1
|
Khomyakova MA, Merkel AY, Novikov AA, Slobodkin AI. Peloplasma aerotolerans gen. nov., sp. nov., a Novel Anaerobic Free-Living Mollicute Isolated from a Terrestrial Mud Volcano. Life (Basel) 2024; 14:563. [PMID: 38792585 PMCID: PMC11122141 DOI: 10.3390/life14050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
A novel aerotolerant anaerobic bacterium (strain M4AhT) was isolated from a terrestrial mud volcano (Taman Peninsula, Russia). Cells were small, cell-wall-less, non-motile cocci, 0.32-0.65 μm in diameter. The isolate was a mesophilic, neutrophilic chemoorganoheterotroph, growing on carbohydrates (D-glucose, D-trehalose, D-ribose, D-mannose, D-xylose, D-maltose, D-lactose, D-cellobiose, D-galactose, D-fructose, and D-sucrose), proteinaceous compounds (yeast extract, tryptone), and pyruvate. Strain M4AhT tolerated 2% oxygen in the gas phase, was catalase-positive, and showed sustainable growth under microaerobic conditions. The dominant cellular fatty acids of strain M4AhT were C16:0 and C18:0. The G+C content of the genomic DNA was 32.42%. The closest phylogenetic relative of strain M4AhT was Mariniplasma anaerobium from the family Acholeplasmataceae (order Acholeplasmatales, class Mollicutes). Based on the polyphasic characterization of the isolate, strain M4AhT is considered to represent a novel species of a new genus, for which the name Peloplasma aerotolerans gen. nov., sp. nov. is proposed. The type strain of Peloplasma aerotolerans is M4AhT (=DSM 112561T = VKM B-3485T = UQM 41475T). This is the first representative of the order Acholeplasmatales, isolated from a mud volcano.
Collapse
Affiliation(s)
- Maria A. Khomyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| | - Andrei A. Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, Leninskiy Prospect, 65/1, 119991 Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| |
Collapse
|
2
|
Hesketh-Best PJ, Bosco-Santos A, Garcia SL, O’Beirne MD, Werne JP, Gilhooly WP, Silveira CB. Viruses of sulfur oxidizing phototrophs encode genes for pigment, carbon, and sulfur metabolisms. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:126. [PMID: 38665202 PMCID: PMC11041744 DOI: 10.1038/s43247-023-00796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2024]
Abstract
Viral infections modulate bacterial metabolism and ecology. Here, we investigated the hypothesis that viruses influence the ecology of purple and green sulfur bacteria in anoxic and sulfidic lakes, analogs of euxinic oceans in the geologic past. By screening metagenomes from lake sediments and water column, in addition to publicly-available genomes of cultured purple and green sulfur bacteria, we identified almost 300 high and medium-quality viral genomes. Viruses carrying the gene psbA, encoding the small subunit of photosystem II protein D1, were ubiquitous, suggesting viral interference with the light reactions of sulfur oxidizing autotrophs. Viruses predicted to infect these autotrophs also encoded auxiliary metabolic genes for reductive sulfur assimilation as cysteine, pigment production, and carbon fixation. These observations show that viruses have the genomic potential to modulate the production of metabolic markers of phototrophic sulfur bacteria that are used to identify photic zone euxinia in the geologic past.
Collapse
Affiliation(s)
| | - Alice Bosco-Santos
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Sofia L. Garcia
- Department of Biology, University of Miami, Coral Gables, FL USA
| | - Molly D. O’Beirne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA USA
| | - Josef P. Werne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA USA
| | - William P. Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN USA
| | | |
Collapse
|
3
|
Stanton C, Barnes BD, Kump LR, Cosmidis J. A re-examination of the mechanism of whiting events: A new role for diatoms in Fayetteville Green Lake (New York, USA). GEOBIOLOGY 2023; 21:210-228. [PMID: 36326137 PMCID: PMC10092686 DOI: 10.1111/gbi.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Whiting events-the episodic precipitation of fine-grained suspended calcium carbonates in the water column-have been documented across a variety of marine and lacustrine environments. Whitings likely are a major source of carbonate muds, a constituent of limestones, and important archives for geochemical proxies of Earth history. While several biological and physical mechanisms have been proposed to explain the onset of these precipitation events, no consensus has been reached thus far. Fayetteville Green Lake (New York, USA) is a meromictic lake that experiences annual whitings. Materials suspended in the water column collected through the whiting season were characterized using scanning electron microscopy and scanning transmission X-ray microscopy. Whitings in Fayetteville Green Lake are initiated in the spring within the top few meters of the water column, by precipitation of fine amorphous calcium carbonate (ACC) phases nucleating on microbial cells, as well as on abundant extracellular polymeric substances (EPS) frequently associated with centric diatoms. Whiting particles found in the summer consist of 5-7 μm calcite grains forming aggregates with diatoms and EPS. Simple calculations demonstrate that calcite particles continuously grow over several days, then sink quickly through the water column. In the late summer, partial calcium carbonate dissolution is observed deeper in the water column. Settling whiting particles, however, reach the bottom of the lake, where they form a major constituent of the sediment, along with diatom frustules. The role of diatoms and associated EPS acting as nucleation surfaces for calcium carbonates is described for the first time here as a potential mechanism participating in whitings at Fayetteville Green Lake. This mechanism may have been largely overlooked in other whiting events in modern and ancient environments.
Collapse
Affiliation(s)
- Chloe Stanton
- Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Ben Davis Barnes
- Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Lee R. Kump
- Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Julie Cosmidis
- Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Present address:
Department of Earth SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Jaffe AL, Bardot C, Le Jeune AH, Liu J, Colombet J, Perrière F, Billard H, Castelle CJ, Lehours AC, Banfield JF. Variable impact of geochemical gradients on the functional potential of bacteria, archaea, and phages from the permanently stratified Lac Pavin. MICROBIOME 2023; 11:14. [PMID: 36694212 PMCID: PMC9875498 DOI: 10.1186/s40168-022-01416-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined. RESULTS Here, we determine the distribution of microbial lineages along an oxygen gradient in Lac Pavin, a deep, stratified lake in central France, and examine the influence of this gradient on their metabolism. Genome-based analyses revealed an enrichment of distinct C1 and CO2 fixation pathways in the oxic lake interface and anoxic zone/sediments, suggesting that oxygen likely plays a role in structuring metabolic strategies in non-CPR bacteria and archaea. Notably, we find that the oxidation of methane and its byproducts is largely spatially separated from methane production, which is mediated by diverse communities of sediment methanogens that vary on the centimeter scale. In contrast, we detected evidence for RuBisCO throughout the water column and sediments, including form II/III and form III-related enzymes encoded by CPR bacteria in the water column and DPANN archaea in the sediments. On the whole, though, CPR bacteria and phages did not show strong signals of gene content differentiation by depth, despite the fact that distinct species groups populate different lake and sediment compartments. CONCLUSIONS Overall, our analyses suggest that environmental gradients in Lac Pavin select for capacities of CPR bacteria and phages to a lesser extent than for other bacteria and archaea. This may be due to the fact that selection in the former groups is indirect and depends primarily on host characteristics. Video Abstract.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Corinne Bardot
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Anne-Hélène Le Jeune
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jett Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Fanny Perrière
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Hermine Billard
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Cindy J Castelle
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Block KR, O'Brien JM, Edwards WJ, Marnocha CL. Vertical structure of the bacterial diversity in meromictic Fayetteville Green Lake. Microbiologyopen 2021; 10:e1228. [PMID: 34459548 PMCID: PMC8330806 DOI: 10.1002/mbo3.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
The permanently stratified water columns in euxinic meromictic lakes produce niche environments for phototrophic sulfur oxidizers and diverse sulfur metabolisms. While Green Lake (Fayetteville, New York, NY) is known to host a diverse community of ecologically important sulfur bacteria, analyses of its microbial communities, to date, have been largely based on pigment analysis and smaller datasets from Sanger sequencing techniques. Here, we present the results of next-generation sequencing of the eubacterial community in the context of the water column geochemistry. We observed abundant purple and green sulfur bacteria, as well as anoxygenic photosynthesis-capable cyanobacteria within the upper monimolimnion. Amidst the phototrophs, we found other sulfur-cycling bacteria including sulfur disproportionators and chemotrophic sulfur oxidizers, further detailing our understanding of the sulfur cycle and microbial ecology of euxinic, meromictic lakes.
Collapse
Affiliation(s)
| | - Joy M. O'Brien
- Department of BiologyNiagara UniversityLewistonNew YorkUSA
| | | | | |
Collapse
|
6
|
Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. Proc Natl Acad Sci U S A 2021; 118:2106040118. [PMID: 34272281 DOI: 10.1073/pnas.2106040118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aromatic carotenoid-derived hydrocarbon biomarkers are ubiquitous in ancient sediments and oils and are typically attributed to anoxygenic phototrophic green sulfur bacteria (GSB) and purple sulfur bacteria (PSB). These biomarkers serve as proxies for the environmental growth requirements of PSB and GSB, namely euxinic waters extending into the photic zone. Until now, prevailing models for environments supporting anoxygenic phototrophs include microbial mats, restricted basins and fjords with deep chemoclines, and meromictic lakes with shallow chemoclines. However, carotenoids have been reported in ancient open marine settings for which there currently are no known modern analogs that host GSB and PSB. The Benguela Upwelling System offshore Namibia, known for exceptionally high primary productivity, is prone to recurrent toxic gas eruptions whereupon hydrogen sulfide emanates from sediments into the overlying water column. These events, visible in satellite imagery as water masses clouded with elemental sulfur, suggest that the Benguela Upwelling System may be capable of supporting GSB and PSB. Here, we compare distributions of biomarkers in the free and sulfur-bound organic matter of Namibian shelf sediments. Numerous compounds-including acyclic isoprenoids, steranes, triterpanes, and carotenoids-were released from the polar lipid fractions upon Raney nickel desulfurization. The prevalence of isorenieratane and β-isorenieratane in sampling stations along the shelf verified anoxygenic photosynthesis by low-light-adapted, brown-colored GSB in this open marine setting. Renierapurpurane was also present in the sulfur-bound carotenoids and was typically accompanied by lower abundances of renieratane and β-renierapurpurane, thereby identifying cyanobacteria as an additional aromatic carotenoid source.
Collapse
|
7
|
Rojas CA, De Santiago Torio A, Park S, Bosak T, Klepac-Ceraj V. Organic Electron Donors and Terminal Electron Acceptors Structure Anaerobic Microbial Communities and Interactions in a Permanently Stratified Sulfidic Lake. Front Microbiol 2021; 12:620424. [PMID: 33967973 PMCID: PMC8103211 DOI: 10.3389/fmicb.2021.620424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The extent to which nutrients structure microbial communities in permanently stratified lakes is not well understood. This study characterized microbial communities from the anoxic layers of the meromictic and sulfidic Fayetteville Green Lake (FGL), NY, United States, and investigated the roles of organic electron donors and terminal electron acceptors in shaping microbial community structure and interactions. Bacterial communities from the permanently stratified layer below the chemocline (monimolimnion) and from enrichment cultures inoculated by lake sediments were analyzed using 16S rRNA gene sequencing. Results showed that anoxygenic phototrophs dominated microbial communities in the upper monimolimnion (21 m), which harbored little diversity, whereas the most diverse communities resided at the bottom of the lake (∼52 m). Organic electron donors explained 54% of the variation in the microbial community structure in aphotic cultures enriched on an array of organic electron donors and different inorganic electron acceptors. Electron acceptors only explained 10% of the variation, but were stronger drivers of community assembly in enrichment cultures supplemented with acetate or butyrate compared to the cultures amended by chitin, lignin or cellulose. We identified a range of habitat generalists and habitat specialists in both the water column and enrichment samples using Levin's index. Network analyses of interactions among microbial groups revealed Chlorobi and sulfate reducers as central to microbial interactions in the upper monimolimnion, while Syntrophaceae and other fermenting organisms were more important in the lower monimolimnion. The presence of photosynthetic microbes and communities that degrade chitin and cellulose far below the chemocline supported the downward transport of microbes, organic matter and oxidants from the surface and the chemocline. Collectively, our data suggest niche partitioning of bacterial communities via interactions that depend on the availability of different organic electron donors and terminal electron acceptors. Thus, light, as well as the diversity and availability of chemical resources drive community structure and function in FGL, and likely in other stratified, meromictic lakes.
Collapse
Affiliation(s)
- Connie A. Rojas
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
- Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, United States
| | - Ana De Santiago Torio
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Serry Park
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
8
|
Cyanobacterial Mats in Calcite-Precipitating Serpentinite-Hosted Alkaline Springs of the Voltri Massif, Italy. Microorganisms 2020; 9:microorganisms9010062. [PMID: 33383678 PMCID: PMC7824716 DOI: 10.3390/microorganisms9010062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/15/2023] Open
Abstract
(1) Background: Microbial communities in terrestrial, calcifying high-alkaline springs are not well understood. In this study, we investigate the structure and composition of microbial mats in ultrabasic (pH 10–12) serpentinite springs of the Voltri Massif (Italy). (2) Methods: Along with analysis of chemical and mineralogical parameters, environmental DNA was extracted and subjected to analysis of microbial communities based upon next-generation sequencing. (3) Results: Mineral precipitation and microbialite formation occurred, along with mat formation. Analysis of the serpentinite spring microbial community, based on Illumina sequencing of 16S rRNA amplicons, point to the relevance of alkaliphilic cyanobacteria, colonizing carbonate buildups. Cyanobacterial groups accounted for up to 45% of all retrieved sequences; 3–4 taxa were dominant, belonging to the filamentous groups of Leptolyngbyaceae, Oscillatoriales, and Pseudanabaenaceae. The cyanobacterial community found at these sites is clearly distinct from creek water sediment, highlighting their specific adaptation to these environments.
Collapse
|
9
|
Roussel A, Cui X, Summons RE. Biomarker stratigraphy in the Athel Trough of the South Oman Salt Basin at the Ediacaran-Cambrian Boundary. GEOBIOLOGY 2020; 18:663-681. [PMID: 32643313 DOI: 10.1111/gbi.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The South Oman Salt Basin (SOSB) has been studied extensively for knowledge concerning the habitat of the enigmatic Ediacaran-Cambrian oils that are produced from that region. Geological, geochemical, geophysical, and geochronological investigations have all contributed to improved understanding of the range of late Neoproterozoic depositional environments recorded there. Of particular interest has been the deep Athel depocenter within the SOSB that features a silica-rich interval known as the Al Shomou Member or Athel Silicilyte and the co-eval A4 carbonate-evaporite sequence that straddles the Ediacaran-Cambrian boundary. The deep basin has been suggested to be anoxic and euxinic based on studies of sulfur isotopes, trace metal distributions and other proxies. Organic geochemistry has provided some clues concerning aspects of the depositional environments and microbial communities prevailing during this interval. However, ambiguities remain including a paucity of convincing molecular evidence for euxinia in the photic zone of the basin. Here, we present a comprehensive study of biomarker hydrocarbons, including steroids, triterpenoids, and carotenoids. Among the compounds detected is a distinctive array of aromatic carotenoids. Relatively low abundances of monoaromatic carotenoids, such as chlorobactane, okenane, and β-isorenieratane, suggest the possibility of transient photic zone euxinia with a shallow chemocline or, perhaps, exogenous inputs from microbial mats. However, it is the dominance of renieratane and renierapurpurane over isorenieratane in diaromatic carotenoids and their association with abundant C38 and C39 carotenoids that identifies cyanobacteria as major contributors to the inventory of carotenoids. Our results, based on multiple lines of molecular evidence and statistical analysis, also suggest that the Athel Silicilyte was biogeochemically distinct from the other units of the Ara Group. Overall, our study has important implications for understanding other late Neoproterozoic depositional environments.
Collapse
Affiliation(s)
- Anaïs Roussel
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xingqian Cui
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Roger E Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Kamennaya NA, Hu P, Jansson C. Sedimentation of ballasted cells-free EPS in meromictic Fayetteville Green Lake. GEOBIOLOGY 2020; 18:80-92. [PMID: 31682076 DOI: 10.1111/gbi.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Fayetteville Green Lake (FGL) is a recognized, extensively studied present-day model of the stratified Proterozoic ocean. Nonetheless, biomass sedimentation in FGL remains hard to explain: while virtually all sediment pigments belong to photosynthetic sulfur bacteria from a chemocline, the isotopic carbon signature of the bulk organic matter suggests its epilimnetic phytoplankton origin. To explain the epilimnetic origin of sedimented carbon, we studied the dominant Synechococci, isolated from FGL. Here, we present experimental evidence that FGL Synechococci produce copious extracellular polysaccharides (EPS) especially when availability of inorganic carbon (Ci ) is high relative to availability of other macronutrients, for example phosphorus. The accumulating EPS become impregnated with calcium, magnesium, and sodium cations and are released to the environment as ballasted cell coverings. Sedimentation of these cell-free EPS can constitute the bulk of pigment-free organic material in FGL sediment. Because increased availability of Ci specifically stimulates production of EPS and the accumulated EPS adsorb cations and become ballasted, we propose the universal role of cyanobacterial EPS in biomass sedimentation in the high-Ci Paleoproterozoic ocean as well as in modern aquatic systems like FGL.
Collapse
Affiliation(s)
- Nina A Kamennaya
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| | - Ping Hu
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| | - Christer Jansson
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| |
Collapse
|
11
|
Anoxygenic Phototrophs Span Geochemical Gradients and Diverse Morphologies in Terrestrial Geothermal Springs. mSystems 2019; 4:4/6/e00498-19. [PMID: 31690593 PMCID: PMC6832021 DOI: 10.1128/msystems.00498-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extant anoxygenic phototrophs are taxonomically, physiologically, and metabolically diverse and include examples from all seven bacterial phyla with characterized phototrophic members. pH, temperature, and sulfide are known to constrain phototrophs, but how these factors dictate the distribution and activity of specific taxa of anoxygenic phototrophs has not been reported. Here, we hypothesized that within the known limits of pH, temperature, and sulfide, the distribution, abundance, and activity of specific anoxygenic phototrophic taxa would vary due to key differences in the physiology of these organisms. To test this hypothesis, we examined the distribution, abundance, and potential activity of anoxygenic phototrophs in filaments, microbial mats, and sediments across geochemical gradients in geothermal features of Yellowstone National Park, which ranged in pH from 2.2 to 9.4 and in temperature from 31.5°C to 71.0°C. Indeed, our data indicate putative aerobic anoxygenic phototrophs within the Proteobacteria are more abundant at lower pH and lower temperature, while phototrophic Chloroflexi are prevalent in circumneutral to alkaline springs. In contrast to previous studies, our data suggest sulfide is not a key determinant of anoxygenic phototrophic taxa. Finally, our data underscore a role for photoheterotrophy (or photomixotrophy) across geochemical gradients in terrestrial geothermal ecosystems.IMPORTANCE There is a long and rich history of literature on phototrophs in terrestrial geothermal springs. These studies have revealed sulfide, pH, and temperature are the main constraints on phototrophy. However, the taxonomic and physiological diversity of anoxygenic phototrophs suggests that, within these constraints, specific geochemical parameters determine the distribution and activity of individual anoxygenic phototrophic taxa. Here, we report the recovery of sequences affiliated with characterized anoxygenic phototrophs in sites that range in pH from 2 to 9 and in temperature from 31°C to 71°C. Transcript abundance indicates anoxygenic phototrophs are active across this temperature and pH range. Our data suggest sulfide is not a key determinant of anoxygenic phototrophic taxa and underscore a role for photoheterotrophy in terrestrial geothermal ecosystems. These data provide the framework for high-resolution sequencing and in situ activity approaches to characterize the physiology of specific anoxygenic phototrophic taxa across a broad range of temperatures and pH.
Collapse
|
12
|
Hamilton TL. The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Free Radic Biol Med 2019; 140:233-249. [PMID: 31078729 DOI: 10.1016/j.freeradbiomed.2019.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The ability to harvest light to drive chemical reactions and gain energy provided microbes access to high energy electron donors which fueled primary productivity, biogeochemical cycles, and microbial evolution. Oxygenic photosynthesis is often cited as the most important microbial innovation-the emergence of oxygen-evolving photosynthesis, aided by geologic events, is credited with tipping the scale from a reducing early Earth to an oxygenated world that eventually lead to complex life. Anoxygenic photosynthesis predates oxygen-evolving photosynthesis and played a key role in developing and fine-tuning the photosystem architecture of modern oxygenic phototrophs. The release of oxygen as a by-product of metabolic activity would have caused oxidative damage to anaerobic microbiota that evolved under the anoxic, reducing conditions of early Earth. Photosynthetic machinery is particularly susceptible to the adverse effects of oxygen and reactive oxygen species and these effects are compounded by light. As a result, phototrophs employ additional detoxification mechanisms to mitigate oxidative stress and have evolved alternative oxygen-dependent enzymes for chlorophyll biosynthesis. Phylogenetic reconstruction studies and biochemical characterization suggest photosynthetic reactions centers, particularly in Cyanobacteria, evolved to both increase efficiency of electron transfer and avoid photodamage caused by chlorophyll radicals that is acute in the presence of oxygen. Here we review the oxygen and reactive oxygen species detoxification mechanisms observed in extant anoxygenic and oxygenic photosynthetic bacteria as well as the emergence of these mechanisms over evolutionary time. We examine the distribution of phototrophs in modern systems and phylogenetic reconstructions to evaluate the emergence of mechanisms to mediate oxidative damage and highlight changes in photosystems and reaction centers, chlorophyll biosynthesis, and niche space in response to oxygen production. This synthesis supports an emergence of H2S-driven anoxygenic photosynthesis in Cyanobacteria prior to the evolution of oxygenic photosynthesis and underscores a role for the former metabolism in fueling fine-tuning of the oxygen evolving complex and mechanisms to repair oxidative damage. In contrast, we note the lack of elaborate mechanisms to deal with oxygen in non-cyanobacterial anoxygenic phototrophs suggesting these microbes have occupied similar niche space throughout Earth's history.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA; Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
13
|
Mercury isotope signatures record photic zone euxinia in the Mesoproterozoic ocean. Proc Natl Acad Sci U S A 2018; 115:10594-10599. [PMID: 30275325 DOI: 10.1073/pnas.1721733115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photic zone euxinia (PZE) is a condition where anoxic, H2S-rich waters occur in the photic zone (PZ). PZE has been invoked as an impediment to the evolution of complex life on early Earth and as a kill mechanism for Phanerozoic mass extinctions. Here, we investigate the potential application of mercury (Hg) stable isotopes in marine sedimentary rocks as a proxy for PZE by measuring Hg isotope compositions in late Mesoproterozoic (∼1.1 Ga) shales that have independent evidence of PZE during discrete intervals. Strikingly, a significantly negative shift of Hg mass-independent isotope fractionation (MIF) was observed during euxinic intervals, suggesting changes in Hg sources or transformations in oceans coincident with the development of PZE. We propose that the negative shift of Hg MIF was most likely caused by (i) photoreduction of Hg(II) complexed by reduced sulfur ligands in a sulfide-rich PZ, and (ii) enhanced sequestration of atmospheric Hg(0) to the sediments by thiols and sulfide that were enriched in the surface ocean as a result of PZE. This study thus demonstrates that Hg isotope compositions in ancient marine sedimentary rocks can be a promising proxy for PZE and therefore may provide valuable insights into changes in ocean chemistry and its impact on the evolution of life.
Collapse
|
14
|
Fulton JM, Arthur MA, Thomas B, Freeman KH. Pigment carbon and nitrogen isotopic signatures in euxinic basins. GEOBIOLOGY 2018; 16:429-445. [PMID: 29577577 DOI: 10.1111/gbi.12285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
The carbon and nitrogen isotopic signatures of chloropigments and porphyrins from the sediments of redox-stratified lakes and marine basins reveal details of past biogeochemical nutrient cycling. Such interpretations are strengthened by modern calibration studies, and here, we report on the C and N isotopic composition of pigments and nutrients in the water column and surface sediment of redox-stratified Fayetteville Green Lake (FGL; New York). We also report δ13 C and δ15 N values for pyropheophytin a (Pphe a) and bacteriochlorophyll e (Bchl e) deposited in the Black Sea during its transition to a redox-stratified basin ca. 7.8 ka. We propose a model for evolving nutrient cycling in the Black Sea from 7.8 to 6.4 ka, informed by the new pigment data from FGL. The seasonal study of water column nutrients and pigments at FGL revealed population dynamics in surface and deep waters that were also captured in the sediments. Biomass was greatest near the chemocline, where cyanobacteria, purple sulfur bacteria (PSB), and green sulfur bacteria (GSB) had seasonally variable populations. Bulk organic matter in the surface sediment, however, was derived mainly from the oxygenated surface waters. Surface sediment pigment δ13 C and δ15 N values indicate intact chlorophyll a (Chl a) was derived from near the chemocline, but its degradation product pheophytin a (Phe a) was derived primarily from surface waters. Bacteriopheophytin a (Bphe a) and Bchl e in the sediments came from chemocline populations of PSB and GSB, respectively. The distinctive δ13 C and δ15 N values for Chl a, Phe a, and Bphe a in the surface sediment are inputs to an isotopic mixing model that shows their decomposition to a common porphyrin derivative can produce non-specific sedimentary isotope signatures. This model serves as a caveat for paleobiogeochemical interpretations in basins that had diverse populations near a shallow chemocline.
Collapse
Affiliation(s)
- J M Fulton
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - M A Arthur
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - B Thomas
- Department of Environmental and Earth Sciences, Willamette University, Salem, OR, USA
| | - K H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Vegas-Vilarrúbia T, Corella JP, Pérez-Zanón N, Buchaca T, Trapote MC, López P, Sigró J, Rull V. Historical shifts in oxygenation regime as recorded in the laminated sediments of lake Montcortès (Central Pyrenees) support hypoxia as a continental-scale phenomenon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1577-1592. [PMID: 28968943 DOI: 10.1016/j.scitotenv.2017.08.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Recent expansion of anoxia has become a global issue and there is potential for worsening under global warming. At the same time, obtaining proper long-term instrumental oxygen records is difficult, thus reducing the possibility of recording long-term changes in oxygen shifts that can be related with climate or human influence. Varved lake sediments provide the better time frame to study this phenomenon at high resolution. We tracked the oxic/anoxic shifts of the varved Lake Montcortès since 1500CE, and tried to recognise anthropogenic and climatic influences combining biological and geochemical proxies. Four main scenarios emerged: 1) years with abrupt sediment inputs (A); 2) years with outstanding mixing and oxygenation of the water column (B); 3) years with strong stratification, anoxia, intense sulfur bacterial activity and increased biomass production (C); 4) years with stratification and anoxia, but relatively less biomass production (D). In line with current limnologic trends, high supra-annual variability in the occurrence of oxygenation events was observed. Interestingly, at least 45.3% of the years were mixing years and, like the meromictic ones, were mostly clustered into groups of consecutive years, thus alternating years of monomixis with years of meromixis. Most years of D belong to the period 1500-1820CE, when human activities were the most intense. Most years of A belonged to the climatic unstable period of 1850-1899CE. Years of B were irregularly distributed but were best represented in the period 1820-1849CE. Most years of C belonged to the 20th century. More than 90% of the years with climatic instrumental records belonged to B and C. Current climate warming seems to be taking control over the oxygenation capacity of the lake, especially since the second half of the 20th century. Our results support recent findings related to hypoxia spreading at the global scale.
Collapse
Affiliation(s)
- Teresa Vegas-Vilarrúbia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Juan Pablo Corella
- Institute of Physical Chemistry Rocasolano (CSIC), C/Serrano 119, 28006 Madrid, Spain
| | - Núria Pérez-Zanón
- Center for Climate Change (C3), Universitat Rovira i Virgili, C/ Joanot Martorell 15, Vila-seca, 43500 Tarragona, Spain
| | - Teresa Buchaca
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Accés a la Cala St. Francesc 14, 17300 Blanes, Spain
| | - M Carmen Trapote
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Pilar López
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Javier Sigró
- Center for Climate Change (C3), Universitat Rovira i Virgili, C/ Joanot Martorell 15, Vila-seca, 43500 Tarragona, Spain
| | - Valentí Rull
- Laboratory of Paleoecology, Institute of Earth Sciences Jaume Almera (ICTJACSIC), C. Sole i Sabarís s/n, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Hamilton TL, Welander PV, Albrecht HL, Fulton JM, Schaperdoth I, Bird LR, Summons RE, Freeman KH, Macalady JL. Microbial communities and organic biomarkers in a Proterozoic-analog sinkhole. GEOBIOLOGY 2017; 15:784-797. [PMID: 29035021 DOI: 10.1111/gbi.12252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Little Salt Spring (Sarasota County, FL, USA) is a sinkhole with groundwater vents at ~77 m depth. The entire water column experiences sulfidic (~50 μM) conditions seasonally, resulting in a system poised between oxic and sulfidic conditions. Red pinnacle mats occupy the sediment-water interface in the sunlit upper basin of the sinkhole, and yielded 16S rRNA gene clones affiliated with Cyanobacteria, Chlorobi, and sulfate-reducing clades of Deltaproteobacteria. Nine bacteriochlorophyll e homologues and isorenieratene indicate contributions from Chlorobi, and abundant chlorophyll a and pheophytin a are consistent with the presence of Cyanobacteria. The red pinnacle mat contains hopanoids, including 2-methyl structures that have been interpreted as biomarkers for Cyanobacteria. A single sequence of hpnP, the gene required for methylation of hopanoids at the C-2 position, was recovered in both DNA and cDNA libraries from the red pinnacle mat. The hpnP sequence was most closely related to cyanobacterial hpnP sequences, implying that Cyanobacteria are a source of 2-methyl hopanoids present in the mat. The mats are capable of light-dependent primary productivity as evidenced by 13 C-bicarbonate photoassimilation. We also observed 13 C-bicarbonate photoassimilation in the presence of DCMU, an inhibitor of electron transfer to Photosystem II. Our results indicate that the mats carry out light-driven primary production in the absence of oxygen production-a mechanism that may have delayed the oxygenation of the Earth's oceans and atmosphere during the Proterozoic Eon. Furthermore, our observations of the production of 2-methyl hopanoids by Cyanobacteria under conditions of low oxygen and low light are consistent with the recovery of these structures from ancient black shales as well as their paucity in modern marine environments.
Collapse
Affiliation(s)
- T L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - P V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - H L Albrecht
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - J M Fulton
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - I Schaperdoth
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - L R Bird
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - R E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K H Freeman
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - J L Macalady
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
Poehlein A, Yutin N, Daniel R, Galperin MY. Proposal for the reclassification of obligately purine-fermenting bacteria Clostridium acidurici (Barker 1938) and Clostridium purinilyticum (Dürre et al. 1981) as Gottschalkia acidurici gen. nov. comb. nov. and Gottschalkiapurinilytica comb. nov. and of Eubacterium angustum (Beuscher and Andreesen 1985) as Andreesenia angusta gen. nov. comb. nov. in the family Gottschalkiaceae fam. nov. Int J Syst Evol Microbiol 2017; 67:2711-2719. [PMID: 28853681 PMCID: PMC5737214 DOI: 10.1099/ijsem.0.002008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several strictly anaerobic bacteria that are Gram-stain-positive have the ability to use uric acid as the sole source of carbon and energy. The phylogeny of three such species, Clostridium acidurici, Clostridium purinilyticum, and Eubacterium angustum, members of the Clostridium cluster XII that ferment purines, but not most amino acids or carbohydrates, has been re-examined, taking advantage of their recently sequenced genomes. Phylogenetic analyses, based on 16S rRNA gene sequences, protein sequences of RpoB and GyrB, and on a concatenated alignment of 50 ribosomal proteins, revealed tight clustering of C. acidurici and C. purinilyticum. Eubacterium angustum showed consistent association with C. acidurici and C. purinilyticum
, but differed from these two in terms of the genome size, G+C content of its chromosomal DNA and its inability to form spores. We propose reassigning C. acidurici and C. purinilyticum to the novel genus Gottschalkia as Gottschalkia acidurici gen. nov. comb. nov. (the type species of the genus) and Gottschalkia purinilytica comb. nov., respectively. Eubacterium angustum is proposed to be reclassified as Andreesenia angusta gen. nov. comb. nov. Furthermore, based on the phylogenetic data and similar metabolic properties, we propose assigning genera Gottschalkia and Andreesenia to the novel family Gottschalkiaceae. Metagenomic sequencing data indicate the widespread distibution of organisms falling within the radiation of the proposed family Gottschalkiaceae in terrestrial and aquatic habitats from upstate New York to Antarctica, most likely due to their ability to metabolize avian-produced uric acid.
Collapse
Affiliation(s)
- Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
18
|
Thompson KJ, Simister RL, Hahn AS, Hallam SJ, Crowe SA. Nutrient Acquisition and the Metabolic Potential of Photoferrotrophic Chlorobi. Front Microbiol 2017; 8:1212. [PMID: 28729857 PMCID: PMC5498476 DOI: 10.3389/fmicb.2017.01212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Anoxygenic photosynthesis evolved prior to oxygenic photosynthesis and harnessed energy from sunlight to support biomass production on the early Earth. Models that consider the availability of electron donors predict that anoxygenic photosynthesis using Fe(II), known as photoferrotrophy, would have supported most global primary production before the proliferation of oxygenic phototrophs at approximately 2.3 billion years ago. These photoferrotrophs have also been implicated in the deposition of banded iron formations, the world's largest sedimentary iron ore deposits that formed mostly in late Archean and early Proterozoic Eons. In this work we present new data and analyses that illuminate the metabolic capacity of photoferrotrophy in the phylum Chlorobi. Our laboratory growth experiments and biochemical analyses demonstrate that photoferrotrophic Chlorobi are capable of assimilatory sulfate reduction and nitrogen fixation under sulfate and nitrogen limiting conditions, respectively. Furthermore, the evolutionary histories of key enzymes in both sulfur (CysH and CysD) and nitrogen fixation (NifDKH) pathways are convoluted; protein phylogenies, however, suggest that early Chlorobi could have had the capacity to assimilate sulfur and fix nitrogen. We argue, then, that the capacity for photoferrotrophic Chlorobi to acquire these key nutrients enabled them to support primary production and underpin global biogeochemical cycles in the Precambrian.
Collapse
Affiliation(s)
- Katharine J. Thompson
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Rachel L. Simister
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Aria S. Hahn
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Steven J. Hallam
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Sean A. Crowe
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
- Departments of Earth, Ocean and Atmospheric Sciences, University of British Columbia, VancouverBC, Canada
| |
Collapse
|
19
|
Tang T, Mohr W, Sattin SR, Rogers DR, Girguis PR, Pearson A. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180 T grown photoautotrophically and photoheterotrophically. GEOBIOLOGY 2017; 15:324-339. [PMID: 28042698 DOI: 10.1111/gbi.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Anoxygenic, photosynthetic bacteria are common at redox boundaries. They are of interest in microbial ecology and geosciences through their role in linking the carbon, sulfur, and iron cycles, yet much remains unknown about how their flexible carbon metabolism-permitting either autotrophic or heterotrophic growth-is recorded in the bulk sedimentary and lipid biomarker records. Here, we investigated patterns of carbon isotope fractionation in a model photosynthetic sulfur-oxidizing bacterium, Allochromatium vinosum DSM180T . In one treatment, A. vinosum was grown with CO2 as the sole carbon source, while in a second treatment, it was grown on acetate. Different intracellular isotope patterns were observed for fatty acids, phytol, individual amino acids, intact proteins, and total RNA between the two experiments. Photoautotrophic CO2 fixation yielded typical isotopic ordering for the lipid biomarkers: δ13 C values of phytol > n-alkyl lipids. In contrast, growth on acetate greatly suppressed intracellular isotopic heterogeneity across all molecular classes, except for a marked 13 C-depletion in phytol. This caused isotopic "inversion" in the lipids (δ13 C values of phytol < n-alkyl lipids). The finding suggests that inverse δ13 C patterns of n-alkanes and pristane/phytane in the geologic record may be at least in part a signal for photoheterotrophy. In both experimental scenarios, the relative isotope distributions could be predicted from an isotope flux-balance model, demonstrating that microbial carbon metabolisms can be interrogated by combining compound-specific stable isotope analysis with metabolic modeling. Isotopic differences among molecular classes may be a means of fingerprinting microbial carbon metabolism, both in the modern environment and the geologic record.
Collapse
Affiliation(s)
- T Tang
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - W Mohr
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - S R Sattin
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - D R Rogers
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry, Stonehill College, Easton, MA, USA
| | - P R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - A Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
20
|
|
21
|
Savvichev AS, Kokryatskaya NM, Zabelina SA, Rusanov II, Zakharova EE, Veslopolova EF, Lunina ON, Patutina EO, Bumazhkin BK, Gruzdev DS, Sigalevich PA, Pimenov NV, Kuznetsov BB, Gorlenko VM. Microbial processes of the carbon and sulfur cycles in an ice-covered, iron-rich meromictic lake Svetloe (Arkhangelsk region, Russia). Environ Microbiol 2016; 19:659-672. [PMID: 27862807 DOI: 10.1111/1462-2920.13591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/28/2016] [Indexed: 12/01/2022]
Abstract
Biogeochemical, isotope geochemical and microbiological investigation of Lake Svetloe (White Sea basin), a meromictic freshwater was carried out in April 2014, when ice thickness was ∼0.5 m, and the ice-covered water column contained oxygen to 23 m depth. Below, the anoxic water column contained ferrous iron (up to 240 μμM), manganese (60 μM), sulfide (up to 2 μM) and dissolved methane (960 μM). The highest abundance of microbial cells revealed by epifluorescence microscopy was found in the chemocline (redox zone) at 23-24.5 m. Oxygenic photosynthesis exhibited two peaks: the major one (0.43 μmol C L-1 day-1 ) below the ice and the minor one in the chemocline zone, where cyanobacteria related to Synechococcus rubescens were detected. The maximum of anoxygenic photosynthesis (0.69 μmol C L-1 day-1 ) at the oxic/anoxic interface, for which green sulfur bacteria Chlorobium phaeoclathratiforme were probably responsible, exceeded the value for oxygenic photosynthesis. Bacterial sulfate reduction peaked (1.5 μmol S L-1 day-1 ) below the chemocline zone. The rates of methane oxidation were as high as 1.8 μmol CH4 L-1 day-1 at the oxi/anoxic interface and much lower in the oxic zone. Small phycoerythrin-containing Synechococcus-related cyanobacteria were probably involved in accumulation of metal oxides in the redox zone.
Collapse
Affiliation(s)
- Alexander S Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia M Kokryatskaya
- Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
| | - Svetlana A Zabelina
- Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
| | - Igor I Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena E Zakharova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena F Veslopolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N Lunina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O Patutina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Boris K Bumazhkin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Gruzdev
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A Sigalevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Boris B Kuznetsov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir M Gorlenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Baatar B, Chiang PW, Rogozin DY, Wu YT, Tseng CH, Yang CY, Chiu HH, Oyuntsetseg B, Degermendzhy AG, Tang SL. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia. PLoS One 2016; 11:e0150847. [PMID: 26934492 PMCID: PMC4775032 DOI: 10.1371/journal.pone.0150847] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022] Open
Abstract
Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.
Collapse
Affiliation(s)
- Bayanmunkh Baatar
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Ting Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | - Cheng-Yu Yang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Hui Chiu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Bolormaa Oyuntsetseg
- School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | | | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Hamilton TL, Bryant DA, Macalady JL. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ Microbiol 2015; 18:325-40. [PMID: 26549614 PMCID: PMC5019231 DOI: 10.1111/1462-2920.13118] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022]
Abstract
Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, played an important role in delaying the oxygenation of Earth's surface ocean during the Proterozoic Eon.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jennifer L Macalady
- Penn State Astrobiology Research Center (PSARC), Department of Geosciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
24
|
Smith DA, Steele A, Fogel ML. Pigment production and isotopic fractionations in continuous culture: okenone producing purple sulfur bacteria Part II. GEOBIOLOGY 2015; 13:292-301. [PMID: 25857754 DOI: 10.1111/gbi.12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Okenone is a carotenoid pigment unique to certain members of Chromatiaceae, the dominant family of purple sulfur bacteria (PSB) found in euxinic photic zones. Diagenetic alteration of okenone produces okenane, the only recognized molecular fossil unique to PSB. The in vivo concentrations of okenone and bacteriochlorophyll a (Bchl a) on a per cell basis were monitored and quantified as a function of light intensity in continuous cultures of the purple sulfur bacterium Marichromatium purpuratum (Mpurp1591). We show that okenone-producing PSB have constant bacteriochlorophyll to carotenoid ratios in light-harvesting antenna complexes. The in vivo concentrations of Bchl a, 0.151 ± 0.012 fmol cell(-1), and okenone, 0.103 ± 0.012 fmol cell(-1), were not dependent on average light intensity (10-225 Lux) at both steady and non-steady states. This observation revealed that in autotrophic continuous cultures of Mpurp1591, there was a constant ratio for okenone to Bchl a of 1:1.5. Okenone was therefore constitutively produced in planktonic cultures of PSB, regardless of light intensity. This confirms the legitimacy of okenone as a signature for autotrophic planktonic PSB and by extrapolation water column euxinia. We measured the δ(13)C, δ(15)N, and δ(34)S bulk biomass values from cells collected daily and determined the isotopic fractionations of Mpurp1591. There was no statistical relationship in the bulk isotope measurements or stable isotope fractionations to light intensity or cell density under steady and non-steady-state conditions. The carbon isotope fractionation between okenone and Bchl a with respect to overall bulk biomass ((13)ε pigment - biomass) was 2.2 ± 0.4‰ and -4.1 ± 0.9‰, respectively. The carbon isotopic fractionation (13ε pigment-CO2) for the production of pigments in PSB is more variable than previously thought with our reported values for okenone at -15.5 ± 1.2‰ and -21.8 ± 1.7‰ for Bchl a.
Collapse
Affiliation(s)
- D A Smith
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA; Geophysical Laboratory of the Carnegie Institution of Washington, Washington, DC, USA
| | | | | |
Collapse
|
25
|
French KL, Rocher D, Zumberge JE, Summons RE. Assessing the distribution of sedimentary C40 carotenoids through time. GEOBIOLOGY 2015; 13:139-151. [PMID: 25631735 DOI: 10.1111/gbi.12126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
A comprehensive marine biomarker record of green and purple sulfur bacteria (GSB and PSB, respectively) is required to test whether anoxygenic photosynthesis represented a greater fraction of marine primary productivity during the Precambrian than the Phanerozoic, as current models of ocean redox evolution suggest. For this purpose, we analyzed marine rock extracts and oils from the Proterozoic to the Paleogene for C40 diagenetic products of carotenoid pigments using new analytical methods. Gas chromatography coupled with tandem mass spectrometry provides a new perspective on the temporal distributions of carotenoid biomarkers for phototrophic sulfur bacteria, specifically okenane, chlorobactane, and paleorenieratane. According to conventional paleoredox interpretations, this revised stratigraphic distribution of the GSB and PSB biomarkers implies that the shallow sunlit surface ocean (<24 m) became sulfidic more frequently in the geologic past than was previously thought. We reexamine whether there is evidence supporting a planktonic source of GSB and PSB pigments in marine systems or whether additional factors are required to explain the marine phototrophic sulfur bacteria record. To date, planktonic GSB and PSB and their pigments have been identified in restricted basins and lakes, but they have yet to be detected in the unrestricted, transiently sulfidic, marine systems. Based on modern observations, additional environmental factors, including basin restriction, microbial mats, or sediment transport, may be required to fully explain GSB and PSB carotenoids in the geologic record.
Collapse
Affiliation(s)
- K L French
- Joint Program in Chemical Oceanography, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge, MA, USA
| | | | | | | |
Collapse
|
26
|
Bovee RJ, Pearson A. Strong influence of the littoral zone on sedimentary lipid biomarkers in a meromictic lake. GEOBIOLOGY 2014; 12:529-541. [PMID: 25201322 DOI: 10.1111/gbi.12099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
Planktonic sulfur bacteria growing in zones of photic zone euxinia (PZE) are important primary producers in stratified, sulfur-rich environments. The potential for export and burial of microbial biomass from anoxic photic zones remains relatively understudied, despite being of fundamental importance to interpreting the geologic record of bulk total organic carbon (TOC) and individual lipid biomarkers. Here we report the relative concentrations and carbon isotope ratios of lipid biomarkers from the water column and sediments of meromictic Mahoney Lake. The data show that organic matter in the central basin sediments is indistinguishable from material at the lake shoreline in both its lipid and carbon isotopic compositions. However, this material is not consistent with either the lipid profile or carbon isotope composition of biomass obtained directly from the region of PZE. Due to the strong density stratification and the intensive carbon and sulfur recycling pathways in the water column, there appears to be minimal direct export of the sulfur-oxidizing planktonic community to depth. The results instead suggest that basinal sediments are sourced via the littoral environment, a system that integrates an indigenous shoreline microbial community, the degraded remains of laterally rafted biomass from the PZE community, and detrital remains of terrigenous higher plants. Material from the lake margins appears to travel downslope, traverse the strong density gradient, and become deposited in the deep basin; its final composition may be largely heterotrophic in origin. This suggests an important role for clastic and/or authigenic minerals in aiding the burial of terrigenous and mat-derived organic matter in euxinic systems. Downslope or mineral-aided transport of anoxygenic, photoautotrophic microbial mats may have been a significant sedimentation process in early Earth history.
Collapse
Affiliation(s)
- R J Bovee
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
27
|
Hamilton TL, Bovee RJ, Thiel V, Sattin SR, Mohr W, Schaperdoth I, Vogl K, Gilhooly WP, Lyons TW, Tomsho LP, Schuster SC, Overmann J, Bryant DA, Pearson A, Macalady JL. Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. GEOBIOLOGY 2014; 12:451-68. [PMID: 24976102 DOI: 10.1111/gbi.12092] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/30/2014] [Indexed: 05/10/2023]
Abstract
Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate--including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data--as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non-phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.
Collapse
Affiliation(s)
- T L Hamilton
- Department of Geosciences, Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Blank CE. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting proterozoic paleobiology and biogeochemical processes in light of trait evolution. JOURNAL OF PHYCOLOGY 2013; 49:1040-55. [PMID: 27007625 DOI: 10.1111/jpy.12111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 08/04/2013] [Indexed: 05/19/2023]
Abstract
Phylogenetic analyses were performed on concatenated data sets of 31 genes and 11,789 unambiguously alignable characters from 37 cyanobacterial and 35 chloroplast genomes. The plastid lineage emerged somewhat early in the cyanobacterial tree, at a time when Cyanobacteria were likely unicellular and restricted to freshwater ecosystems. Using relaxed molecular clocks and 22 age constraints spanning cyanobacterial and eukaryote nodes, the common ancestor to the photosynthetic eukaryotes was predicted to have also inhabited freshwater environments around the time that oxygen appeared in the atmosphere (2.0-2.3 Ga). Early diversifications within each of the three major plastid clades were also inferred to have occurred in freshwater environments, through the late Paleoproterozoic and into the middle Mesoproterozoic. The colonization of marine environments by photosynthetic eukaryotes may not have occurred until after the middle Mesoproterozoic (1.2-1.5 Ga). The evolutionary hypotheses proposed here predict that early photosynthetic eukaryotes may have never experienced the widespread anoxia or euxinia suggested to have characterized marine environments in the Paleoproterozoic to early Mesoproterozoic. It also proposes that earliest acritarchs (1.5-1.7 Ga) may have been produced by freshwater taxa. This study highlights how the early evolution of habitat preference in photosynthetic eukaryotes, along with Cyanobacteria, could have contributed to changing biogeochemical conditions on the early Earth.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, 32 Campus Drive #1296, Missoula, Montana, 59812-1296, USA
| |
Collapse
|
29
|
Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters. Sci Rep 2012; 2:604. [PMID: 22930670 PMCID: PMC3428602 DOI: 10.1038/srep00604] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/09/2012] [Indexed: 11/25/2022] Open
Abstract
Meromictic lakes are useful biogeochemical models because of their stratified chemical gradients and separation of redox reactions down the water column. Perennially ice-covered meromictic lakes are particularly stable, with long term constancy in their density profiles. Here we sampled Lake A, a deep meromictic lake at latitude 83°N in High Arctic Canada. Sampling was before (May) and after (August) an unusual ice-out event during the warm 2008 summer. We determined the bacterial and archaeal community composition by high-throughput 16S rRNA gene tag-pyrosequencing. Both prokaryote communities were stratified by depth and the Bacteria differed between dates, indicating locally driven selection processes. We matched taxa to known taxon-specific biogeochemical functions and found a close correspondence between the depth of functional specialists and chemical gradients. These results indicate a rich microbial diversity despite the extreme location, with pronounced vertical structure in taxonomic and potential functional composition, and with community shifts during ice-out.
Collapse
|