1
|
Abdeljelil N, Ben Miloud Yahia N, Landoulsi A, Chatti A, Wattiez R, Gillan D, Van Houdt R. Proteomic and morphological insights into the exposure of Cupriavidus metallidurans CH34 planktonic cells and biofilms to aluminium. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133403. [PMID: 38215523 DOI: 10.1016/j.jhazmat.2023.133403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Aluminium (Al) is one of the most popular materials for industrial and domestic use. Nevertheless, research has proven that this metal can be toxic to most organisms. This light metal has no known biological function and to date very few aluminium-specific biological pathways have been identified. In addition, information about the impact of this metal on microbial life is scarce. Here, we aimed to study the effect of aluminium on the metal-resistant soil bacterium Cupriavidus metallidurans CH34 in different growth modes, i.e. planktonic cells, adhered cells and mature biofilms. Our results indicated that despite a significant tolerance to aluminium (minimal inhibitory concentration of 6.25 mM Al₂(SO₄)₃.18H₂O), the exposure of C. metallidurans to a sub-inhibitory dose (0.78 mM) caused early oxidative stress and an increase in hydrolytic activity. Changes in the outer membrane surface of planktonic cells were observed, in addition to a rapid disruption of mature biofilms. On protein level, aluminium exposure increased the expression of proteins involved in metabolic activity such as pyruvate kinase, formate dehydrogenase and poly(3-hydroxybutyrate) polymerase, whereas proteins involved in chemotaxis, and the production and transport of iron scavenging siderophores were significantly downregulated.
Collapse
Affiliation(s)
- Nissem Abdeljelil
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium; Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | | | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium
| | - David Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| |
Collapse
|
2
|
Wang L, Tang X, Liu X, Zhang J. Active permanent greening - a new slope greening technology based on mineral solubilizing microorganisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1219139. [PMID: 37711299 PMCID: PMC10498118 DOI: 10.3389/fpls.2023.1219139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Introduction With social and economic development and the associated large-scale exploitation of natural resources, the number of slopes has significantly increased. As slope instability can lead to serious geological disasters, the ecological protection and reconstruction of slopes has become a hot topic of common global concern. Methods In order to achieve scientific slope management and overcome the difficulty of maintaining slope greening in the long term, this study explored eight strategies (A, B, C, AB, AC, BC, ABC, CK), involving different patented mineral solubilizing microorganisms (MSMs), and analyzed the field application of active permanent greening (APG) based on MSMs. Results The results revealed that MSMs significantly increased the content of effective metal ions and available nutrients in soil and enhanced soil enzyme activity. Among all strategies, strategy A showed significant superiority, with soil effective calcium, magnesium, potassium, nitrogen, phosphorus and organic matter contents increasing by 51.62%, 55.41%, 30.42%, 39.77%, 181.69% and 76.92%, respectively, while urease, sucrase and peroxidase activities increased by 89.59%, 74.68% and 85.30%. MSMs strongly promoted the growth of Amorpha. Strategy A showed the best performance, with plant seedling height, ground diameter, leaf area, root length, and root volume increasing by 95.75%, 47.78%, 124.14%, 108.83%, and 139. 86%, respectively. According to a comprehensive evaluation using the entropy-analysis hierarchy process, strategy A has great potential for application. The field test results verified that APG has significantly better greening performance than the traditional greening method, with high vegetation cover and stable soil layer. Discussion The results of this study provide a reliable practical basis and technical reference for the development, promotion, and application of APG.
Collapse
Affiliation(s)
- Lingjian Wang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xinggang Tang
- Jiangxi Institute of Land Space Survey and Planning, Nanchang, Jiangxi, China
- Technology Innovation Center for Land Spatial Eco-protection and Restoration in Great Lakes Basin, MNR, Nanchang, Jiangxi, China
| | - Xin Liu
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jinchi Zhang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Li F, Hou W, Wang S, Zhang Y, He Q, Zhang W, Dong H. Effects of Mineral on Taxonomic and Functional Structures of Microbial Community in Tengchong Hot Springs via in-situ cultivation. ENVIRONMENTAL MICROBIOME 2023; 18:22. [PMID: 36949539 PMCID: PMC10035157 DOI: 10.1186/s40793-023-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Diverse mineralogical compositions occur in hot spring sediments, but the impact of minerals on the diversity and structure of microbial communities remains poorly elucidated. In this study, different mineral particles with various chemistries (i.e., hematite, biotite, K-feldspar, quartz, muscovite, aragonite, serpentine, olivine, barite, apatite, and pyrite) were incubated for ten days in two Tengchong hot springs, one alkaline (pH ~ 8.34) with a high temperature (~ 82.8 °C) (Gumingquan, short as GMQ) and one acidic (pH ~ 3.63) with a relatively low temperature (~ 43.3 °C) (Wenguangting, short as WGT), to determine the impacts of minerals on the microbial communities taxonomic and functional diversities. Results showed that the mineral-associated bacterial taxa differed from those of the bulk sediment samples in the two hot springs. The relative abundance of Proteobacteria, Euryarchaeota, and Acidobacteria increased in all minerals, indicating that these microorganisms are apt to colonize on solid surfaces. The α-diversity indices of the microbial communities on the mineral surfaces in the WGT were higher than those from the bulk sediment samples (p < 0.05), which may be caused by the stochastically adhering process on the mineral surface during 10-day incubation, different from the microbial community in sediment which has experienced long-term environmental and ecological screening. Chemoheterotrophy increased with minerals incubation, which was high in most cultured minerals (the relative contents were 5.8 - 21.4%). Most notably, the sulfate respiration bacteria (mainly related to Desulfobulbaceae and Syntrophaceae) associated with aragonite in the acidic hot spring significantly differed from other minerals, possibly due to the pH buffering effect of aragonite providing more favorable conditions for their survival and proliferation. By comparison, aragonite cultured in the alkaline hot spring highly enriched denitrifying bacteria and may have promoted the nitrogen cycle within the system. Collectively, we speculated that diverse microbes stochastically adhered on the surface of minerals in the water flows, and the physicochemical properties of minerals drove the enrichment of certain microbial communities and functional groups during the short-term incubation. Taken together, these findings thereby provide novel insights into mechanisms of community assembly and element cycling in the terrestrial hydrothermal system associated with hot springs.
Collapse
Affiliation(s)
- Fangru Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Weiguo Hou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Yidi Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Wenhui Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
4
|
Gaylarde C, Little B. Biodeterioration of stone and metal - Fundamental microbial cycling processes with spatial and temporal scale differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153193. [PMID: 35122860 DOI: 10.1016/j.scitotenv.2022.153193] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Fundamental processes for the biodeterioration of stone and metal involve many of the same microbially mediated reactions - oxidation, reduction, acid dissolution and elemental cycling - resulting from the activities of many of the same groups of environmental microorganisms. Differences depend on the nature of the substratum - stone vs. metal - and the composition of the surroundings, whether terrestrial (stone) or aquatic (stone and metal). Reactions within surface-related biofilms dominate the biodeterioration of metals and contribute greatly to the biodeterioration of stone. In the latter, phototrophic organisms, and especially cyanobacteria, are important first participants, while metal biodeterioration is almost entirely associated with bacteria, archaea and fungi. Biofilms on metal surfaces can produce chemical and electrochemical responses. While electrochemical responses are absent in stone, extracellular electron transfer can be a biodeterioration mechanism in some iron-rich rocks. Microorganisms in biofilms can penetrate and create fissures or cracks in stone and metals. However, the most obvious differences in the reactions of built stone and metal structures are related to the definition of failure, length of time required for a defined failure of the substratum, the area over which the failure occurs and the consequences of failure. Time and space are, similarly, quite distinct for biological breakdown and mineral cycling of metal and stone, with stone/rock cycling potentially occurring over thousands of years and kilometers.
Collapse
Affiliation(s)
- Christine Gaylarde
- Department of Microbiology and Plant Biology, Oklahoma University, 770 Van Vleet Oval, Norman, OK 73019, USA
| | - Brenda Little
- BJ Little Corrosion Consulting, LLC, 6528 Alakoko Drive, Diamondhead, MS 39525, USA.
| |
Collapse
|
5
|
Uroz S, Picard L, Turpault MP. Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria. Trends Microbiol 2022; 30:882-897. [PMID: 35181182 DOI: 10.1016/j.tim.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Mineral weathering bacteria play essential roles in nutrient cycling and plant nutrition. However, we are far from having a comprehensive view of the factors regulating their distribution and the molecular mechanisms involved. In this review, we highlight the extrinsic factors (i.e., nutrient availability, carbon source) and the intrinsic properties of minerals explaining the distribution and functioning of these functional communities. We also present and discuss the progress made in understanding the molecular mechanisms and genes that are used by bacteria during the mineral weathering process, or regulated during their interaction with minerals, that have been recently unraveled by omics approaches.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136 'Interactions Arbres-Microorganismes', F-54280 Champenoux, France; INRAE, UR1138 'Biogéochimie des Ecosystèmes Forestiers', F-54280 Champenoux, France.
| | - Laura Picard
- Université de Lorraine, INRAE, UMR1136 'Interactions Arbres-Microorganismes', F-54280 Champenoux, France; INRAE, UR1138 'Biogéochimie des Ecosystèmes Forestiers', F-54280 Champenoux, France
| | | |
Collapse
|
6
|
Lu Z, Su H. Employing gene chip technology for monitoring and assessing soil heavy metal pollution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:2. [PMID: 34862584 DOI: 10.1007/s10661-021-09650-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Soil heavy metals pollution can cause many serious environment problems because of involving a very complex pollution process for soil health. Therefore, it is very important to explore methods that can effectively evaluate heavy metal pollution. Researchers were actively looking for new ideas and new methods for evaluating and predicting levels of soil heavy metal pollution. The study on microbial communities is one of the effective methods using gene chip technology. Gene chip technology, as a high-throughput metagenomics analysis technique, has been widely used for studying the structure and function of complex microbial communities in different polluted environments from different pollutants, including the soil polluted by heavy metals. However, there is still a lack of a systematic summarization for the polluted soil by heavy metals. This paper systematically analyzed soil heavy metals pollution via reviewing previous studies on applying gene chip technology, including single species, tolerance mechanisms, enrichment mechanisms, anticipation and evaluation of soil remediation, and multi-directional analysis. The latest gene chip technologies and corresponding application cases for discovering critical species and functional genes via analyzing microbial communities and evaluating heavy metal pollution of soil were also introduced in this paper. This article can provide scientific guidance for researchers actively investigating the soil polluted by heavy metals.
Collapse
Affiliation(s)
- ZiChun Lu
- College of Hehai, Chongqing University of Technology, Chongqing, 400717, China
| | - HaiFeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Xi'an, Shanxi, 710075, China.
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China.
| |
Collapse
|
7
|
Santomartino R, Waajen AC, de Wit W, Nicholson N, Parmitano L, Loudon CM, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Finster K, Coninx I, Krause J, Koehler A, Caplin N, Zuijderduijn L, Zolesi V, Balsamo M, Mariani A, Pellari SS, Carubia F, Luciani G, Leys N, Doswald-Winkler J, Herová M, Wadsworth J, Everroad RC, Rattenbacher B, Demets R, Cockell CS. No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction. Front Microbiol 2020; 11:579156. [PMID: 33154740 PMCID: PMC7591705 DOI: 10.3389/fmicb.2020.579156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravity-related effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Wessel de Wit
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Luca Parmitano
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Kai Finster
- Department of Biology - Microbiology, Aarhus University, Aarhus C, Denmark
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Jutta Krause
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Andrea Koehler
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Nicol Caplin
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Lobke Zuijderduijn
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | | | | | | | | | | | | | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik und Architektur, Hergiswil, Switzerland
| | - Jennifer Wadsworth
- Exobiology Branch, NASA Ames Research Center, Moffet Field, CA, United States
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffet Field, CA, United States
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik und Architektur, Hergiswil, Switzerland
| | - René Demets
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Uroz S, Picard L, Turpault MP, Auer L, Armengaud J, Oger P. Dual transcriptomics and proteomics analyses of the early stage of interaction between Caballeronia mineralivorans PML1(12) and mineral. Environ Microbiol 2020; 22:3838-3862. [PMID: 32656915 DOI: 10.1111/1462-2920.15159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Minerals and rocks represent essential reservoirs of nutritive elements for the long-lasting functioning of forest ecosystems developed on nutrient-poor soils. While the presence of effective mineral weathering bacteria was evidenced in the rhizosphere of different plants, the molecular mechanisms involved remain uncharacterized. To fill this gap, we combined transcriptomic, proteomics, geo-chemical and physiological analyses to decipher the potential molecular mechanisms explaining the mineral weathering effectiveness of strain PML1(12) of Caballeronia mineralivorans. Considering the early-stage of the interaction between mineral and bacteria, we identified the genes and proteins differentially expressed when: (i) the environment is depleted of certain essential nutrients (i.e., Mg and Fe), (ii) a mineral is added and (iii) the carbon source (i.e., glucose vs mannitol) differs. The integration of these data demonstrates that strain PML1(12) is capable of (i) mobilizing iron through the production of a non-ribosomal peptide synthetase-independent siderophore, (ii) inducing chemotaxis and motility in response to nutrient availability and (iii) strongly acidifying its environment in the presence of glucose using a suite of GMC oxidoreductases to weather mineral. These results provide new insights into the molecular mechanisms involved in mineral weathering and their regulation and highlight the complex sequence of events triggered by bacteria to weather minerals.
Collapse
Affiliation(s)
- Stéphane Uroz
- INRAE, UMR1136 « Interactions Arbres-Microorganismes », Université de Lorraine, Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des écosystèmes forestiers », Champenoux, F-54280, France
| | - Laura Picard
- INRAE, UMR1136 « Interactions Arbres-Microorganismes », Université de Lorraine, Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des écosystèmes forestiers », Champenoux, F-54280, France
| | - Marie-Pierre Turpault
- INRAE, UR1138 « Biogéochimie des écosystèmes forestiers », Champenoux, F-54280, France
| | - Lucas Auer
- INRAE, UMR1136 « Interactions Arbres-Microorganismes », Université de Lorraine, Champenoux, F-54280, France
| | - Jean Armengaud
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 30200 Bagnols-sur-Cèze, France
| | - Phil Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Lyon, France, Univ Lyon, Villeurbanne, F-69622, France
| |
Collapse
|
9
|
Samuels T, Bryce C, Landenmark H, Marie‐Loudon C, Nicholson N, Stevens AH, Cockell C. Microbial Weathering of Minerals and Rocks in Natural Environments. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/9781119413332.ch3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Interactions between Biotite and the Mineral-Weathering Bacterium Pseudomonas azotoformans F77. Appl Environ Microbiol 2020; 86:AEM.02568-19. [PMID: 31953343 DOI: 10.1128/aem.02568-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/12/2020] [Indexed: 12/22/2022] Open
Abstract
In this study, the mineral-weathering bacterium Pseudomonas azotoformans F77, which was isolated from the soil of a debris flow area, was evaluated for its weathering activity under direct contact with biotite or without contact. Then, biotite-weathering behaviors of strain F77, mutants that had been created by deleting the gcd and adh genes (which are involved in gluconic acid metabolism and pilus formation, respectively), and the double mutant F77ΔgcdΔadh were compared. The relative gene expression levels of F77 and its mutants F77Δgcd and F77Δadh were also analyzed in the presence of biotite. Direct contact with biotite increased Fe and Al release from the mineral in the presence of F77. All strains had similar abilities to release Fe and Al from the mineral except for F77Δgcd and F77Δadh Mobilized Fe and Al concentrations were decreased by up to 72, 26, and 87% in the presence of F77Δgcd, F77Δadh, and F77ΔgcdΔadh, respectively, compared to levels observed in the presence of F77 during the mineral-weathering process. Gluconic acid production was decreased for F77Δgcd and F77ΔgcdΔadh, while decreased cell attachment on the mineral surface was observed for F77Δadh, compared to findings for F77. The F77 genes involved in pilus formation and gluconic acid metabolism showed increased expression levels in the presence of biotite. The results of this study showed important roles for the genes involved in gluconic acid metabolism and pilus formation in mineral weathering by F77 and demonstrated the distinctive effect of these genes on mineral weathering by F77.IMPORTANCE Bacteria play important roles in mineral weathering and soil formation, although the molecular mechanisms underlying the interactions between bacteria and silicate minerals are poorly understood. In this study, the interactions between biotite and the highly effective mineral-weathering bacterium P. azotoformans F77 were characterized. Our results showed that the genes involved in gluconic acid metabolism and pilus formation play important roles in mineral weathering by F77. The presence of biotite could promote the expression of these genes in F77, and a distinctive effect of these genes on mineral weathering by F77 was observed in this study. Our results provide new knowledge and promote better understanding regarding the interaction between silicate minerals and mineral-weathering bacteria, as well as the molecular mechanisms involved in these processes.
Collapse
|
11
|
Olsson-Francis K, Billi D, Teske A, de Vera JPP. Editorial: Habitability Beyond Earth. Front Microbiol 2018; 9:2645. [PMID: 30519217 PMCID: PMC6251383 DOI: 10.3389/fmicb.2018.02645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
| | - Daniela Billi
- Deparment of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jean-Pierre P de Vera
- Astrobiological Laboratories, German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Berlin, Germany
| |
Collapse
|
12
|
Dai Q, Han L, Deng J, Zhao Y, Dang Z, Tan D, Dong F. The interface interaction behavior between E. coli and two kinds of fibrous minerals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22420-22428. [PMID: 29119494 DOI: 10.1007/s11356-017-0654-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
In the present, studies of interaction between human normal flora and fibrous mineral are still lacking. Batch experiments were performed to deal with the interaction of Escherichia coli and two fibrous minerals (brucite and palygorskite), and the interface and liquid phase characteristics in the short-term interaction processes were discussed. The bacterial concentrations, the remnant glucose (GLU), pyruvic acid, and the activity of β-galactosidase and six elements were measured, and the results show that the promoting effect of brucite on the growth of E. coli was more significant than that of palygorskite. FTIR and XRD analysis results also confirmed E. coli has obviously dissolved on brucite and damage effect on palygorskite silicon structure. SEM results show that the interfacial contact degree between E. coli cells and brucite fibers was higher than that of palygorskite. These may be due to the zeta potential difference between E. coli and palygorskite was 14.57-22.37 mV, while it of brucite was 44.04-64.24 mV. The elements dissolving of two fibrous minerals not only increased regularly to liquid EC but also had a good buffer effect to the decrease of liquid pH. Studies of short-term interaction between E. coli and brucite and palygorskite can help to understand the effect of fibrous minerals on microeubiosis of human normal flora and the contribution of microbial behaviors on the fibrous minerals weathering in the natural environment.
Collapse
Affiliation(s)
- Qunwei Dai
- Key Laboratory of Solid Waste Treatment and Resource Recycle, School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Linbao Han
- Key Laboratory of Solid Waste Treatment and Resource Recycle, School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jianjun Deng
- The Fourth People's Hospital of Mianyang City, Mianyang, 621000, Sichuan, China
| | - Yulian Zhao
- Key Laboratory of Solid Waste Treatment and Resource Recycle, School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zheng Dang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Daoyong Tan
- Key Laboratory of Solid Waste Treatment and Resource Recycle, School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| |
Collapse
|
13
|
Wang Q, Zhang Z, Zhu Y, He L, Sheng X. Impact of poxB, pta, and ackA genes on mineral-weathering of Enterobacter cloacae S71. J Basic Microbiol 2018; 58:633-642. [PMID: 29732559 DOI: 10.1002/jobm.201800013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 04/12/2018] [Indexed: 11/11/2022]
Abstract
In this study, biotite weathering behaviors were compared between mineral-weathering bacteria Enterobacter cloacae S71, mutant strains created by the deletion of poxB, pta, and ackA genes involved in acetate formation, and their complemented strains. Compared to strain S71, a decrease in bacterial growth was observed during the early and middle stages for the mutant ΔpoxB and at the middle and later stages for the mutants Δpta and ΔackA. Dissolved Al and Fe concentrations were lower during the early stage for strain ΔpoxB, at the early or middle stage for strain Δpta, and at the middle and later stages and throughout the weathering process for strain ΔackA, compared to strain S71. Acetate production was depressed during the early stage for strain ΔpoxB, at the early and middle stages for strain Δpta, and throughout the weathering process for strain ΔackA. Overall, the ackA gene exhibited a larger impact on dissolved Fe and acetate concentrations than both the poxB and pta genes. Reduced bacterial growth and lower dissolved Al, Fe, and acetate concentrations recovered by the complemented strains. These results show that strain S71 promoted mineral weathering through the production of acetic acid with distinctive impacts by the genes involved in acetate.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Zhendong Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Ying Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
14
|
Optimization of the chemolithoautotrophic biofilm growth of Cupriavidus necator by means of electrochemical hydrogen synthesis. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Olsson-Francis K, Pearson VK, Steer ED, Schwenzer SP. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments. Front Microbiol 2017; 8:1668. [PMID: 28943863 PMCID: PMC5596621 DOI: 10.3389/fmicb.2017.01668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022] Open
Abstract
Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effects of biota on the dissolution of terrestrial basalt, and the formation of secondary alteration minerals. The chemoorganoheterotrophic bacterium, Burkholderia sp. strain B_33, was grown in a minimal growth medium with and without terrestrial basalt as the sole nutrient source. No growth was detected in the absence of the basalt. In the presence of basalt, during exponential growth, the pH decreased rapidly from pH 7.0 to 3.6 and then gradually increased to a steady-state of equilibrium of between 6.8 and 7.1. Microbial growth coincided with an increase in key elements in the growth medium (Si, K, Ca, Mg, and Fe). Experimental results were compared with theoretical thermochemical modeling to predict growth of secondary alteration minerals, which can be used as bio-signatures, over a geological timescale. We thermochemically modeled the dissolution of the basalt (in the absence of biota) in very dilute brine at 25°C, 1 bar; the pH was buffered by the mineral dissolution and precipitation reactions. Preliminary results suggested that at the water to rock ratio of 1 × 107, zeolite, hematite, chlorite, kaolinite, and apatite formed abiotically. The biotic weathering processes were modeled by varying the pH conditions within the model to adjust for biologic influence. The results suggested that, for a basaltic system, the microbially-mediated dissolution of basalt would result in “simpler” secondary alteration, consisting of Fe-hydroxide and kaolinite, under conditions where the abiotic system would also form chlorite. The results from this study demonstrate that, by using laboratory-based experiments and thermochemical modeling, it is possible to identify secondary alteration minerals that could potentially be used to distinguish between abiotic and biotic weathering processes on early Mars. This work will contribute to the interpretation of data from past, present, and future life detection missions to Mars.
Collapse
Affiliation(s)
- Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Open UniversityMilton Keynes, United Kingdom
| | - Victoria K Pearson
- School of Physical Sciences, Open UniversityMilton Keynes, United Kingdom
| | - Elisabeth D Steer
- School of Physical Sciences, Open UniversityMilton Keynes, United Kingdom.,Nanoscale and Microscale Research Centre, University of NottinghamNottingham, United Kingdom
| | - Susanne P Schwenzer
- School of Environment, Earth and Ecosystem Sciences, Open UniversityMilton Keynes, United Kingdom
| |
Collapse
|
16
|
Byloos B, Coninx I, Van Hoey O, Cockell C, Nicholson N, Ilyin V, Van Houdt R, Boon N, Leys N. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock. Front Microbiol 2017; 8:671. [PMID: 28503167 PMCID: PMC5408026 DOI: 10.3389/fmicb.2017.00671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.
Collapse
Affiliation(s)
- Bo Byloos
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium.,Center for Microbial Ecology and Technology, Ghent UniversityGhent, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Olivier Van Hoey
- Research in Dosimetric Applications, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of EdinburghEdinburgh, UK
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of EdinburghEdinburgh, UK
| | - Vyacheslav Ilyin
- Institute of Medical and Biological Problems of Russian Academy of SciencesMoscow, Russia
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent UniversityGhent, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| |
Collapse
|
17
|
Kirtzel J, Siegel D, Krause K, Kothe E. Stone-Eating Fungi: Mechanisms in Bioweathering and the Potential Role of Laccases in Black Slate Degradation With the Basidiomycete Schizophyllum commune. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:83-101. [PMID: 28438269 DOI: 10.1016/bs.aambs.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many enzymes, such as laccases, are involved in the saprotrophic lifestyle of fungi and the effects of those may be linked to enhanced bioweathering on stone surfaces. To test this hypothesis, we studied the decomposition of kerogen-enriched lithologies, especially with black slate containing up to 20% of Corg. Indeed, a formation of ditches with attached hyphal material could be observed. To address enzymes involved, proteomics was performed and one group of enzymes, the multicopper oxidase family members of laccases, was specifically investigated. A role in bioweathering of rocks containing high contents of organic carbon in the form of kerogen could be shown using the basidiomycete Schizophyllum commune, a white rot fungus that has been used as a model organism to study the role of filamentous basidiomycete fungi in bioweathering of black slate.
Collapse
Affiliation(s)
| | | | | | - Erika Kothe
- Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
18
|
Kelly LC, Colin Y, Turpault MP, Uroz S. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing. MICROBIAL ECOLOGY 2016; 72:428-442. [PMID: 27138048 DOI: 10.1007/s00248-016-0774-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.
Collapse
Affiliation(s)
- L C Kelly
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France
- School of Science and the Environment, Division of Biology and Conservation Ecology, Manchester Metropolitan University, M1 5GD, Manchester, UK
| | - Y Colin
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - M-P Turpault
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - S Uroz
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France.
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France.
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France.
| |
Collapse
|
19
|
Bryce CC, Le Bihan T, Martin SF, Harrison JP, Bush T, Spears B, Moore A, Leys N, Byloos B, Cockell CS. Rock geochemistry induces stress and starvation responses in the bacterial proteome. Environ Microbiol 2015; 18:1110-21. [DOI: 10.1111/1462-2920.13093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Casey C. Bryce
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
| | - Thierry Le Bihan
- Centre for Synthetic and Systems Biology; Institute of Structural and Molecular Biology; University of Edinburgh; Edinburgh UK
| | - Sarah F. Martin
- Centre for Synthetic and Systems Biology; Institute of Structural and Molecular Biology; University of Edinburgh; Edinburgh UK
| | - Jesse P. Harrison
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
- Division of Microbial Ecology; Department of Microbiology and Ecosystem Science; University of Vienna; Austria
| | - Timothy Bush
- Institute for Condensed Matter and Complex Systems; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
- Institute for Biodiversity and Ecosystem Dynamics (IBED); University of Amsterdam; The Netherlands
| | - Bryan Spears
- Centre for Ecology and Hydrology, Bush Estate; Penicuik Edinburgh UK
| | - Alanna Moore
- Centre for Ecology and Hydrology, Bush Estate; Penicuik Edinburgh UK
| | - Natalie Leys
- Microbiology Unit; Belgian Nuclear Research Centre; SCK●CEN Mol Belgium
| | - Bo Byloos
- Microbiology Unit; Belgian Nuclear Research Centre; SCK●CEN Mol Belgium
- Laboratory of Microbial Ecology and Technology; University of Ghent; Ghent Belgium
| | - Charles S. Cockell
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
| |
Collapse
|
20
|
Uroz S, Kelly LC, Turpault MP, Lepleux C, Frey-Klett P. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends Microbiol 2015; 23:751-762. [DOI: 10.1016/j.tim.2015.10.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/17/2022]
|