1
|
Lever MA, Alperin MJ, Hinrichs KU, Teske A. Zonation of the active methane-cycling community in deep subsurface sediments of the Peru trench. Front Microbiol 2023; 14:1192029. [PMID: 37250063 PMCID: PMC10213550 DOI: 10.3389/fmicb.2023.1192029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
The production and anaerobic oxidation of methane (AOM) by microorganisms is widespread in organic-rich deep subseafloor sediments. Yet, the organisms that carry out these processes remain largely unknown. Here we identify members of the methane-cycling microbial community in deep subsurface, hydrate-containing sediments of the Peru Trench by targeting functional genes of the alpha subunit of methyl coenzyme M reductase (mcrA). The mcrA profile reveals a distinct community zonation that partially matches the zonation of methane oxidizing and -producing activity inferred from sulfate and methane concentrations and carbon-isotopic compositions of methane and dissolved inorganic carbon (DIC). McrA appears absent from sulfate-rich sediments that are devoid of methane, but mcrA sequences belonging to putatively methane-oxidizing ANME-1a-b occur from the zone of methane oxidation to several meters into the methanogenesis zone. A sister group of ANME-1a-b, referred to as ANME-1d, and members of putatively aceticlastic Methanothrix (formerly Methanosaeta) occur throughout the remaining methanogenesis zone. Analyses of 16S rRNA and mcrA-mRNA indicate that the methane-cycling community is alive throughout (rRNA to 230 mbsf) and active in at least parts of the sediment column (mRNA at 44 mbsf). Carbon-isotopic depletions of methane relative to DIC (-80 to -86‰) suggest mostly methane production by CO2 reduction and thus seem at odds with the widespread detection of ANME-1 and Methanothrix. We explain this apparent contradiction based on recent insights into the metabolisms of both ANME-1 and Methanothricaceae, which indicate the potential for methanogenetic growth by CO2 reduction in both groups.
Collapse
Affiliation(s)
- Mark A. Lever
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marc J. Alperin
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andreas Teske
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Bhattarai S, Cassarini C, Lens PNL. Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiol Mol Biol Rev 2019; 83:e00074-18. [PMID: 31366606 PMCID: PMC6710461 DOI: 10.1128/mmbr.00074-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In marine anaerobic environments, methane is oxidized where sulfate-rich seawater meets biogenic or thermogenic methane. In those niches, a few phylogenetically distinct microbial types, i.e., anaerobic methanotrophs (ANME), are able to grow through anaerobic oxidation of methane (AOM). Due to the relevance of methane in the global carbon cycle, ANME have drawn the attention of a broad scientific community for 4 decades. This review presents and discusses the microbiology and physiology of ANME up to the recent discoveries, revealing novel physiological types of anaerobic methane oxidizers which challenge the view of obligate syntrophy for AOM. An overview of the drivers shaping the distribution of ANME in different marine habitats, from cold seep sediments to hydrothermal vents, is given. Multivariate analyses of the abundance of ANME in various habitats identify a distribution of distinct ANME types driven by the mode of methane transport. Intriguingly, ANME have not yet been cultivated in pure culture, despite intense attempts. Further advances in understanding this microbial process are hampered by insufficient amounts of enriched cultures. This review discusses the advantages, limitations, and potential improvements for ANME laboratory-based cultivation systems.
Collapse
Affiliation(s)
- S Bhattarai
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
| | - C Cassarini
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| | - P N L Lens
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
3
|
Hao L, Zhang B, Feng C, Zhang Z, Lei Z, Shimizu K, Cao X, Liu H, Liu H. Microbial vanadium (V) reduction in groundwater with different soils from vanadium ore mining areas. CHEMOSPHERE 2018; 202:272-279. [PMID: 29571148 DOI: 10.1016/j.chemosphere.2018.03.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/19/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
This work investigated the potential of vanadium (V) (V(V)) bioreduction by using soils sampled from four main kinds of vanadium ore mining areas, i.e. vanadium titanomagnetite, stone coal, petroleum associated minerals and uvanite as inocula. During a typical operation cycle of 60 h, the soils from vanadium titanomagnetite area and petroleum associated minerals area exhibited higher V(V) removal efficiencies, about 92.0 ± 2.0% and 91.0 ± 1.9% in comparison to 87.1 ± 1.9% and 69.0 ± 1.1% for the soils from uvanite and stone coal areas, respectively. Results from high-throughput 16 S rRNA gene pyrosequencing analysis reflect the accumulation of Bryobacter and Acidobacteriaceae with capabilities of V(V) reduction, accompanied with other functional species. This study is helpful to search new functional species for V(V) reduction and to develop in situ bioremediations of V(V) polluted groundwater.
Collapse
Affiliation(s)
- Liting Hao
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8572, Japan
| | - Xuelong Cao
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Hui Liu
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Huipeng Liu
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| |
Collapse
|
4
|
Yu D, Wen Z, Li X, Song X, Wu H, Yang P. Effects of straw return on bacterial communities in a wheat-maize rotation system in the North China Plain. PLoS One 2018; 13:e0198087. [PMID: 29879153 PMCID: PMC5991650 DOI: 10.1371/journal.pone.0198087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
Straw return plays an important role in reducing the use of chemical fertilizer, promoting soil carbon sequestration, thus maintaining soil fertility and alleviating environmental pollution. To examine the effects of straw return on soil bacterial communities, quantitative PCR and high-throughput sequencing approaches were used to analyze the bacterial abundance and community structures at the depths of 5-25 cm and 25-45 cm in the soils under six-year continuous straw return and removal treatments in Langfang, Hebei, the North China Plain. As a result, straw return had no effects on soil chemical properties, bacterial abundance, richness or diversity at both soil depths. In contrast, vertical distributions of available nitrogen and available potassium were affected. Similarly, straw return also changed the vertical distributions of Proteobacteria and Chloroflexi. Principal coordinate analysis based on weighted UniFrac distance matrix indicated a moderate separation of the bacterial community in the soil treated with straw return from that with straw removal at 5-25 cm depth, but they were not distinctly distinguished at 25-45 cm depth. T-test identified increased abundance of Candidatus Latescibacteria in the soil under straw return treatment at 5-25 cm depth but no differentially abundant phyla at 25-45 cm depth was found. These results suggested a selection effect from the six-year continuous straw return treatment and the soil bacterial communities were moderately changed.
Collapse
Affiliation(s)
- Dali Yu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- School of Life Sciences, Qilu Normal University, Jinan, P. R. China
| | - Zhiguo Wen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiumei Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaojun Song
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huijun Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (HW); (PY)
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (HW); (PY)
| |
Collapse
|
5
|
Bhattarai S, Cassarini C, Rene ER, Kümmel S, Esposito G, Lens PNL. Enrichment of ANME-2 dominated anaerobic methanotrophy from cold seep sediment in an external ultrafiltration membrane bioreactor. Eng Life Sci 2018; 18:368-378. [PMID: 32624917 DOI: 10.1002/elsc.201700148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/20/2017] [Accepted: 02/14/2018] [Indexed: 11/08/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is a microbially mediated unique natural phenomenon with an ecological relevance in the global carbon balance and potential application in biotechnology. This study aimed to enrich an AOM performing microbial community with the main focus on anaerobic methanotrophic archaea (ANME) present in sediments from the Ginsburg mud volcano (Gulf of Cadiz), a known site for AOM, in a membrane bioreactor (MBR) for 726 days at 22 (± 3)°C and at ambient pressure. The MBR was equipped with a cylindrical external ultrafiltration membrane, fed a defined medium containing artificial seawater and operated at a cross flow velocity of 0.02 m/min. Sulfide production with simultaneous sulfate reduction was in equimolar ratio between days 480 and 585 of MBR operation, whereas methane consumption was in oscillating trend. At the end of the MBR operation (day 726), the enriched biomass was incubated with 13C labeled methane, 13C labeled inorganic carbon was produced and the AOM rate based on 13C-inorganic carbon was 1.2 μmol/(gdw d). Microbial analysis of the enriched biomass at 400 and 726 days of MBR operation showed that ANME-2 and Desulfosarcina type sulfate reducing bacteria were enriched in the MBR, which formed closely associated aggregates. The major relevance of this study is the enrichment of an AOM consortium in a MBR system which can assist to explore the ecophysiology of ANME and provides an opportunity to explore the potential application of AOM.
Collapse
Affiliation(s)
| | - Chiara Cassarini
- UNESCO-IHE Institute for Water Education The Netherlands.,Department of Microbiology National University of Ireland Galway Ireland
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education The Netherlands
| | - Steffen Kümmel
- Department for Isotope Biogeochemistry Helmholtz-Centre for Environmental Research (UFZ) Leipzig Germany
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering University of Cassino and Southern Lazio Cassino (FR) Italy
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education The Netherlands.,Department of Microbiology National University of Ireland Galway Ireland
| |
Collapse
|
6
|
Hoshino T, Toki T, Ijiri A, Morono Y, Machiyama H, Ashi J, Okamura K, Inagaki F. Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes. Front Microbiol 2017; 8:1135. [PMID: 28676800 PMCID: PMC5476839 DOI: 10.3389/fmicb.2017.01135] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/06/2017] [Indexed: 11/23/2022] Open
Abstract
Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth’s surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 104 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as “deep-biosphere seeds” into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Tomohiro Toki
- Faculty of Science, University of the RyukyusNishihara, Japan
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Hideaki Machiyama
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Juichiro Ashi
- Atmosphere and Ocean Research Institute, The University of TokyoTokyo, Japan
| | - Kei Okamura
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi UniversityNankoku, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science TechnologyYokohama, Japan
| |
Collapse
|
7
|
Global Distribution Patterns and Pangenomic Diversity of the Candidate Phylum "Latescibacteria" (WS3). Appl Environ Microbiol 2017; 83:AEM.00521-17. [PMID: 28314726 DOI: 10.1128/aem.00521-17] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/11/2017] [Indexed: 01/01/2023] Open
Abstract
We investigated the global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" (WS3) in 16S rRNA gene as well as metagenomic data sets. We document distinct distribution patterns for various "Latescibacteria" orders in 16S rRNA gene data sets, with prevalence of orders sediment_1 in terrestrial, PBSIII_9 in groundwater and temperate freshwater, and GN03 in pelagic marine, saline-hypersaline, and wastewater habitats. Using a fragment recruitment approach, we identified 68.9 Mb of "Latescibacteria"-affiliated contigs in publicly available metagenomic data sets comprising 73,079 proteins. Metabolic reconstruction suggests a prevalent saprophytic lifestyle in all "Latescibacteria" orders, with marked capacities for the degradation of proteins, lipids, and polysaccharides predominant in plant, bacterial, fungal/crustacean, and eukaryotic algal cell walls. As well, extensive transport and central metabolic pathways for the metabolism of imported monomers were identified. Interestingly, genes and domains suggestive of the production of a cellulosome-e.g., protein-coding genes harboring dockerin I domains attached to a glycosyl hydrolase and scaffoldin-encoding genes harboring cohesin I and CBM37 domains-were identified in order PBSIII_9, GN03, and MSB-4E2 fragments recovered from four anoxic aquatic habitats; hence extending the cellulosomal production capabilities in Bacteria beyond the Gram-positive Firmicutes In addition to fermentative pathways, a complete electron transport chain with terminal cytochrome c oxidases Caa3 (for operation under high oxygen tension) and Cbb3 (for operation under low oxygen tension) were identified in PBSIII_9 and GN03 fragments recovered from oxygenated and partially/seasonally oxygenated aquatic habitats. Our metagenomic recruitment effort hence represents a comprehensive pangenomic view of this yet-uncultured phylum and provides insights broader than and complementary to those gained from genome recovery initiatives focusing on a single or few sampled environments.IMPORTANCE Our understanding of the phylogenetic diversity, metabolic capabilities, and ecological roles of yet-uncultured microorganisms is rapidly expanding. However, recent efforts mainly have been focused on recovering genomes of novel microbial lineages from a specific sampling site, rather than from a wide range of environmental habitats. To comprehensively evaluate the genomic landscape, putative metabolic capabilities, and ecological roles of yet-uncultured candidate phyla, efforts that focus on the recovery of genomic fragments from a wide range of habitats and that adequately sample the intraphylum diversity within a specific target lineage are needed. Here, we investigated the global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" Our results document the preference of specific "Latescibacteria" orders to specific habitats, the prevalence of plant polysaccharide degradation abilities within all "Latescibacteria" orders, the occurrence of all genes/domains necessary for the production of cellulosomes within three "Latescibacteria" orders (GN03, PBSIII_9, and MSB-4E2) in data sets recovered from anaerobic locations, and the identification of the components of an aerobic respiratory chain, as well as occurrence of multiple O2-dependent metabolic reactions in "Latescibacteria" orders GN03 and PBSIII_9 recovered from oxygenated habitats. The results demonstrate the value of phylocentric pangenomic surveys for understanding the global ecological distribution and panmetabolic abilities of yet-uncultured microbial lineages since they provide broader and more complementary insights than those gained from single-cell genomic and/or metagenomic-enabled genome recovery efforts focusing on a single sampling site.
Collapse
|
8
|
In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3). PLoS One 2015; 10:e0127499. [PMID: 26039074 PMCID: PMC4454575 DOI: 10.1371/journal.pone.0127499] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
The “Latescibacteria” (formerly WS3), member of the Fibrobacteres–Chlorobi–Bacteroidetes (FCB) superphylum, represents a ubiquitous candidate phylum found in terrestrial, aquatic, and marine ecosystems. Recently, single-cell amplified genomes (SAGs) representing the “Latescibacteria” were obtained from the anoxic monimolimnion layers of Sakinaw Lake (British Columbia, Canada), and anoxic sediments of a coastal lagoon (Etoliko lagoon, Western Greece). Here, we present a detailed in-silico analysis of the four SAGs to gain some insights on their metabolic potential and apparent ecological roles. Metabolic reconstruction suggests an anaerobic fermentative mode of metabolism, as well as the capability to degrade multiple polysaccharides and glycoproteins that represent integral components of green (Charophyta and Chlorophyta) and brown (Phaeophycaea) algae cell walls (pectin, alginate, ulvan, fucan, hydroxyproline-rich glycoproteins), storage molecules (starch and trehalose), and extracellular polymeric substances (EPSs). The analyzed SAGs also encode dedicated transporters for the uptake of produced sugars and amino acids/oligopeptides, as well as an extensive machinery for the catabolism of all transported sugars, including the production of a bacterial microcompartment (BMC) to sequester propionaldehyde, a toxic intermediate produced during fucose and rhamnose metabolism. Finally, genes for the formation of gas vesicles, flagella, type IV pili, and oxidative stress response were found, features that could aid in cellular association with algal detritus. Collectively, these results indicate that the analyzed “Latescibacteria” mediate the turnover of multiple complex organic polymers of algal origin that reach deeper anoxic/microoxic habitats in lakes and lagoons. The implications of such process on our understanding of niche specialization in microbial communities mediating organic carbon turnover in stratified water bodies are discussed.
Collapse
|
9
|
Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina. Colloids Surf B Biointerfaces 2015; 126:303-12. [PMID: 25578422 DOI: 10.1016/j.colsurfb.2014.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
The mechanical and adhesive properties as well as the turgor pressure of microbes play an important role in cell growth and aggregation. By applying AFM together with finite element modelling, one can determine the cell wall structural homogeneity, mechanical and cell-to-cell adhesive properties for aggregated Methanosarcina barkeri cells. This also allows a novel approach to determine in-aggregate turgor pressure determination. Analyzing the AFM force-indentation response of the aggregates under loads less than 10 nN, our study reveals structural inhomogeneity of the polymeric part of the cell wall material and suggests that the cell wall consists of two layers of methanochondroitin (external: with a thickness of 3 ± 1 nm and internal: with a thickness of 169 ± 30 nm). On average, the hyperelastic finite element model showed that the internal layer is more rigid (μ = 14 ± 4 MPa) than the external layer (μ = 2.8 ± 0.9 MPa). To determine the turgor pressure and adhesiveness of the cells, a specific mode of indentation (under a load of 45 nN), aimed towards the centre of the individual aggregate, was performed. By modelling the AFM induced decohesion of the aggregate, the turgor pressure and the cell-to-cell adhesive interface properties could be determined. On average, the turgor pressure is estimated to be 59 ± 22 kPa, the interface strength is 78 ± 12 kPa and the polymer network extensibility is 2.8 ± 0.9 nm. We predict that internal cell wall comprised highly compressed methanochondroitin chains and we are able to identify a conceptual model for stress dependent inner cell wall growth.
Collapse
|
10
|
Diversity of marine microbes in a changing Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-014-0333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Wang PL, Chiu YP, Cheng TW, Chang YH, Tu WX, Lin LH. Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan. Front Microbiol 2014; 5:121. [PMID: 24723919 PMCID: PMC3971192 DOI: 10.3389/fmicb.2014.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/10/2014] [Indexed: 12/04/2022] Open
Abstract
This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial mud volcanoes.
Collapse
Affiliation(s)
- Pei-Ling Wang
- Institute of Oceanography, National Taiwan University Taipei, Taiwan
| | - Yi-Ping Chiu
- Institute of Oceanography, National Taiwan University Taipei, Taiwan ; Department of Geosciences, National Taiwan University Taipei, Taiwan
| | - Ting-Wen Cheng
- Department of Geosciences, National Taiwan University Taipei, Taiwan
| | - Yung-Hsin Chang
- Department of Geosciences, National Taiwan University Taipei, Taiwan
| | - Wei-Xain Tu
- Department of Geosciences, National Taiwan University Taipei, Taiwan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University Taipei, Taiwan
| |
Collapse
|
12
|
Durbin AM, Teske A. Archaea in organic-lean and organic-rich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front Microbiol 2012; 3:168. [PMID: 22666218 PMCID: PMC3364523 DOI: 10.3389/fmicb.2012.00168] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/16/2012] [Indexed: 02/01/2023] Open
Abstract
Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure.
Collapse
Affiliation(s)
- Alan M Durbin
- Department of Ecology and Evolutionary Biology, University of California Irvine Irvine, CA, USA
| | | |
Collapse
|
13
|
Lazar CS, John Parkes R, Cragg BA, L'Haridon S, Toffin L. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea. FEMS Microbiol Ecol 2012; 81:243-54. [DOI: 10.1111/j.1574-6941.2012.01375.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Cassandre Sara Lazar
- Department of Marine Sciences; University of North Carolina at Chapel Hill; Chapel Hill; NC; USA
| | - R. John Parkes
- School of Earth and Ocean Sciences; Cardiff University; Cardiff; UK
| | - Barry A. Cragg
- School of Earth and Ocean Sciences; Cardiff University; Cardiff; UK
| | - Stephane L'Haridon
- Laboratoire de Microbiologie des Environnements Extrêmes; UMR 6197; IFREMER Centre de Brest; Departement Etudes des Environnements Profonds; Université de Bretagne Occidentale; Plouzané; France
| | - Laurent Toffin
- Laboratoire de Microbiologie des Environnements Extrêmes; UMR 6197; IFREMER Centre de Brest; Departement Etudes des Environnements Profonds; Université de Bretagne Occidentale; Plouzané; France
| |
Collapse
|
14
|
Antony CP, Murrell JC, Shouche YS. Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol 2012; 81:43-51. [PMID: 22150151 DOI: 10.1111/j.1574-6941.2011.01274.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/29/2022] Open
Abstract
Soda lakes constitute extreme aquatic ecosystems with remarkably high primary productivity rates, but information on the diversity and activity of methanogens in such environments is sparse. Using 16S rRNA and functional genes, we investigated the diversity of methanogens in the sediments of Lonar Lake, a unique saline and alkaline ecosystem formed by meteorite impact in the Deccan basalts. Although domain and phylum level 16S rRNA gene libraries were dominated by phylotypes related to Halobacteriales, sequences related to potentially novel Archaea within the orders Methanosarcinales and Methanomicrobiales were obtained together with a significant fraction of sequences representing uncultivated Euryarchaeota [Correction added after online publication 16 April 2012: orders 'Methanosarcina and Methanomicrobiaceae' changed to 'Methanosarcinales and Methanomicrobiales']. To identify the active methylotrophic Archaea involved in methanogenesis, mRNA transcripts of mcrA were retrieved from methanol consuming and methane emitting sediment microcosms at two different time points. Reverse-transcription PCR, qPCR, DGGE fingerprint, and clone library analysis showed that the active Archaea were closely related to Methanolobus oregonensis. To our knowledge, this is the first study identifying active methylotrophic methanogens in such an environment.
Collapse
|
15
|
Na H, Kim OS, Yoon SH, Kim Y, Chun J. Comparative approach to capture bacterial diversity of coastal waters. J Microbiol 2011; 49:729-40. [PMID: 22068488 DOI: 10.1007/s12275-011-1205-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/27/2011] [Indexed: 01/28/2023]
Abstract
Despite the revolutionary advancements in DNA sequencing technology and cultivation techniques, few studies have been done to directly compare these methods. In this study, a 16S rRNA gene-based, integrative approach combining culture-independent techniques with culture-dependent methods was taken to investigate the bacterial community structure of coastal seawater collected from the Yellow Sea, Korea. For culture-independent studies, we used the latest model pyrosequencer, Roche/454 Genome Sequencer FLX Titanium. Pyrosequencing captured a total of 52 phyla including 27 candidate divisions from the water column, whereas the traditional cloning approach captured only 15 phyla including 2 candidate divisions. In addition, of 878 genera retrieved, 92.1 % of the sequences were unique to pyrosequencing. For culture-dependent analysis, plate culturing, plate washing, enrichment, and high-throughput culturing (HTC) methods were applied. Phylogenetic analysis showed that the plate-washing clones formed a cluster devoid of any previously cultured representatives within the family Rhodobacteraceae. One HTC isolate (SF293) fell into the OM182 clade, which was not recovered by other culturing methods described here. By directly comparing the sequences obtained from cultures with those from culture-independent work, we found that only 33% of the culture sequences were identical to those from clone libraries and pyrosequences. This study presents a detailed comparison of common molecular and cultivation techniques available in microbial ecology. As different methods yielded different coverage, we suggest choosing the approach after carefully examining the scientific questions being asked.
Collapse
Affiliation(s)
- Hyunsoo Na
- Center for Geomicrobiology, University of Aarhus, Ny Munkegade, Bld. 1535, 8000, Århus C, Denmark
| | | | | | | | | |
Collapse
|
16
|
Pachiadaki MG, Kallionaki A, Dählmann A, De Lange GJ, Kormas KA. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. MICROBIAL ECOLOGY 2011; 62:655-668. [PMID: 21538105 DOI: 10.1007/s00248-011-9855-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/06/2011] [Indexed: 05/30/2023]
Abstract
We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon-Wiener diversity index H was higher for Bacteria (1.92-4.03) than for Archaea (0.99-1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Magnesia, Greece
| | | | | | | | | |
Collapse
|
17
|
Schulze-Makuch D, Haque S, de Sousa Antonio MR, Ali D, Hosein R, Song YC, Yang J, Zaikova E, Beckles DM, Guinan E, Lehto HJ, Hallam SJ. Microbial life in a liquid asphalt desert. ASTROBIOLOGY 2011; 11:241-258. [PMID: 21480792 DOI: 10.1089/ast.2010.0488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- School of Earth and Environmental Sciences, Washington State University, Pullman, 99164-6376, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sahl JW, Gary MO, Harris JK, Spear JR. A comparative molecular analysis of water-filled limestone sinkholes in north-eastern Mexico. Environ Microbiol 2010; 13:226-240. [DOI: 10.1111/j.1462-2920.2010.02324.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 2010; 72:429-44. [PMID: 20370830 DOI: 10.1111/j.1574-6941.2010.00857.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes-Heraklion, Greece
| | | | | | | |
Collapse
|
20
|
Abstract
Methane is the most abundant hydrocarbon in the atmosphere, and it is an important greenhouse gas, which has so far contributed an estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron acceptor according to the net reaction: CH(4) + SO(42-) ---> HCO(3-) + HS(-) + H(2)O. This review summarizes what is known and unknown about AOM on earth and its key catalysts, the ANME clades and their bacterial partners.
Collapse
Affiliation(s)
- Katrin Knittel
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
| | | |
Collapse
|