1
|
Martínez-Lamas L, García-Mato E, Rincón-Quintero A, Rivas-Mundiña B, Diz-Dios P, Álvarez-Fernández M. Mechanism of Action of Streptococcus downii, a New Bacterial Species with Probiotic Potential. Antibiotics (Basel) 2023; 12:1472. [PMID: 37760768 PMCID: PMC10525679 DOI: 10.3390/antibiotics12091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus downii is a recently reported bacterial species of oral origin, with inhibitory capacity against Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula and Aggregatibacter actinomycetemcomitans, which confers upon it the potential of being an oral probiotic. The aim of the present study was to identify the potential mechanisms by which S. downii exerts its inhibitory effect on S. mutans. To this end, the study assessed the consumption of glucose and proteins available in the culture medium, the modification of the pH, the production of short-chain fatty acids, the changes in the protein panel of the inhibition halo, the production of hydrogen peroxide and the effect of proteinase K. There were no differences in the glucose values or in the protein content of the medium, but there was a reduction in pH (with no effect on the growth of S. mutans). Significant increases were detected in the levels of lactic and formic acid (with no effect on the growth of S. mutans), as well as changes in the peptide panel (with no effect on the growth of S. mutans). The inhibitory effect was maintained in the presence of peroxidase but disappeared after adding proteinase K. Based on these results, it is suggested that the main mechanism of inhibition of S. downii against S. mutans is the production of bacteriocins.
Collapse
Affiliation(s)
- Lucía Martínez-Lamas
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| | - Eliane García-Mato
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Anniris Rincón-Quintero
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| | - Berta Rivas-Mundiña
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Pedro Diz-Dios
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Maximiliano Álvarez-Fernández
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| |
Collapse
|
2
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
3
|
Zhang J, Li K, Bu X, Cheng S, Duan Z. Characterization of the anti-pathogenic, genomic and phenotypic properties of a Lacticaseibacillus rhamnosus VHProbi M14 isolate. PLoS One 2023; 18:e0285480. [PMID: 37186610 PMCID: PMC10184941 DOI: 10.1371/journal.pone.0285480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
A strain of lactic acid bacteria from cheese was isolated, that showed strong growth inhibitory effects on Streptococcus mutans. The API 50CH system and 16S rDNA sequencing verified that this was a novel strain, and was named Lacticaseibacillus rhamnosus VHProbi M14. The strain inhibited the growth of S. mutans and Fusobacterium nucleatum under mixed culture conditions, coaggregated with S. mutans and F. nucleatum, and reduced the adhesion of S. mutans and F. nucleatum on cultured human primary gingival epithelial (HPGE) cells. The pH, peroxidase and protease sensitivity testing found antibacterial substances of protein- and peptide-like structures in addition to organic acids. The antimicrobial substances were sensitive to hydrolysis with trypsin, papain and pineapple protease and were inactived at temperatures above 100°C. Ammonium sulphate-precipitated proteins from the M14 strain retained the ability to inhibit the growth of S. mutans and F. nucleatum. The M14 strain contained 23 bacteriocin-related genes encoding for metabolites, belonging to class II bacteriocins. The M14 strain also showed inhibitory effects on 8 other pathogenic strains (A. actinomycetemcomitans, C. albicans, E. coli, G. vaginalis, P. acnes, P. gingivalis, S. aureus, S. enteritids), and thus has a broad spectrum of bacterial inhibition. This new isolate has been identified as having potential to be used as a probiotic bacterium in clinical applications.
Collapse
Affiliation(s)
- Jingyan Zhang
- Qingdao Vland Biotech Inc, Nutrition & Health Technology Center, Qingdao, China
| | - Kailing Li
- Qingdao Vland Biotech Inc, Nutrition & Health Technology Center, Qingdao, China
| | - Xinping Bu
- Qingdao Vland Biotech Inc, Nutrition & Health Technology Center, Qingdao, China
| | - Shumin Cheng
- Qingdao Vland Biotech Inc, Nutrition & Health Technology Center, Qingdao, China
| | - Zhi Duan
- Qingdao Vland Biotech Inc, Nutrition & Health Technology Center, Qingdao, China
| |
Collapse
|
4
|
Jimenez-Trigos E, Toquet M, Barba M, Gómez-Martín Á, Quereda JJ, Bataller E. Search of antimicrobial lactic acid bacteria from Salmonella-negative dogs. BMC Vet Res 2022; 18:12. [PMID: 35042502 PMCID: PMC8767738 DOI: 10.1186/s12917-021-03070-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/30/2021] [Indexed: 01/05/2023] Open
Abstract
Background Salmonellosis is one of the most important food-borne zoonotic disease affecting both animals and humans. The objective of the present study was to identify gastrointestinal (GI) lactic acid bacteria (LAB) of canine-origin from Salmonella-negative dogs’ faeces able to inhibit monophasic Salmonella Typhimurium previously isolated from dogs’ faeces, in order to be used as a potential probiotic in pet nutrition. Results Accordingly, 37 LAB were isolated from Salmonella-negative dogs’ faeces and tested against monophasic S. Typhimurium using the spot on lawn method out of which 7 strains showed an inhibition halo higher than 2.5 cm. These 7 strains were also tested with the co-culture method and one showed the greatest inhibition value (p < 0.05). Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology and designated as Ligilactobacillus salivarius (L. salivarius). LAB from Salmonella-positive dogs were also identified and none was the selected strain. Finally, to identify the mechanism of inhibition of L. salivarius, the supernatant was analyzed, and a dose response effect was observed. Conclusions It is concluded that the canine-origin L. salivarius, could possess some in vitro functional attributes of a candidate probiotic and could prevent monophasic S. Typhimurium colonization or inhibit its activity if the infection occurs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03070-x.
Collapse
|
5
|
Stupar J, Holøymoen IG, Hoel S, Lerfall J, Rustad T, Jakobsen AN. Diversity and Antimicrobial Activity towards Listeria spp. and Escherichia coli among Lactic Acid Bacteria Isolated from Ready-to-Eat Seafood. Foods 2021; 10:foods10020271. [PMID: 33572838 PMCID: PMC7911464 DOI: 10.3390/foods10020271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Biopreservation is a food preservation technology using microorganisms and/or their inherent antimicrobial metabolites to inhibit undesirable microorganisms. The aim of the present study was to explore the diversity and antimicrobial activity of lactic acid bacteria (LAB) strains (n = 99) isolated from ready-to-eat (RTE) seafood (cold-smoked salmon (CSS), gravlax, and sushi) towards two strains of Listeria monocytogenes (CCUG 15527, F11), Listeria innocua (CCUG 15531) and Escherichia coli (CCUG 38079). The LAB strains were assigned to five different genera (Carnobacterium spp., Lactobacillus spp., Leuconostoc spp., Weissella spp., and Enterococcus sp.) by sequencing a 1150 bp stretch of the 16S rRNA gene. A significant association between the seafood source and the distribution of LAB genera was found (p < 0.001), of which Leuconostoc spp. were most prevalent in sushi and Carnobacterium sp. and Lactobacillus sp. were most frequently isolated from CSS and gravlax. Antimicrobial activity among the LAB was significantly affected by LAB genera (F= 117.91, p < 0.001, one-way ANOVA), product of origin (F = 3.47, p < 0.05), and target (F = 4.64, p = 0.003). LAB isolated from sushi demonstrated a significantly higher antimicrobial effect than LAB from CSS and gravlax (p < 0.05). In general, a significantly higher antimicrobial activity was found towards Listeria spp. than E. coli (p < 0.05). However, Leuconostoc spp. demonstrated similar antimicrobial effects towards E. coli and Listeria spp., except for L. monocytogenes F11 being more sensitive (p < 0.05). This study suggested that seafood-derived LAB strains could be selected for technological application in RTE seafood systems.
Collapse
|
6
|
Terai T, Okumura T, Imai S, Nakao M, Yamaji K, Ito M, Nagata T, Kaneko K, Miyazaki K, Okada A, Nomura Y, Hanada N. Screening of Probiotic Candidates in Human Oral Bacteria for the Prevention of Dental Disease. PLoS One 2015; 10:e0128657. [PMID: 26053410 PMCID: PMC4459870 DOI: 10.1371/journal.pone.0128657] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
The oral cavity in healthy subjects has a well-balanced microbiota that consists of more than 700 species. However, a disturbance of this balance, with an increase of harmful microbes and a decrease of beneficial microbes, causes oral disorders such as periodontal disease or dental caries. Nowadays, probiotics are expected to confer oral health benefits by modulating the oral microbiota. This study screened new probiotic candidates with potential oral health benefits and no harmful effects on the oral cavity. We screened 14 lactobacillus strains and 36 streptococcus strains out of 896 oral isolates derived from healthy subjects. These bacteria did not produce volatile sulfur compounds or water-insoluble glucan, had higher antibacterial activity against periodontal bacteria, and had higher adherence activity to oral epithelial cells or salivary-coated hydroxyapatite in vitro. We then evaluated the risk of primary cariogenicity and infective endocarditis of the selected oral isolates. As a result, Lactobacillus crispatus YIT 12319, Lactobacillus fermentum YIT 12320, Lactobacillus gasseri YIT 12321, and Streptococcus mitis YIT 12322 were selected because they showed no cariogenic potential in an artificial mouth system and a lower risk of experimental infective endocarditis in a rat model. These candidates are expected as new probiotics with potential oral health benefits and no adverse effects on general health.
Collapse
Affiliation(s)
- Tomohiko Terai
- Yakult Central Institute, Kunitachi, Tokyo, Japan
- * E-mail:
| | | | - Susumu Imai
- Department of Translational Research, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, Japan
| | - Masumi Nakao
- Yakult Central Institute, Kunitachi, Tokyo, Japan
| | | | - Masahiko Ito
- Yakult Central Institute, Kunitachi, Tokyo, Japan
| | | | | | | | - Ayako Okada
- Department of Translational Research, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, Japan
| | - Yoshiaki Nomura
- Department of Translational Research, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, Japan
| | - Nobuhiro Hanada
- Department of Translational Research, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Rethinking the composition of a rational antibiotic arsenal for the 21st century. Future Med Chem 2014; 5:1231-42. [PMID: 23859205 DOI: 10.4155/fmc.13.79] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The importance of the human microbiome in health may be the single most valuable development in our conception of the microbial world since Pasteur's germ theory of the 1860s. Its implications for our understanding of health and pathogenesis are profound. Coupled with the revolution in diagnostics that we are now witnessing - a revolution that changes medicine from a science of symptoms to a science of causes - we cannot continue to develop antibiotics as we have for the past 80 years. Instead, we need to usher in a new conception of the role of antibiotics in treatment: away from single molecules that target broad phylogenetic spectra and towards targeted molecules that cripple the pathogen while leaving the rest of the microbiome largely intact.
Collapse
|
8
|
An In Vitro Study on Bacterial Growth Interactions and Intestinal Epithelial Cell Adhesion Characteristics of Probiotic Combinations. Curr Microbiol 2009; 60:327-35. [DOI: 10.1007/s00284-009-9545-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 11/05/2009] [Indexed: 12/23/2022]
|
9
|
Kang MS, Oh HJ, Lee HC, Oh JS. Isolation and Identification of Lactic Acid Bacteria Inhibiting the Proliferation of Propionibacterium acnes and Staphylococcus epidermidis. ACTA ACUST UNITED AC 2009. [DOI: 10.4167/jbv.2009.39.1.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mi-Sun Kang
- Department of Microbiology, School of Medicine, Chonnam National University, Gwangju, Korea
| | - Hyun-Ju Oh
- Department of Microbiology, School of Medicine, Chonnam National University, Gwangju, Korea
| | - Hyun-Chul Lee
- Department of Microbiology, School of Medicine, Chonnam National University, Gwangju, Korea
| | - Jong-Suk Oh
- Department of Microbiology, School of Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|
10
|
Barrett E, Hayes M, O'Connor P, Gardiner G, Fitzgerald GF, Stanton C, Ross RP, Hill C. Salivaricin P, one of a family of two-component antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius. Appl Environ Microbiol 2007; 73:3719-23. [PMID: 17416691 PMCID: PMC1932675 DOI: 10.1128/aem.00666-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus salivarius DPC6005, a porcine intestinal isolate, produces a two-component bacteriocin, salivaricin P, with homology to ABP-118 produced by a human probiotic L. salivarius strain. Indeed, molecular characterization revealed that while the peptides Sln1 and ABP-118alpha are identical, their companion peptides (Sln2 and ABP-118beta, respectively) differ by two amino acids. This observation suggests that two-component bacteriocins may be a common feature of intestinal L. salivarius strains.
Collapse
Affiliation(s)
- Eoin Barrett
- Teagasc Biotechnology Centre, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
. NM, . CA. Kinetics of Growth and Bacteriocin Production in L. casei RN 78 Isolated from a Dairy Sample in IR Iran. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/ijds.2007.1.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Topisirovic L, Kojic M, Fira D, Golic N, Strahinic I, Lozo J. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int J Food Microbiol 2006; 112:230-5. [PMID: 16764959 DOI: 10.1016/j.ijfoodmicro.2006.04.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2006] [Indexed: 11/26/2022]
Abstract
Autochthonous strains of lactic acid bacteria (LAB) have been isolated from traditionally homemade cheeses collected from specific ecological localities across Serbia and Montenegro. Genetic and biochemical analysis of this LAB revealed that they produce bacteriocins, proteinases and exopolysaccharides. LAB produces a variety of antimicrobial substances with potential importance for food fermentation and preservation. Apart from the metabolic end products, some strains also secrete antimicrobial substances known as bacteriocins. Among the natural isolates of LAB from homemade cheeses, bacteriocin producers were found in both lactococci and lactobacilli. Lactococcus lactis subsp. lactis BGMN1-5 was found to produce three narrow spectrum class II heat-stable bacteriocins. In addition to bacteriocin production, BGMN1-5 synthesized a cell envelope-associated proteinase (CEP) and shows an aggregation phenotype. Another isolate, L. lactis subsp. lactis BGSM1-19 produces low molecular mass (7 kDa) bacteriocin SM19 that showed antimicrobial activity against Staphylococcus aureus, Micrococcus flavus and partially against Salmonella paratyphi. Production of bacteriocin reaches a plateau after 8 h of BGSM1-19 growth. Bacteriocin SM19 retained activity within the wide pH range from 1 to 12 and after the treatment at 100 degrees C for 15 min. Among collection of lactobacilli, the isolate Lactobacillus paracasei subsp. paracasei BGSJ2-8 produces heat-stable bacteriocin SJ (approx. 5 kDa) polypeptide. It retained activity after treatment for 1 h at 100 degrees C, and in the pH range from 2 to 11. In addition to isolates from cheeses, bacteriocin-producing human oral lactobacilli were detected. Most of them showed antimicrobial activity against streptococci, staphylococci and micrococci, but not against Candida. Isolate BGHO1 that showed the highest antimicrobial activity was determined as L. paracasei. Interestingly, Lactobacillus helveticus BGRA43, which was isolated from the human intestine showed strong activity against Clostridium sporogenes, but it was not possible to detect any bacteriocin production in this isolate by using standard procedures. Further analysis of antimicrobial activity revealed that BGRA43 has a relatively broad spectrum. Lactobacilli resistant to nisin were also detected among natural isolates. They produce bacteriocins, which have no activity against nisin producing lactococci.
Collapse
Affiliation(s)
- Ljubisa Topisirovic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11010 Belgrade, Serbia and Montenegro.
| | | | | | | | | | | |
Collapse
|
13
|
. MCA, C. Apella M. Bacteriocin-like Substance Produced by Lactobacillus salivarius subsp. salivarius CRL1384 with Anti-Listeria and Anti-Salmonella Effects. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/jm.2006.61.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Matsumoto M, Tsuji M, Sasaki H, Fujita K, Nomura R, Nakano K, Shintani S, Ooshima T. Cariogenicity of the Probiotic Bacterium Lactobacillus salivarius in Rats. Caries Res 2005; 39:479-83. [PMID: 16251792 DOI: 10.1159/000088183] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 02/17/2005] [Indexed: 11/19/2022] Open
Abstract
Probiotic bacteria such as lactobacilli and bifidobacteria are considered to be non-pathogenic and non-toxigenic on the basis of long years of safe usage. However, some species of lactobacilli are thought to be associated with the development of dental caries. The purpose of the present study was to examine the cariogenicity of the probiotic bacterium Lactobacillus salivarius in rats. Rats were divided into six groups, and infected with L. salivarius LS1952R and/or Streptococcus mutans MT8148R. L. salivarius LS1952R became established in the oral cavity of rats and induced significant level of dental caries even when infected for only 5 days from 18 to 22 days of age. In addition, the caries scores of rats superinfected with both Streptococcus mutans MT8148R and L. salivarius LS1952R from 18 days of age were significantly higher than those infected with either L. salivarius LS1952R or S. mutans MT8148R alone. Since strain LS1952R can adhere to saliva-coated hydroxyapatites, it is concluded that L. salivarius strain LS1952R possesses an inherent cariogenic activity following adherence to the tooth surface.
Collapse
Affiliation(s)
- M Matsumoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Vasala A, Panula J, Neubauer P. Efficient lactic acid production from high salt containing dairy by-products by Lactobacillus salivarius ssp. salicinius with pre-treatment by proteolytic microorganisms. J Biotechnol 2005; 117:421-31. [PMID: 15876466 DOI: 10.1016/j.jbiotec.2005.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 02/22/2005] [Accepted: 02/25/2005] [Indexed: 11/30/2022]
Abstract
Lactic acid bacteria have an inefficient proteolytic system. Therefore, cultivation media which may have high protein content are usually supplemented with yeast extract or protein lysates (peptones). These additives might be conveniently replaced by in situ treatment of the cultivation medium with proteolytic enzymes or proteolytic microbes. Lactobacillus salivarius ssp. salicinius, a lactic acid bacterium species that can grow at high salt concentration, was used to ferment lactic acid in cheese whey (with 3 gl(-1) whey protein content) and lactose mother liquor (90 gl(-1) lactose, 9 gl(-1) proteins, 30 gl(-1) minerals). The contribution of protease enzymes or proteolytic microbes to acid production by lactobacilli was examined. Efficient conversion of lactose to lactic acid was obtained in the presence of additional proteolytic activity. Fastest acid production was obtained with the addition of protease enzymes. However, almost equally efficient acid production was obtained by treating the medium with Bacillus megaterium. The results show that fast and complete conversion of lactose to lactic acid can be obtained in dairy by-products without expensive additives.
Collapse
Affiliation(s)
- Antti Vasala
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, FIN-90014 Oulu, Finland.
| | | | | |
Collapse
|
16
|
Lash BW, Mysliwiec TH, Gourama H. Detection and partial characterization of a broad-range bacteriocin produced by Lactobacillus plantarum (ATCC 8014). Food Microbiol 2005. [DOI: 10.1016/j.fm.2004.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Lozo J, Vukasinovic M, Strahinic I, Topisirovic L. Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16. J Food Prot 2004; 67:2727-34. [PMID: 15633678 DOI: 10.4315/0362-028x-67.12.2727] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The strain Lactobacillus paracasei subsp. paracasei BGBUK2-16. which was isolated from traditionally homemade white-pickled cheese, produces bacteriocin 217 (Bac217; approximately 7 kDa). The onset of Bac217 biosynthesis was observed in the logarithmic phase of growth, and the production plateau was reached after 9 or 12 h of incubation at 37 and 30 degrees C, respectively, when culture entered the early stationary phase. Biochemical characterization showed that Bac217 retained antimicrobial activity within the range of pH 3 to 12 or after treatment at 100 degrees C for 15 min. Bac217 antimicrobial activity also remained unchanged after storage at 4 degrees C for 6 months or -20 degrees C for up to 12 months. However, Bac217 activity was completely lost after treatment with different proteolytic enzymes. BGBUK2-16 contains only one plasmid about 80 kb in size. Plasmid curing indicated that genes coding for Bac217 synthesis and immunity seem to be located on this plasmid. Bac217 exhibited antimicrobial activity against some pathogenic bacteria, such as Staphylococcus aureus and Bacillus cereus. Interestingly, Bac217 showed activity against Salmonella sp. and Pseudomonas aeruginosa ATCC27853. The inhibitory effect of BGBUK2-16 on the growth of S. aureus in mixed culture was observed. S. aureus treatment with Bac217 led to a considerable decrease (CFU/ml) within a short period of time. The mode of Bac217 action on S. aureus was identified as bactericidal. It should be noted that the strain BGBUK2-16 was shown to be resistant to bacteriocin nisin, which is otherwise widely used as a food additive for fermented dairy products.
Collapse
Affiliation(s)
- Jelena Lozo
- Institute of Molecular Genetics and Genetic Engineering, 11010 Belgrade, Serbia and Montenegro
| | | | | | | |
Collapse
|
18
|
Schrezenmeir J, Heller K, McCue M, Llamas C, Lam W, Burow H, Kindling-Rohracker M, Fischer W, Sengespeik HC, Comer GM, Alarcon P. Benefits of oral supplementation with and without synbiotics in young children with acute bacterial infections. Clin Pediatr (Phila) 2004; 43:239-49. [PMID: 15094948 DOI: 10.1177/000992280404300305] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acutely ill children (n = 129) aged 1-6 years receiving antibiotic therapy were randomized to receive a nutritional supplement with (PS) or without (P) synbiotics or a fruit-flavored drink (D) with their medications. Group PS had significantly greater weight gains (versus D) following antibiotic therapy. The percentages of subjects without bacterial illnesses 14 days following antibiotic therapy were as follows: 94.3% (PS), 87.8% (D), and 80.6% (P). PS (vs D) significantly increased fecal Lactobacillus in a subset of subjects. Oral supplements increase energy intake and promote weight gain in acutely ill children receiving antibiotics; synbiotics may confer additional benefits by increasing bifidobacteria levels.
Collapse
|
19
|
Juarez Tomás MS, Bru E, Wiese B, de Ruiz Holgado AAP, Nader-Macías ME. Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. J Appl Microbiol 2002; 93:714-24. [PMID: 12234356 DOI: 10.1046/j.1365-2672.2002.01753.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To study the influence of pH, temperature and culture medium on the growth and bacteriocin production by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328. METHODS AND RESULTS The study was performed using a complete factorial experimental design. Lactobacillus salivarius was cultivated in LAPTg and MRS broths, adjusted to specific initial pH, and at different temperatures of incubation. The growth, which was evaluated by the Gompertz model, was higher in MRS broth than in LAPTg broth. The initial pH of the culture medium and the temperature had a dramatic effect on the production of bacteriocin. The optimal conditions for bacteriocin production were different to those for optimal growth. The decrease in the pH of the culture medium was parallel to the growth; pH had similar final values in both the MRS and the LAPTg broths. CONCLUSIONS The optimal growth conditions were recorded in MRS broth, with an initial pH of 6.5 and a temperature of 37 degrees C. The maximum bacteriocin activity was obtained in LAPTg after 6 h at 37 degrees C, and at an initial pH of 6.5 or 8.0. SIGNIFICANCE AND IMPACT OF THE STUDY The application of a complete factorial design, and the evaluation of the growth parameters through the Gompertz model, enabled a rapid and simultaneous exploration of the influence of pH, temperature and growth medium on both growth and bacteriocin production by vaginal Lact. salivarius CRL 1328.
Collapse
|
20
|
Woo PCY, Fung AMY, Lau SKP, Yuen KY. Identification by 16S rRNA gene sequencing of Lactobacillus salivarius bacteremic cholecystitis. J Clin Microbiol 2002; 40:265-7. [PMID: 11773128 PMCID: PMC120105 DOI: 10.1128/jcm.40.1.265-267.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An anaerobic, nonsporulating, gram-positive bacterium was isolated from blood and bile pus cultures of a 70-year-old man with bacteremic acute cholecystitis. The API 20A system showed that it was 70% Actinomyces naeslundii and 30% Bifidobacterium species, whereas the Vitek ANI system and the ATB ID32A Expression system showed that it was "unidentified." The 16S rRNA gene of the strain was amplified and sequenced. There were 3 base differences between the nucleotide sequence of the isolate and that of Lactobacillus salivarius subsp. salivarius or L. salivarius subsp. salicinius, indicating that the isolate was a strain of L. salivarius. The patient responded to cholecystectomy and a 2-week course of antibiotic treatment. Identification of the organism in the present study was important because the duration of antibiotic therapy would have been entirely different depending on the organism. If the bacterium had been identified as Actinomyces, penicillin for 6 months would have been the regimen of choice. However, it was Lactobacillus, and a 2-week course of antibiotic was sufficient.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong
| | | | | | | |
Collapse
|
21
|
Messi P, Bondi M, Sabia C, Battini R, Manicardi G. Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int J Food Microbiol 2001; 64:193-8. [PMID: 11252503 DOI: 10.1016/s0168-1605(00)00419-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lactic acid bacteria (134) from Italian sausages were tested for the production of antimicrobial substances (bacteriocins). Six percent of these showed antibacterial activity against one or several closely related microorganisms used as indicators. Lactobacillus plantarum 35d in particular produced a bacteriocin of high activity (320 AU ml(-1)) and a wide range of antimicrobial activity including S. aureus, L. monocytogenes, and A. hydrophila. The bacteriocin withstood heating at 80 degrees C for 120 min and storage at 4 degrees C for 6 months. The mode of action was identified as bactericidal. The apparent molecular weight of the bacteriocin extracted with n-butanol was estimated to be 4.5 kDa.
Collapse
Affiliation(s)
- P Messi
- Department of Biomedical Sciences, University of Modena and Reggio E., Italy.
| | | | | | | | | |
Collapse
|
22
|
Sookkhee S, Chulasiri M, Prachyabrued W. Lactic acid bacteria from healthy oral cavity of Thai volunteers: inhibition of oral pathogens. J Appl Microbiol 2001; 90:172-9. [PMID: 11168719 DOI: 10.1046/j.1365-2672.2001.01229.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aims of the present study were to screen and characterize the antimicrobial lactic acid bacteria which were isolated from healthy oral cavities of Thai volunteers, and to characterize their inhibiting substances. Among 3790 isolates (suspected to be lactic acid bacteria) from 130 volunteers, five showed an appreciable effect against Sarcina lutea ATCC 9341, Bacillus cereus ATCC 11778, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Streptococcus mutans DTMU 1, Strep. salivarius DTMU 1, Strep. sanguis DTMU 1, Candida albicans ATCC 13803 and C. albicans DTMU 2, as well as the oral pathogens. These antimicrobial isolates included L17 and N14 which showed the antibacterial activity, D14 which showed the anticandidal activity, and D6 and N8 which showed both the antibacterial and anticandidal activities. The isolates were later found to be facultative anaerobic, Gram-positive, non-spore-forming, non-capsule-forming and catalase-negative bacilli. They could utilize casein but could not hydrolyse starch, and they produced hydrogen peroxide and bacteriocins. Their antimicrobial potentials were found to be affected by pH, catalase, proteolytic enzymes and temperature. The activity was partially inactivated after catalase treatment, significantly declined at pH > or =9.0 or after trypsin and pepsin treatments, and also reduced after heating at > or =100 degrees C. However, the antimicrobial activity of these five isolates was somewhat resistant to heat. When the isolates were tested for their antimicrobial sensitivity, they were shown to be sensitive to a number of antimicrobial agents. The final identification revealed that D6, D14 and N14 were Lactobacillus paracasei subsp. paracasei, and L17 and N8 were Lact. rhamnosus.
Collapse
Affiliation(s)
- S Sookkhee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Sri Ayudhaya Road, Bangkok 10400, Thailand.
| | | | | |
Collapse
|
23
|
Lauková A, Czikková S. Antagonistic effect of enterocin CCM 4231 from Enterococcus faecium on “bryndza”, a traditional Slovak dairy product from sheep milk. Microbiol Res 2001; 156:31-4. [PMID: 11372650 DOI: 10.1078/0944-5013-00078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
"Bryndza" is a traditional Slovak dairy product (type of soft cheese) made from sheep cheese which was ripened for 14 days. Because its manufacture, transporting and/or storing represent conditions which facilitate contamination, the effect of enterocin CCM4231 in "bryndza" was investigated with the aim to reduce the contaminant agents. "Bryndza" was divided into equal portions (50 g). The experimental sample (ES) as well as the control sample one (C1) were inoculated with Listeria innocua Li1 strain. The other control samples C2 and C3 were without Li1 strain. C3 control was selected as a reference control. ES and C2 portions were treated with purified enterocin CCM4231 in a concentration of 6400 AU/ml. Before the experimental inoculation, "bryndza" was checked for the presence of contaminant agents. The experiment lasted 1 week and the samples were stored in the refrigerator at 4 degrees C. Sampling was performed on day 1, on day 4 and on day 7. The control samples C2 and C3 were checked only on day 1 and then after 1 week. The following contaminant agents were detected in "bryndza" before its experimental inoculation with L. innocua Li1 strain: Escherichia coli in the amount 10(3) cfu/ml/g, Staphylococcus aureus (10(2) cfu/ml/g) and enterococci (10(4) cfu/ml/g). In the control sample C2, the number of E. coli was reduced to 10(2) cfu/ml/g. Enterococci and staphylococci were totally eliminated there. Concerning C3 control, natural decrease of bacteria was found and/or their unchanged counts. The value of pH (5) was stable during the whole experiment. In the experimental sample inoculated with Li1 strain, its counts were decreased immediately after enterocin CCM4231 addition approximately by one order of magnitude. This inhibitory effect was also detectable on day 4 by the difference of one order of magnitude between ES and C1. On day 7, 10(3) cfu/ml/g of Li1 strain were detected in both samples (ES, C1). The difference by one order of magnitude indicated, an inhibitory effect of enterocin CCM4231 in "bryndza". However, bacteriocin activity was not determined by laboratory analyses.
Collapse
Affiliation(s)
- A Lauková
- Institute of Animal Physiology Slovak Academy of Sciences, Kosice.
| | | |
Collapse
|
24
|
|
25
|
Ocaña VS, Pesce De Ruiz Holgado AA, Nader-Macías ME. Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Environ Microbiol 1999; 65:5631-5. [PMID: 10584033 PMCID: PMC91773 DOI: 10.1128/aem.65.12.5631-5635.1999] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1999] [Accepted: 10/01/1999] [Indexed: 11/20/2022] Open
Abstract
A novel bacteriocin-like substance produced by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328 with activity against Enterococcus faecalis, Enterococcus faecium, and Neisseria gonorrhoeae was characterized. The highest level of production of this heat-resistant peptide or protein occurred during the late exponential phase. Its mode of action was shown to be bactericidal. L. salivarius subsp. salivarius CRL 1328 could be used for the design of a probiotic to prevent urogenital infections.
Collapse
Affiliation(s)
- V S Ocaña
- CERELA, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | | | | |
Collapse
|