, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet 2013; 4:76. [PMID: 23675382 PMCID: PMC3646240 DOI: 10.3389/fgene.2013.00076] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Moreover, point mutations in calcium, sodium, and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium, and potassium channels in BPD, schizophrenia, and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.
Collapse
Affiliation(s)
- Paola Imbrici
- Section of Pharmacology, Department of Pharmacy - Drug Science, University of Bari Bari, Italy
| | | | | |
Collapse
|
21
|
Sitges M, Aldana BI, Gómez CD, Nekrassov V. The antidepressant sertraline prevents the behavioral and EEG changes induced in two animal models of seizures. Epilepsy Behav 2012; 25:511-6. [PMID: 23153716 DOI: 10.1016/j.yebeh.2012.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/16/2022]
Abstract
In order to investigate a potential anticonvulsive action of sertraline (i.p.), its effects on seizures, EEG epileptiform activity and EEG amplitude increases induced by two convulsive agents were evaluated and compared with the effects of carbamazepine. Around 20 min following 4-aminopyridine (4-AP, 2.5 mg/kg, i.p.), tonic-clonic seizures and epileptiform activity were observed in control animals. A single sertraline pre-injection of 2.5 mg/kg, but not of 0.75 mg/kg, prevented these changes to 4-AP. Repeated daily administration of 0.75 mg/kg for one week, however, effectively inhibited the changes induced by 4-AP. The first generalized tonic-clonic seizure and EEG changes in response to pentylenetetrazole (PTZ, 50 mg/kg, i.p.) were observed near the first minute in control animals. Single sertraline doses above 5 mg/kg prevented the PTZ-induced changes. Moreover, a single carbamazepine dose of 25 mg/kg (i.p.), but not of 15 mg/kg, prevented the changes induced by the above convulsive agents. An anti-seizure action of the antidepressant sertraline is strongly suggested by these findings.
Collapse
Affiliation(s)
- María Sitges
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México.
| | | | | | | |
Collapse
|