1
|
Le Pla MN, Birnbaum EK, Rees MW, Hradsky BA, Weeks AR, Van Rooyen A, Pascoe JH. Genetic sampling and an activity index indicate contrasting outcomes of lethal control for an invasive predator. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark N. Le Pla
- Conservation Ecology Centre 635 Lighthouse Road Cape Otway Victoria Australia
| | - Emma K. Birnbaum
- Conservation Ecology Centre 635 Lighthouse Road Cape Otway Victoria Australia
| | - Matthew W. Rees
- Quantitative & Applied Ecology Group, Ecosystem and Forest Sciences University of Melbourne Parkville Victoria Australia
| | - Bronwyn A. Hradsky
- Quantitative & Applied Ecology Group, Ecosystem and Forest Sciences University of Melbourne Parkville Victoria Australia
| | - Andrew R. Weeks
- University of Melbourne Parkville Victoria Australia
- Cesar Australia Pty Ltd Brunswick Victoria Australia
| | | | - Jack H. Pascoe
- Conservation Ecology Centre 635 Lighthouse Road Cape Otway Victoria Australia
| |
Collapse
|
2
|
Lindsø LK, Dupont P, Rød-Eriksen L, Andersskog IPØ, Ulvund KR, Flagstad Ø, Bischof R, Eide NE. Estimating red fox density using non-invasive genetic sampling and spatial capture-recapture modelling. Oecologia 2022; 198:139-151. [PMID: 34859281 PMCID: PMC8803778 DOI: 10.1007/s00442-021-05087-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/20/2021] [Indexed: 11/28/2022]
Abstract
Spatial capture-recapture modelling (SCR) is a powerful tool for estimating density, population size, and space use of elusive animals. Here, we applied SCR modelling to non-invasive genetic sampling (NGS) data to estimate red fox (Vulpes vulpes) densities in two areas of boreal forest in central (2016-2018) and southern Norway (2017-2018). Estimated densities were overall lower in the central study area (mean = 0.04 foxes per km2 in 2016, 0.10 in 2017, and 0.06 in 2018) compared to the southern study area (0.16 in 2017 and 0.09 in 2018). We found a positive effect of forest cover on density in the central, but not the southern study area. The absence of an effect in the southern area may reflect a paucity of evidence caused by low variation in forest cover. Estimated mean home-range size in the central study area was 45 km2 [95%CI 34-60] for females and 88 km2 [69-113] for males. Mean home-range sizes were smaller in the southern study area (26 km2 [16-42] for females and 56 km2 [35-91] for males). In both study areas, detection probability was session-dependent and affected by sampling effort. This study highlights how SCR modelling in combination with NGS can be used to efficiently monitor red fox populations, and simultaneously incorporate ecological factors and estimate their effects on population density and space use.
Collapse
Affiliation(s)
- Lars K Lindsø
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034, Trondheim, Norway.
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Universitetstunet 3, 1430, Ås, Norway.
- Centre for Ecological and Evolutionary Synthesis (CEES), The Department of Biosciences, University of Oslo, Blindernveien 31, 0371, Oslo, Norway.
| | - Pierre Dupont
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Universitetstunet 3, 1430, Ås, Norway
| | - Lars Rød-Eriksen
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034, Trondheim, Norway
| | | | | | - Øystein Flagstad
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034, Trondheim, Norway
| | - Richard Bischof
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Universitetstunet 3, 1430, Ås, Norway
| | - Nina E Eide
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034, Trondheim, Norway
| |
Collapse
|
3
|
How the west was won: genetic reconstruction of rapid wolf recolonization into Germany's anthropogenic landscapes. Heredity (Edinb) 2021; 127:92-106. [PMID: 33846578 PMCID: PMC8249462 DOI: 10.1038/s41437-021-00429-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Following massive persecution and eradication, strict legal protection facilitated a successful reestablishment of wolf packs in Germany, which has been ongoing since 2000. Here, we describe this recolonization process by mitochondrial DNA control-region sequencing, microsatellite genotyping and sex identification based on 1341 mostly non-invasively collected samples. We reconstructed the genealogy of German wolf packs between 2005 and 2015 to provide information on trends in genetic diversity, dispersal patterns and pack dynamics during the early expansion process. Our results indicate signs of a founder effect at the start of the recolonization. Genetic diversity in German wolves is moderate compared to other European wolf populations. Although dispersal among packs is male-biased in the sense that females are more philopatric, dispersal distances are similar between males and females once only dispersers are accounted for. Breeding with close relatives is regular and none of the six male wolves originating from the Italian/Alpine population reproduced. However, moderate genetic diversity and inbreeding levels of the recolonizing population are preserved by high sociality, dispersal among packs and several immigration events. Our results demonstrate an ongoing, rapid and natural wolf population expansion in an intensively used cultural landscape in Central Europe.
Collapse
|
4
|
Malmberg JL, White LA, VandeWoude S. Bioaccumulation of Pathogen Exposure in Top Predators. Trends Ecol Evol 2021; 36:411-420. [PMID: 33549372 DOI: 10.1016/j.tree.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Predator-prey interactions present heightened opportunities for pathogen spillover, as predators are at risk of exposure to infectious agents harbored by prey. Epizootics with high morbidity and mortality have been recorded following prey-to-predator spillover events, which have had significant conservation implications for sensitive species. Using felids as a detailed case study, we have documented both virulent and clinically silent infections in apex predators following transfer of microbes from prey. We draw on these examples and others to examine the mechanisms that determine frequency and outcome of predator exposure to prey-based pathogens. We propose that predator-prey dynamics should be more thoroughly considered in empirical research and disease dynamic modeling approaches in order to reveal answers to outstanding questions relating to pathogen bioaccumulation.
Collapse
Affiliation(s)
- Jennifer L Malmberg
- Department of Veterinary Sciences, University of Wyoming, Wyoming State Veterinary Laboratory, Laramie, WY82070, USA.
| | - Lauren A White
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD 21401, USA.
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1619, USA.
| |
Collapse
|
5
|
Enabling pinniped conservation by means of non-invasive genetic population analysis. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-020-01182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Ozga AT, Webster TH, Gilby IC, Wilson MA, Nockerts RS, Wilson ML, Pusey AE, Li Y, Hahn BH, Stone AC. Urine as a high-quality source of host genomic DNA from wild populations. Mol Ecol Resour 2021; 21:170-182. [PMID: 32985084 PMCID: PMC7746602 DOI: 10.1111/1755-0998.13260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
The ability to generate genomic data from wild animal populations has the potential to give unprecedented insight into the population history and dynamics of species in their natural habitats. However, for many species, it is impossible legally, ethically or logistically to obtain tissue samples of quality sufficient for genomic analyses. In this study we evaluate the success of multiple sources of genetic material (faeces, urine, dentin and dental calculus) and several capture methods (shotgun, whole-genome, exome) in generating genome-scale data in wild eastern chimpanzees (Pan troglodytes schweinfurthii) from Gombe National Park, Tanzania. We found that urine harbours significantly more host DNA than other sources, leading to broader and deeper coverage across the genome. Urine also exhibited a lower rate of allelic dropout. We found exome sequencing to be far more successful than both shotgun sequencing and whole-genome capture at generating usable data from low-quality samples such as faeces and dental calculus. These results highlight urine as a promising and untapped source of DNA that can be noninvasively collected from wild populations of many species.
Collapse
Affiliation(s)
- Andrew T. Ozga
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University
- Center for Evolution and Medicine, Arizona State University
| | - Timothy H. Webster
- Department of Anthropology, University of Utah
- School of Life Sciences, Arizona State University
| | - Ian C. Gilby
- School of Human Evolution and Social Change, Arizona State University
- Institute of Human Origins, Arizona State University
| | - Melissa A. Wilson
- Center for Evolution and Medicine, Arizona State University
- School of Life Sciences, Arizona State University
| | | | - Michael L. Wilson
- Department of Anthropology, University of Minnesota
- Department of Ecology, Evolution and Behavior, University of Minnesota
| | | | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Anne C. Stone
- Center for Evolution and Medicine, Arizona State University
- School of Human Evolution and Social Change, Arizona State University
- Institute of Human Origins, Arizona State University
| |
Collapse
|
7
|
Poutanen J, Pusenius J, Wikström M, Brommer JE. Estimating Population Density of the White-Tailed Deer in Finland using Non-Invasive Genetic Sampling and Spatial Capture–Recapture. ANN ZOOL FENN 2019. [DOI: 10.5735/086.056.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jenni Poutanen
- Department of Biology, University Hill, FI-20014 University of Turku, Finland
| | - Jyrki Pusenius
- Natural Resources Institute Finland, Yliopistokatu 6, FI-80100 Joensuu, Finland
| | - Mikael Wikström
- Finnish Wildlife Agency, Sompiontie 1, FI-00730 Helsinki, Finland
| | - Jon E. Brommer
- Department of Biology, University Hill, FI-20014 University of Turku, Finland
| |
Collapse
|
8
|
Modave E, MacDonald AJ, Sarre SD. A single mini-barcode test to screen for Australian mammalian predators from environmental samples. Gigascience 2018; 6:1-13. [PMID: 28810700 PMCID: PMC5545080 DOI: 10.1093/gigascience/gix052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 01/25/2023] Open
Abstract
Identification of species from trace samples is now possible through the comparison of diagnostic DNA fragments against reference DNA sequence databases. DNA detection of animals from non-invasive samples, such as predator faeces (scats) that contain traces of DNA from their species of origin, has proved to be a valuable tool for the management of elusive wildlife. However, application of this approach can be limited by the availability of appropriate genetic markers. Scat DNA is often degraded, meaning that longer DNA sequences, including standard DNA barcoding markers, are difficult to recover. Instead, targeted short diagnostic markers are required to serve as diagnostic mini-barcodes. The mitochondrial genome is a useful source of such trace DNA markers because it provides good resolution at the species level and occurs in high copy numbers per cell. We developed a mini-barcode based on a short (178 bp) fragment of the conserved 12S ribosomal ribonucleic acid mitochondrial gene sequence, with the goal of discriminating amongst the scats of large mammalian predators of Australia. We tested the sensitivity and specificity of our primers and can accurately detect and discriminate amongst quolls, cats, dogs, foxes, and devils from trace DNA samples. Our approach provides a cost-effective, time-efficient, and non-invasive tool that enables identification of all 8 medium-large mammal predators in Australia, including native and introduced species, using a single test. With modification, this approach is likely to be of broad applicability elsewhere.
Collapse
Affiliation(s)
- Elodie Modave
- Institute for Applied Ecology, University of Canberra, ACT, 2601, Canberra, Australia
| | - Anna J MacDonald
- Institute for Applied Ecology, University of Canberra, ACT, 2601, Canberra, Australia
| | - Stephen D Sarre
- Institute for Applied Ecology, University of Canberra, ACT, 2601, Canberra, Australia
| |
Collapse
|
9
|
Nakamura M, Godinho R, Rio-Maior H, Roque S, Kaliontzopoulou A, Bernardo J, Castro D, Lopes S, Petrucci-Fonseca F, Álvares F. Evaluating the predictive power of field variables for species and individual molecular identification on wolf noninvasive samples. EUR J WILDLIFE RES 2017. [DOI: 10.1007/s10344-017-1112-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Non-invasive genetic population density estimation of mountain hares (Lepus timidus) in the Alps: systematic or opportunistic sampling? EUR J WILDLIFE RES 2016. [DOI: 10.1007/s10344-016-1053-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Lobo D, Godinho R, Álvares F, López-Bao JV, Rodríguez A. A New Method for Noninvasive Genetic Sampling of Saliva in Ecological Research. PLoS One 2015; 10:e0139765. [PMID: 26496352 PMCID: PMC4619700 DOI: 10.1371/journal.pone.0139765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Noninvasive samples for genetic analyses have become essential to address ecological questions. Popular noninvasive samples such as faeces contain degraded DNA which may compromise genotyping success. Saliva is an excellent alternative DNA source but scarcity of suitable collection methods makes its use anecdotal in field ecological studies. We develop a noninvasive method of collection that combines baits and porous materials able to capture saliva. We report its potential in optimal conditions, using confined dogs and collecting saliva early after deposition. DNA concentration in saliva extracts was generally high (mean 14 ng μl-1). We correctly identified individuals in 78% of samples conservatively using ten microsatellite loci, and 90% of samples using only eight loci. Consensus genotypes closely matched reference genotypes obtained from hair DNA (99% of identification successes and 91% of failures). Mean genotyping effort needed for identification using ten loci was 2.2 replicates. Genotyping errors occurred at a very low frequency (allelic dropout: 2.3%; false alleles: 1.5%). Individual identification success increased with duration of substrate handling inside dog’s mouth and the volume of saliva collected. Low identification success was associated with baits rich in DNA-oxidant polyphenols and DNA concentrations <1 ng μl-1. The procedure performed at least as well as other noninvasive methods, and could advantageously allow detection of socially low-ranked individuals underrepresented in sources of DNA that are involved in marking behaviour (faeces or urine). Once adapted and refined, there is promise for this technique to allow potentially high rates of individual identification in ecological field studies requiring noninvasive sampling of wild vertebrates.
Collapse
Affiliation(s)
- Diana Lobo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- * E-mail: (AR); (RG)
| | - Francisco Álvares
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| | - José V. López-Bao
- Research Unit of Biodiversity (UO/CSIC/PA), Oviedo University, Mieres, Spain
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences (SLU), Riddarhyttan, Sweden
| | - Alejandro Rodríguez
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
- * E-mail: (AR); (RG)
| |
Collapse
|
12
|
Grattarola F, González S, Cosse M. A novel primer set for mammal species identification from feces samples. CONSERV GENET RESOUR 2015. [DOI: 10.1007/s12686-014-0359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Kraus RHS, vonHoldt B, Cocchiararo B, Harms V, Bayerl H, Kühn R, Förster DW, Fickel J, Roos C, Nowak C. A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. Mol Ecol Resour 2014; 15:295-305. [DOI: 10.1111/1755-0998.12307] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Robert H. S. Kraus
- Conservation Genetics Group; Senckenberg Research Institute and Natural History Museum Frankfurt; D-63571 Gelnhausen Germany
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ 08544 USA
| | - Berardino Cocchiararo
- Conservation Genetics Group; Senckenberg Research Institute and Natural History Museum Frankfurt; D-63571 Gelnhausen Germany
| | - Verena Harms
- Conservation Genetics Group; Senckenberg Research Institute and Natural History Museum Frankfurt; D-63571 Gelnhausen Germany
- Senckenberg Museum of Natural History Görlitz; PF 300154 02806 Görlitz Germany
| | - Helmut Bayerl
- Molecular Zoology Unit; Research Department Animal Sciences; Technische Universität München; Hans-Carl-von-Carlowitz-Platz 2 D-85354 Freising Germany
| | - Ralph Kühn
- Molecular Zoology Unit; Research Department Animal Sciences; Technische Universität München; Hans-Carl-von-Carlowitz-Platz 2 D-85354 Freising Germany
- Wildlife and Conservation Ecology and Molecular Biology Program; Department of Fish; New Mexico State University; Box 30003 MSC 4901 Las Cruces NM 88003-8003 USA
| | - Daniel W. Förster
- Department of Evolutionary Genetics; Leibniz-Institute for Zoo and Wildlife Research; Alfred-Kowalke-Str. 17 D-10315 Berlin Germany
| | - Jörns Fickel
- Department of Evolutionary Genetics; Leibniz-Institute for Zoo and Wildlife Research; Alfred-Kowalke-Str. 17 D-10315 Berlin Germany
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory; German Primate Center; Leibniz Institute for Primate Research; Kellnerweg 4 D-37077 Göttingen Germany
| | - Carsten Nowak
- Conservation Genetics Group; Senckenberg Research Institute and Natural History Museum Frankfurt; D-63571 Gelnhausen Germany
| |
Collapse
|
14
|
Lampa S, Henle K, Klenke R, Hoehn M, Gruber B. How to overcome genotyping errors in non-invasive genetic mark-recapture population size estimation-A review of available methods illustrated by a case study. J Wildl Manage 2013. [DOI: 10.1002/jwmg.604] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simone Lampa
- UFZ-Helmholtz Centre for Environmental Research; Department of Conservation Biology; Permoserstrasse 15 04318 Leipzig Germany
- Institute of Ecology; Friedrich Schiller University Jena; Dornburger Strasse 159 07743 Jena Germany
| | - Klaus Henle
- UFZ-Helmholtz Centre for Environmental Research; Department of Conservation Biology; Permoserstrasse 15 04318 Leipzig Germany
| | - Reinhard Klenke
- UFZ-Helmholtz Centre for Environmental Research; Department of Conservation Biology; Permoserstrasse 15 04318 Leipzig Germany
| | - Marion Hoehn
- UFZ-Helmholtz Centre for Environmental Research; Department of Conservation Biology; Permoserstrasse 15 04318 Leipzig Germany
| | - Bernd Gruber
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures; University of Canberra; ACT 2601 Canberra Australia
| |
Collapse
|
15
|
Wadley JJ, Austin JJ, Fordham DA. Rapid species identification of eight sympatric northern Australian macropods from faecal-pellet DNA. WILDLIFE RESEARCH 2013. [DOI: 10.1071/wr13005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Conservation of vulnerable and endangered species requires a comprehensive understanding of their distribution and habitat requirements, so as to implement effective management strategies. Visual scat surveys are a common non-invasive method for monitoring populations. However, morphological similarity of scats among sympatric species presents a problem for accurate identification. Visual misidentifications of scats can have major impacts on the accuracy of abundance and distribution surveys of target species, wasting resources and misdirecting management and conservation actions. DNA identification of scats can overcome this issue, while simultaneously providing a rich source of genetic information for population and dietary studies. Aims We developed a simple and reliable method to identify morphologically similar macropod scats from eight sympatric species in north-eastern Australia, using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of a portion of the mtDNA ND2 gene. Methods We identified a short (275-bp) polymorphic region of ND2, which is easily amplifiable from degraded DNA, developed a primer set, and identified a set of three restriction endonucleases (AluI, BstNI and HphI) which, in combination, can discriminate among the eight target species. So as to test the effectiveness of this protocol, we collected 914 macropod scats from 53 sites in the north-eastern Australia. Key results In total, 406 of these scats were extracted, with 398 (98%) containing amplifiable macropod DNA. All 398 scats were subsequently identified to species by using our RFLP protocol. Sequencing of a subset of these samples confirmed the accuracy of the test. Species identification of scats by using DNA identified eight species of macropods, five of which were outside their documented distributions, one of which was ~400 km. Conclusions Our PCR–RFLP method is a simple and efficient means to identify macropod scats to species, eliminating the need for sequencing, which is costly, time-consuming and requires additional laboratory equipment. Implications The method allows for rapid and non-invasive assessment of macropod species and is particularly useful for surveying populations across multiple sites.
Collapse
|
16
|
Hausknecht R, Szabó Á, Firmánszky G, Gula R, Kuehn R. Confirmation of wolf residence in Northern Hungary by field and genetic monitoring. Mamm Biol 2010. [DOI: 10.1016/j.mambio.2009.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Ball MC. Faecal pellet size can be used to differentiate age-classes in caribou: implications for non-invasive genetic studies. CONSERV GENET RESOUR 2010. [DOI: 10.1007/s12686-010-9252-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
BEJA‐PEREIRA ALBANO, OLIVEIRA RITA, ALVES PAULOC, SCHWARTZ MICHAELK, LUIKART GORDON. Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 2009; 9:1279-301. [DOI: 10.1111/j.1755-0998.2009.02699.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- ALBANO BEJA‐PEREIRA
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
| | - RITA OLIVEIRA
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169‐007 Porto, Portugal
| | - PAULO C. ALVES
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169‐007 Porto, Portugal
| | - MICHAEL K. SCHWARTZ
- USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - GORDON LUIKART
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|