1
|
Porada P, Bader MY, Berdugo MB, Colesie C, Ellis CJ, Giordani P, Herzschuh U, Ma Y, Launiainen S, Nascimbene J, Petersen I, Raggio Quílez J, Rodríguez-Caballero E, Rousk K, Sancho LG, Scheidegger C, Seitz S, Van Stan JT, Veste M, Weber B, Weston DJ. A research agenda for nonvascular photoautotrophs under climate change. THE NEW PHYTOLOGIST 2023; 237:1495-1504. [PMID: 36511294 DOI: 10.1111/nph.18631] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.
Collapse
Affiliation(s)
- Philipp Porada
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Maaike Y Bader
- Ecological Plant Geography, University of Marburg, Deutschhausstr. 10, 35032, Marburg, Germany
| | - Monica B Berdugo
- Ecological Plant Geography, University of Marburg, Deutschhausstr. 10, 35032, Marburg, Germany
| | - Claudia Colesie
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JW, UK
| | | | | | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute, Telegrafenberg A45, 14473, Potsdam, Germany
| | - Yunyao Ma
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Samuli Launiainen
- Ecosystems and Modeling, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Juri Nascimbene
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Imke Petersen
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - José Raggio Quílez
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, København, Denmark
| | - Leopoldo G Sancho
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Christoph Scheidegger
- Biodiversity and Conservation Biology, Eidg. Forschungsanstalt WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
| | - Steffen Seitz
- Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, 72070, Tübingen, Germany
| | - John T Van Stan
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Maik Veste
- Institute of Environmental Sciences, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, 03046, Cottbus, Germany
| | - Bettina Weber
- Division of Plant Sciences, Institute for Biology, University of Graz, Holteigasse 6, A-8010, Graz, Austria
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
2
|
Jung P, Baumann K, Emrich D, Springer A, Felde VJ, Dultz S, Baum C, Frank M, Büdel B, Leinweber P. Lichens Bite the Dust - A Bioweathering Scenario in the Atacama Desert. iScience 2020; 23:101647. [PMID: 33103085 PMCID: PMC7578742 DOI: 10.1016/j.isci.2020.101647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 11/23/2022] Open
Abstract
Bioweathering mediated by microorganisms plays a significant role in biogeochemical cycles on global scales over geological timescales. Single processes induced by specific taxa have been described but could rarely be demonstrated for complex communities that dominate whole landscapes. The recently discovered grit crust of the coastal Atacama Desert, which is a transitional community between a cryptogamic ground cover and a rock-bound lithic assemblage, offers the unique chance to elucidate various bioweathering processes that occur simultaneously. Here, we present a bioweathering scenario of this biocenosis including processes such as penetration of the lithomatrix, microbial responses to wet-dry cycles, alkalinolysis, enzyme activity, and mineral re-localization. Frequently occurring fog, for example, led to a volume increase of microorganisms and the lithomatrix. This, together with pH shifts and dust accumulation, consequently results in biophysical breakdown and the formation of a terrestrial protopedon, an initial stage of pedogenesis fueled by the grit crust.
Collapse
Affiliation(s)
- Patrick Jung
- Applied Logistics and Polymer Sciences, University of Applied Sciences Kaiserslautern, Carl-Schurz-Straße 10-16, 66953 Pirmasens, Germany
| | - Karen Baumann
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051 Rostock, Germany
| | - Dina Emrich
- University of Freiburg, Faculty of Environment and Natural Resources, Chair of Applied Vegetation Ecology, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, University Medicine Rostock, Strempelstraße 14, 18057 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Vincent J.M.N.L. Felde
- Department of Soil Science, Faculty of Organic Agricultural Sciences, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Stefan Dultz
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Christel Baum
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051 Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, University Medicine Rostock, Strempelstraße 14, 18057 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Peter Leinweber
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051 Rostock, Germany
| |
Collapse
|
3
|
Favero-Longo SE, Viles HA. A review of the nature, role and control of lithobionts on stone cultural heritage: weighing-up and managing biodeterioration and bioprotection. World J Microbiol Biotechnol 2020; 36:100. [PMID: 32607867 DOI: 10.1007/s11274-020-02878-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Lithobionts (rock-dwelling organisms) have been recognized as agents of aesthetic and physico-chemical deterioration of stonework. In consequence, their removal from cultural heritage stone surfaces (CHSS) is widely considered a necessary step in conservation interventions. On the other hand, lithobiontic communities, including microbial biofilms ('biological patinas'), can help integrate CHSS with their environmental setting and enhance biodiversity. Moreover, in some cases bioprotective effects have been reported and even interpreted as potential biotechnological solutions for conservation. This paper reviews the plethora of traditional and innovative methodologies to characterize lithobionts on CHSS in terms of biodiversity, interaction with the stone substrate and impacts on durability. In order to develop the best management and conservation strategies for CHSS, such diagnosis should be acquired on a case-by-case basis, as generalized approaches are unlikely to be suitable for all lithobionts, lithologies, environmental and cultural contexts or types of stonework. Strategies to control biodeteriogenic lithobionts on CHSS should similarly be based on experimental evaluation of their efficacy, including long-term monitoring of the effects on bioreceptivity, and of their environmental safety. This review examines what is known about the efficacy of control methods based on traditional-commercial biocides, as well as those based on innovative application of substances of plant and microbial origin, and physical techniques. A framework for providing a balanced scientific assessment of the role of lithobionts on CHSS and integrating this knowledge into management and conservation decision-making is presented.
Collapse
Affiliation(s)
- Sergio Enrico Favero-Longo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, 10125, Torino, Italy.
| | - Heather A Viles
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| |
Collapse
|
4
|
Porada P, Lenton TM, Pohl A, Weber B, Mander L, Donnadieu Y, Beer C, Pöschl U, Kleidon A. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nat Commun 2016; 7:12113. [PMID: 27385026 PMCID: PMC4941054 DOI: 10.1038/ncomms12113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
It has been hypothesized that predecessors of today's bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today's global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate. Early non-vascular vegetation may have caused an interval of glaciations in the Late Ordovician by enhancing global chemical weathering. Here, by simulating the organisms with a spatially explicit, process-based model, the authors propose that Ordovician vegetation had a high potential for chemical weathering.
Collapse
Affiliation(s)
- P Porada
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden
| | - T M Lenton
- Earth System Science Group, College of Life and Environmental Sciences, University of Exeter, Laver Building (Level 7), North Park Road, Exeter EX4 4QE, UK
| | - A Pohl
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - B Weber
- Max Planck Institute for Chemistry, PO Box 3060, 55020 Mainz, Germany
| | - L Mander
- Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes, Buckinghamshire MK7 6AA, UK
| | - Y Donnadieu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.,Aix-Marseille Université, CNRS, IRD, CEREGE UM34, 13545 Aix en Provence, France
| | - C Beer
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden
| | - U Pöschl
- Max Planck Institute for Chemistry, PO Box 3060, 55020 Mainz, Germany
| | - A Kleidon
- Max Planck Institute for Biogeochemistry, PO Box 10 01 64, 07701 Jena, Germany
| |
Collapse
|
5
|
Garcia-Pichel F, Felde VJMNL, Drahorad SL, Weber B. Microstructure and Weathering Processes Within Biological Soil Crusts. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
7
|
|