1
|
Morley V, Dolt KS, Alcaide-Corral CJ, Walton T, Lucatelli C, Mashimo T, Tavares AAS, Kunath T. In vivo18F-DOPA PET imaging identifies a dopaminergic deficit in a rat model with a G51D α-synuclein mutation. Front Neurosci 2023; 17:1095761. [PMID: 37292159 PMCID: PMC10244711 DOI: 10.3389/fnins.2023.1095761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition with several major hallmarks, including loss of substantia nigra neurons, reduction in striatal dopaminergic function, and formation of α-synuclein-rich Lewy bodies. Mutations in SNCA, encoding for α-synuclein, are a known cause of familial PD, and the G51D mutation causes a particularly aggressive form of the condition. CRISPR/Cas9 technology was used to introduce the G51D mutation into the endogenous rat SNCA gene. SNCAG51D/+ and SNCAG51D/G51D rats were born in Mendelian ratios and did not exhibit any severe behavourial defects. L-3,4-dihydroxy-6-18F-fluorophenylalanine (18F-DOPA) positron emission tomography (PET) imaging was used to investigate this novel rat model. Wild-type (WT), SNCAG51D/+ and SNCAG51D/G51D rats were characterized over the course of ageing (5, 11, and 16 months old) using 18F-DOPA PET imaging and kinetic modelling. We measured the influx rate constant (Ki) and effective distribution volume ratio (EDVR) of 18F-DOPA in the striatum relative to the cerebellum in WT, SNCAG51D/+ and SNCAG51D/G51D rats. A significant reduction in EDVR was observed in SNCAG51D/G51D rats at 16 months of age indicative of increased dopamine turnover. Furthermore, we observed a significant asymmetry in EDVR between the left and right striatum in aged SNCAG51D/G51D rats. The increased and asymmetric dopamine turnover observed in the striatum of aged SNCAG51D/G51D rats reflects one aspect of prodromal PD, and suggests the presence of compensatory mechanisms. SNCAG51D rats represent a novel genetic model of PD, and kinetic modelling of 18F-DOPA PET data has identified a highly relevant early disease phenotype.
Collapse
Affiliation(s)
- Victoria Morley
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karamjit Singh Dolt
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos J. Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tashfeen Walton
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christophe Lucatelli
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Adriana A. S. Tavares
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
3
|
Guatteo E, Berretta N, Monda V, Ledonne A, Mercuri NB. Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23094508. [PMID: 35562898 PMCID: PMC9102081 DOI: 10.3390/ijms23094508] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
The degeneration of nigral dopaminergic neurons is considered the hallmark of Parkinson’s disease (PD), and it is triggered by different factors, including mitochondrial dysfunction, Lewy body accumulation, neuroinflammation, excitotoxicity and metal accumulation. Despite the extensive literature devoted to unravelling the signalling pathways involved in neuronal degeneration, little is known about the functional impairments occurring in these cells during illness progression. Of course, it is not possible to obtain direct information on the properties of the dopaminergic cells in patients. However, several data are available in the literature reporting changes in the function of these cells in PD animal models. In the present manuscript, we focus on dopaminergic neuron functional properties and summarize shared or peculiar features of neuronal dysfunction in different PD animal models at different stages of the disease in an attempt to design a picture of the functional modifications occurring in nigral dopaminergic neurons during disease progression preceding their eventual death.
Collapse
Affiliation(s)
- Ezia Guatteo
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Nicola Berretta
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Vincenzo Monda
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
| | - Ada Ledonne
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Correspondence: (A.L.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00143 Rome, Italy
- Correspondence: (A.L.); (N.B.M.)
| |
Collapse
|
4
|
Occurrence of Total and Proteinase K-Resistant Alpha-Synuclein in Glioblastoma Cells Depends on mTOR Activity. Cancers (Basel) 2022; 14:cancers14061382. [PMID: 35326535 PMCID: PMC8946689 DOI: 10.3390/cancers14061382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The accumulation of alpha-synuclein (α-syn) is considered a pathological hallmark of the neurodegenerative disorders known as synucleinopathies. The clearance of α-syn depends on autophagy activity, which is inhibited by the mechanistic target of rapamycin (mTOR). Thus, it is likely that α-syn accumulation may occur whenever mTOR is overactive and autophagy is suppressed. In fact, the lack of effective autophagy increases the amount of α-syn and may produce protein aggregation. Therefore, in the present study, we questioned whether cells from glioblastoma multiforme (GBM), a lethal brain neoplasm, wherein mTOR is upregulated and autophagy is suppressed, may overexpress α-syn. In fact, a large quantity of α-syn is measured in GBM cells compared with astrocytes, which includes proteinase K-resistant α-syn. Rapamycin, while inhibiting mTOR activity, significantly reduces the amount of α-syn and allocates α-syn within autophagy-like vacuoles. Abstract Alpha-synuclein (α-syn) is a protein considered to be detrimental in a number of degenerative disorders (synucleinopathies) of which α-syn aggregates are considered a pathological hallmark. The clearance of α-syn strongly depends on autophagy, which can be stimulated by inhibiting the mechanistic target of rapamycin (mTOR). Thus, the overexpression of mTOR and severe autophagy suppression may produce α-syn accumulation, including the proteinase K-resistant protein isoform. Glioblastoma multiforme (GBM) is a lethal brain tumor that features mTOR overexpression and severe autophagy inhibition. Cell pathology in GBM is reminiscent of a fast, progressive degenerative disorder. Therefore, the present work questions whether, as is analogous to neurons during degenerative disorders, an overexpression of α-syn occurs within GBM cells. A high amount of α-syn was documented in GBM cells via real-time PCR (RT-PCR), Western blotting, immunohistochemistry, immuno-fluorescence, and ultrastructural stoichiometry, compared with the amount of β- and γ-synucleins and compared with the amount of α-syn counted within astrocytes. The present study indicates that (i) α-syn is overexpressed in GBM cells, (ii) α-syn expression includes a proteinase-K resistant isoform, (iii) α-syn is dispersed from autophagy-like vacuoles to the cytosol, (iv) α-syn overexpression and cytosol dispersion are mitigated by rapamycin, and (v) the α-syn-related GBM-like phenotype is mitigated by silencing the SNCA gene.
Collapse
|
5
|
Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo. Nat Commun 2021; 12:5382. [PMID: 34508096 PMCID: PMC8433339 DOI: 10.1038/s41467-021-25767-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Pathways to control the spreading of α-synuclein (α-syn) and associated neuropathology in Parkinson’s disease (PD), multiple system atrophy (MSA) and dementia with Lewy bodies (DLB) are unclear. Here, we show that preformed α-syn fibrils (PFF) increase the association between TLR2 and MyD88, resulting in microglial activation. The TLR2-interaction domain of MyD88 (wtTIDM) peptide-mediated selective inhibition of TLR2 reduces PFF-induced microglial inflammation in vitro. In PFF-seeded A53T mice, the nasal administration of the wtTIDM peptide, NEMO-binding domain (wtNBD) peptide, or genetic deletion of TLR2 reduces glial inflammation, decreases α-syn spreading, and protects dopaminergic neurons by inhibiting NF-κB. In summary, α-syn spreading depends on the TLR2/MyD88/NF-κB pathway and it can be reduced by nasal delivery of wtTIDM and wtNBD peptides. The mechanisms underlying the spreading of α-synuclein in various α-synucleinopathies are unclear. Here, the authors show that targeting the TLR2/MyD88/NF-κB pathway can reduce α-synuclein spreading, reduce neuroinflammation, and protect dopaminergic neurons in vitro and in mouse models
Collapse
|
6
|
Wu S, Du L. Protein Aggregation in the Pathogenesis of Ischemic Stroke. Cell Mol Neurobiol 2021; 41:1183-1194. [PMID: 32529541 DOI: 10.1007/s10571-020-00899-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/05/2020] [Indexed: 01/31/2023]
Abstract
Despite the distinction between ischemic stroke and neurodegenerative disorders, they share numerous pathophysiologies particularly those mediated by inflammation and oxidative stress. Although protein aggregation is considered to be a hallmark of neurodegenerative diseases, the formation of protein aggregates can be also induced within a short time after cerebral ischemia, aggravating cerebral ischemic injury. Protein aggregation uncovers a previously unappreciated molecular overlap between neurodegenerative diseases and ischemic stroke. Unfortunately, compared with neurodegenerative disease, mechanism of protein aggregation after cerebral ischemia and how this can be averted remain unclear. This review highlights current understanding on protein aggregation and its intrinsic role in ischemic stroke.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
8
|
Sanchez-Bezanilla S, TeBay C, Nilsson M, Walker FR, Ong LK. Visual discrimination impairment after experimental stroke is associated with disturbances in the polarization of the astrocytic aquaporin-4 and increased accumulation of neurotoxic proteins. Exp Neurol 2019; 318:232-243. [PMID: 31077714 DOI: 10.1016/j.expneurol.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023]
Abstract
Numerous clinical studies have documented the high incidence of cognitive impairment after stroke. However, there is only limited knowledge about the underlying mechanisms. Interestingly, there is emerging evidence suggesting that cognitive function after stroke may be affected due to reduced waste clearance and subsequent accumulation of neurotoxic proteins. To further explore this potential association, we utilised a model of experimental stroke in mice. Specifically, a photothrombotic vascular occlusion targeting motor and sensory parts of the cerebral cortex was induced in young adult mice, and changes in cognition were assessed using a touchscreen platform for pairwise visual discrimination. The results showed that the execution of the visual discrimination task was impaired in mice 10 to 14 days post-stroke compared to sham. Stroke also induced significant neuronal loss within the peri-infarct, thalamus and the CA1 sub-region of the hippocampus. Further, immunohistochemical and protein analyses of the selected brain regions revealed an increased accumulation and aggregation of both amyloid-β and α-synuclein. These alterations were associated with significant disturbances in the aquaporin-4 protein expression and polarization at the astrocytic end-feet. The results suggest a link between the increased accumulation of neurotoxic proteins and the stroke-induced cognitive impairment. Given that the neurotoxic protein accumulation appeared alongside changes in astrocytic aquaporin-4 distribution, we suggest that the function of the waste clearance pathways in the brain post-stroke may represent a therapeutic target to improve brain recovery.
Collapse
Affiliation(s)
- Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton, Heights, NSW, Australia
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton, Heights, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia; Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, Australia; LKC School of Medicine, Nanyang Technological University, Singapore
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton, Heights, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia; Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton, Heights, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.
| |
Collapse
|
9
|
Abstract
Parkinson's disease (PD) is predominantly idiopathic in origin, and a large body of evidence indicates that gastrointestinal (GI) dysfunctions are a significant comorbid clinical feature; these dysfunctions include dysphagia, nausea, delayed gastric emptying, and severe constipation, all of which occur commonly before the onset of the well-known motor symptoms of PD. Based on a distinct distribution pattern of Lewy bodies (LB) in the enteric nervous system (ENS) and in the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), and together with the early onset of GI symptoms, it was suggested that idiopathic PD begins in the ENS and spreads to the central nervous system (CNS), reaching the DMV and the substantia nigra pars compacta (SNpc). These two areas are connected by a recently discovered monosynaptic nigro-vagal pathway, which is dysfunctional in rodent models of PD. An alternative hypothesis downplays the role of LB transport through the vagus nerve and proposes that PD pathology is governed by regional or cell-restricted factors as the leading cause of nigral neuronal degeneration. The purpose of this brief review is to summarize the neuronal electrophysiological findings in the SNpc and DMV in PD.
Collapse
Affiliation(s)
- Cecilia Bove
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
10
|
Ijomone OM, Olatunji SY, Owolabi JO, Naicker T, Aschner M. Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. J Trace Elem Med Biol 2018; 50:16-23. [PMID: 30262274 DOI: 10.1016/j.jtemb.2018.05.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/21/2022]
Abstract
Human overexposure to nickel (Ni) emanating from the increasing application of Ni compounds in modern technology is a major public health concern. Nickel has been shown to be teratogenic, immunotoxic, genotoxic and carcinogenic. The current knowledge on Ni neurotoxicity is still relatively limited. We have previously demonstrated that Ni treatment alters cognitive and locomotor behaviors, induces oxidative stress and neurodegeneration in brains of rats. In this study, we examine the ultrastructural changes to neurons in the hippocampus, striatum and cortex of the brain following Ni treatment, as well as attempt to delineate the roles for caspase-3 and α-synuclein in Ni-induced neurodegeneration. Rats were treated with either saline, 10 or 20 mg/kg of nickel chloride for 4 weeks via oral gavage. Electron microscopy analysis revealed ultrastructural alterations in neurons of the hippocampus, striatum and cortex following Ni treatment. Mitochondria structural integrity within neurons were markedly compromised. We also detected elevated caspase-3 activity in hippocampus and striatum, as well as overexpression of α-synuclein in the cortex following Ni treatment. Our study demonstrates that mitochondria are a key target in Ni-induced neurodegeneration. Additionally, we implicate apoptotic pathway via caspase-3 action as the executioner and perturbation of α-synuclein expression in Ni-induced neurodegeneration.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA; Department of Anatomical Sciences, School of Health and Health Technology, Federal University of Technology Akure, Nigeria.
| | - Sunday Y Olatunji
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan Remo, Nigeria
| | - Joshua O Owolabi
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan Remo, Nigeria
| | - Thajasvarie Naicker
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, South Africa
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
11
|
Landrock KK, Sullivan P, Martini-Stoica H, Goldstein DS, Graham BH, Yamamoto S, Bellen HJ, Gibbs RA, Chen R, D'Amelio M, Stoica G. Pleiotropic neuropathological and biochemical alterations associated with Myo5a mutation in a rat Model. Brain Res 2017; 1679:155-170. [PMID: 29217155 DOI: 10.1016/j.brainres.2017.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
In this study, we analyze the neuropathological and biochemical alterations involved in the pathogenesis of a neurodegenerative/movement disorder during different developmental stages in juvenile rats with a mutant Myosin5a (Myo5a). In mutant rats, a spontaneous autosomal recessive mutation characterized by the absence of Myo5a protein expression in the brain is associated with a syndrome of locomotor dysfunction, altered coat color, and neuroendocrine abnormalities. Myo5a encodes a myosin motor protein required for transport and proper distribution of subcellular organelles in somatodendritic processes in neurons. Here we report marked hyperphosphorylation of alpha-synuclein and tau, as well as region-specific buildup of the autotoxic dopamine metabolite, 3,4-dihydroxyphenyl-acetaldehyde (DOPAL), related to decreased aldehyde dehydrogenases activity and neurodegeneration in mutant rats. Alpha-synuclein accumulation in mitochondria of dopaminergic neurons is associated with impaired enzymatic respiratory complex I and IV activity. The behavioral and biochemical lesions progress after 15 days postnatal, and by 30-40 days the animals must be euthanized because of neurological impairment. Based on the obtained results, we propose a pleiotropic pathogenesis that links the Myo5a gene mutation to deficient neuronal development and progressive neurodegeneration. This potential model of a neurodevelopmental disorder with neurodegeneration and motor deficits may provide further insight into molecular motors and their associated proteins responsible for altered neurogenesis and neuronal disease pathogenesis.
Collapse
Affiliation(s)
- Kerstin K Landrock
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA.
| | - Patti Sullivan
- Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Heidi Martini-Stoica
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - David S Goldstein
- Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Marcello D'Amelio
- University Campus Bio-Medico, Department of Medicine, Unit of Molecular Neurosciences, Rome, Italy.
| | - George Stoica
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Poststroke Induction of α-Synuclein Mediates Ischemic Brain Damage. J Neurosci 2017; 36:7055-65. [PMID: 27358461 DOI: 10.1523/jneurosci.1241-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED α-Synuclein (α-Syn), one of the most abundant proteins in the CNS, is known to be a major player in the neurodegeneration observed in Parkinson's disease. We currently report that transient focal ischemia upregulates α-Syn protein expression and nuclear translocation in neurons of the adult rodent brain. We further show that knockdown or knock-out of α-Syn significantly decreases the infarction and promotes better neurological recovery in rodents subjected to focal ischemia. Furthermore, α-Syn knockdown significantly reduced postischemic induction of phospho-Drp1, 3-nitrotyrosine, cleaved caspase-3, and LC-3 II/I, indicating its role in modulating mitochondrial fragmentation, oxidative stress, apoptosis, and autophagy, which are known to mediate poststroke neuronal death. Transient focal ischemia also significantly upregulated serine-129 (S129) phosphorylation (pα-Syn) of α-Syn and nuclear translocation of pα-Syn. Furthermore, knock-out mice that lack PLK2 (the predominant kinase that mediates S129 phosphorylation) showed better functional recovery and smaller infarcts when subjected to transient focal ischemia, indicating a detrimental role of S129 phosphorylation of α-Syn. In conclusion, our studies indicate that α-Syn is a potential therapeutic target to minimize poststroke brain damage. SIGNIFICANCE STATEMENT Abnormal aggregation of α-synuclein (α-Syn) has been known to cause Parkinson's disease and other chronic synucleinopathies. However, even though α-Syn is linked to pathophysiological mechanisms similar to those that produce acute neurodenegerative disorders, such as stroke, the role of α-Syn in such disorder is not clear. We presently studied whether α-Syn mediates poststroke brain damage and more importantly whether preventing α-Syn expression is neuroprotective and leads to better physiological and functional outcome after stroke. Our study indicates that α-Syn is a potential therapeutic target for stroke therapy.
Collapse
|
13
|
Functional alterations of the dopaminergic and glutamatergic systems in spontaneous α-synuclein overexpressing rats. Exp Neurol 2016; 287:21-33. [PMID: 27771352 DOI: 10.1016/j.expneurol.2016.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
The presence of α-synuclein (α-syn) in Lewy bodies and Lewy neurites is an important characteristic of the neurodegenerative processes of substantia nigra pars compacta (SNpc) dopaminergic (DAergic) neurons in Parkinson's disease (PD) and other synucleinopathies. Here we report that Berlin-Druckrey rats carrying a spontaneous mutation in the 3' untranslated region of α-syn mRNA (m/m rats) display a marked accumulation of α-syn in the mesencephalic area, striatum and frontal cortex, accompanied to severe dysfunctions in the dorsolateral striatum. Despite a small reduction in the number of SNpc and ventral tegmental area DAergic cells, the surviving dopaminergic neurons of the m/m rats do not show clear-cut alterations of the spontaneous and evoked firing activity, DA responses and somatic amphetamine-induced firing inhibition. Interestingly, mutant DAergic neurons display diminished whole-cell Ih conductance and a reduced frequency of spontaneous excitatory synaptic currents. By contrast, m/m rats show a severe impairment of DA and glutamate release in the dorsolateral striatum, as revealed by amperometric measure of DA currents and by electrophysiological recordings of glutamatergic synaptic events in striatal medium spiny neurons. These functional impairments are paralleled by a decreased expression of the DA transporter and VGluT1 proteins in the same area. Thus, together with α-syn overload in the mesencephalic region, striatum and frontal cortex, the main functional alterations occur in the DAergic and glutamatergic terminals in the dorsal striatum of the m/m rats.
Collapse
|
14
|
Butler B, Sambo D, Khoshbouei H. Alpha-synuclein modulates dopamine neurotransmission. J Chem Neuroanat 2016; 83-84:41-49. [PMID: 27334403 DOI: 10.1016/j.jchemneu.2016.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 01/13/2023]
Abstract
Alpha-synuclein is a small, highly charged protein encoded by the synuclein or SNCA gene that is predominantly expressed in central nervous system neurons. Although its physiological function remains enigmatic, alpha-synuclein is implicated in movement disorders such as Parkinson's disease, multiple system atrophy, and in neurodegenerative diseases such as Dementia with Lewy bodies. Here we have focused on reviewing the existing literature pertaining to wild-type alpha-synuclein structure, its properties, and its potential involvement in regulation of dopamine neurotransmission.
Collapse
Affiliation(s)
- Brittany Butler
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611
| | - Danielle Sambo
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611
| | - Habibeh Khoshbouei
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611.
| |
Collapse
|
15
|
Calo L, Wegrzynowicz M, Santivañez-Perez J, Grazia Spillantini M. Synaptic failure and α-synuclein. Mov Disord 2016; 31:169-77. [PMID: 26790375 DOI: 10.1002/mds.26479] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/19/2015] [Accepted: 10/25/2015] [Indexed: 12/20/2022] Open
Abstract
Although the physiological function of α-synuclein is not fully understood, it has been suggested to primarily localize to the presynaptic terminals of mature neurons, where it fulfills roles in synaptic function and plasticity. Based on current knowledge, α-synuclein (αSYN) is thought to be involved in maintaining neurotransmitter homeostasis by regulating synaptic vesicle fusion, clustering, and trafficking between the reserve and ready-releasable pools, as well as interacting with neurotransmitter membrane transporters. In this review, we focus on evidence proposing synapses as the main site of αSYN pathology and its propagation in Parkinson's disease and dementia with Lewy bodies, which belong to a group of neurodegenerative diseases known as α-synucleinopathies. We provide an overview of the evidence supporting presynaptic dysfunction as the primary event in the pathogenesis of these conditions.
Collapse
Affiliation(s)
- Laura Calo
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Michal Wegrzynowicz
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
16
|
Mudawal A, Singh A, Yadav S, Mishra M, Singh PK, Chandravanshi LP, Mishra J, Khanna VK, Bandyopadhyay S, Parmar D. Similarities in lindane induced alterations in protein expression profiling in different brain regions with neurodegenerative diseases. Proteomics 2015; 15:3875-82. [DOI: 10.1002/pmic.201400407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Anubha Mudawal
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| | - Anshuman Singh
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
| | - Sanjay Yadav
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| | - Manisha Mishra
- Plant Molecular Biology Laboratory; CSIR-National Botanical Research Institute (CSIR-NBRI); Lucknow India
| | - Pradhyumna Kumar Singh
- Plant Molecular Biology Laboratory; CSIR-National Botanical Research Institute (CSIR-NBRI); Lucknow India
| | - Lalit Pratap Chandravanshi
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
| | - Juhi Mishra
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
| | - Vinay K. Khanna
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| | - Devendra Parmar
- Developmental Toxicology Laboratory; Systems Toxicology and Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow India
- Academy of Scientific & Innovative Research; CSIR-IITR Campus; Lucknow India
| |
Collapse
|
17
|
Zhang X, Chiu VM, Stoica G, Lungu G, Schenk JO, Hill HH. Metabolic analysis of striatal tissues from Parkinson's disease-like rats by electrospray ionization ion mobility mass spectrometry. Anal Chem 2014; 86:3075-83. [PMID: 24548008 DOI: 10.1021/ac4040967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrospray ionization ion mobility mass spectrometry (ESI-IMMS) was used to study the striatal metabolomes in a Parkinson's like disease (PD-like) rat model. Striatal tissue samples from Berlin Druckrey IV (BD-IV) with PD-like disease 20 dpn-affected and 15 dpn-affected rats (dpn: days postnatal) were investigated and compared with age-matched controls. An ion mobility mass spectrometer (IMMS) produced multidimensional spectra with mass to charge ratio (m/z), ion mobility drift time, and intensity information for each individual metabolite. Principle component analysis (PCA) was applied in this study for pattern recognition and significant metabolites selection (68% data was modeled in PCA). Both IMMS spectra and PCA results showed that there were clear global metabolic differences between PD-like samples and healthy controls. Nine metabolites were selected by PCA and identified as potential biomarkers using the Human Metabolome Database (HMDB). One targeted metabolite in this study was dopamine. Selected-mass mobility analysis indicated the absence of dopamine in PD-like striatal metabolomes. A major discovery of this work, however, was the existence of an isomer of dopamine. By using ion mobility spectrometry, the dopamine isomer, which has not previously been reported, was separated from dopamine.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry, Washington State University , Pullman, Washington 99163, United States
| | | | | | | | | | | |
Collapse
|
18
|
Lungu G, Stoica G, Ambrus A. MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model. Neurosci Lett 2013; 553:153-8. [PMID: 23973300 DOI: 10.1016/j.neulet.2013.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
MicroRNAs (miRs) are endogenous small RNAs that regulate gene expression at the post-transcriptional level by mediating mRNA degradation or transcriptional inhibition. MiRs were implicated in the pathogenesis of numerous neurodegenerative diseases, including Parkinson's disease (PD). In this study we analyzed the possible role of miRs in the neurodegenerative process in a spontaneous autosomal recessive rat model for neurodegeneration developed in our laboratory. To investigate the role of miRs in the etiology of PD, we conducted miR expression profiling using microarrays. We found 20 miRs that are deregulated in affected rats and many of these are implicated in neurodegenerative disease, including PD. In this study we were particularly interested in the expression of miR-132, a miR that has been reported to be highly expressed in neurons, and to have a potential role in neurodegenerative diseases. We found a significant increase in miR-132 in affected rats by microarray and the result was confirmed by qPCR. Next we analyzed one of the known downstream targets of miR-132, nuclear receptor related 1 protein (Nurr1), which is essential in neurogenesis of midbrain dopaminergic neurons. Western blot analysis and immunohistochemistry revealed a significant decrease in Nurr1 protein expression in the mesencephalic neurons. Finally, we found a significant decrease in both serum and mesencephalon brain tissue of brain-derived neurotrophic factor (BDNF), which is known to be a direct target of Nurr1. Taken together, our findings suggest that miR-132 can regulate Nurr1 levels and might influence the development and function of midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Gina Lungu
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
19
|
Yasuda T, Nakata Y, Choong CJ, Mochizuki H. Neurodegenerative changes initiated by presynaptic dysfunction. Transl Neurodegener 2013; 2:16. [PMID: 23919415 PMCID: PMC3750287 DOI: 10.1186/2047-9158-2-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022] Open
Abstract
α-Synucleinopathies are a subgroup of neurodegenerative diseases including dementia with Lewy bodies (DLB) and Parkinson’s disease (PD). Pathologically, these disorders can be characterized by the presence of intraneuronal aggregates composed mainly of α-synuclein (αSyn), which are called Lewy bodies and Lewy neurites. Recent report showed that more than 90% of αSyn aggregates are present in the form of very small deposits in presynaptic terminals of the affected neurons in DLB. However, the mechanisms responsible for presynaptic accumulation of abnormal αSyn remain unclear. In this article, we review recent findings on the involvement of presynaptic dysfunction in the initiation of neuronal dysfunctional changes. This review highlights that the presynaptic failure can be a potential trigger of the dying-back neuronal death in neurodegenerative diseases.
Collapse
Affiliation(s)
- Toru Yasuda
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
20
|
Nasal inoculation with α-synuclein aggregates evokes rigidity, locomotor deficits and immunity to such misfolded species as well as dopamine. Behav Brain Res 2013; 243:205-12. [DOI: 10.1016/j.bbr.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 12/26/2022]
|
21
|
Jellinger KA. Potential role of α-synuclein in neurodegeneration: studies in a rat animal model. J Neurochem 2012; 122:659-60. [PMID: 22671859 DOI: 10.1111/j.1471-4159.2012.07821.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|