1
|
Yang L, Zhao T, Zhang X, Fan T, Zhang Y, Feng Z, Liu J. Crystal structure of urethanase from Candida parapsilosis and insights into the substrate-binding through in silico mutagenesis and improves the catalytic activity and stability. Int J Biol Macromol 2024; 278:134763. [PMID: 39151849 DOI: 10.1016/j.ijbiomac.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Ethyl carbamate (EC) is classified as a Class 2A carcinogen, and is present in various fermented foods, posing a threat to human health. Urethanase (EC 3.5.1.75) can catalyze EC to produce ethanol, CO2 and NH3. The urethanase (cpUH) from Candida parapsilosis can hydrolyze EC, but its low affinity and poor stability hinder its application. Here, the structure of cpUH from Candida parapsilosis was determined with a resolution of 2.66 Å. Through sequence alignment and site-directed mutagenesis, it was confirmed that cpUH contained the catalytic triad Ser-cisSer-Lys of the amidase family. Then, the structure-oriented engineering mutant N194V of urethanase was obtained. Its urethanase activity increased by 6.12 %, the catalytic efficiency (kcat/Km) increased by 21.04 %, and the enzyme stability was also enhanced. Modeling and molecular docking analysis showed that the variant N194V changed the number of hydrogen bonds between the substrate and the catalytic residue, resulting in enhanced catalytic ability. MD simulation also demonstrated that the introduction of hydrophobic amino acid Val reduced the RMSD value and increased protein stability. The findings of this study suggest that the N194V variant exhibits significant potential for industrial applications due to its enhanced affinity for substrate binding, improved catalytic efficiency, and increased enzyme stability.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Ting Zhao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Jun Liu
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
2
|
Liu Q, Wang H, Zhang W, Cheng F, Qian S, Li C, Chen Y, Zhu S, Wang T, Tian S. High Salt-Resistant Urethanase Degrades Ethyl Carbamate in Soy Sauce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21266-21275. [PMID: 39268855 DOI: 10.1021/acs.jafc.4c06162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Urethanase is a promising biocatalyst for degrading carcinogen ethyl carbamate (EC) in fermented foods. However, their vulnerability to high ethanol and/or salt and acidic conditions severely limits their applications. In this study, a novel urethanase from Alicyclobacillus pomorum (ApUH) was successfully discovered using a database search. ApUH shares 49.4% sequence identity with the reported amino acid sequences. It belongs to the Amidase Signature family and has a conserved "K-S-S" catalytic triad and the characteristic "GGSS" motif. The purified enzyme overexpressed in Escherichia coli exhibits a high EC affinity (Km, 0.306 mM) and broad pH tolerance (pH 4.0-9.0), with an optimum pH 7.0. Enzyme activity remained at 58% in 12% (w/v) NaCl, and 80% in 10% (v/v) ethanol or after 1 h treatment with the same ethanol solution at 37 °C. ApUH has no hydrolytic activity toward urea. Under 30 °C, the purified enzyme (200 U/L) degraded about 15.4 and 43.1% of the EC in soy sauce samples (pH 5.0, 6.0), respectively, in 5 h. Furthermore, the enzyme also showed high activity toward the class 2A carcinogen acrylamide in foods. These attractive properties indicate their potential applications in the food industry.
Collapse
Affiliation(s)
- Qingtao Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Senhe Qian
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuang Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Sibao Zhu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Shufang Tian
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| |
Collapse
|
3
|
Raczyńska A, Góra A, André I. An overview on polyurethane-degrading enzymes. Biotechnol Adv 2024; 77:108439. [PMID: 39241969 DOI: 10.1016/j.biotechadv.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Polyurethanes (PUR) are durable synthetic polymers widely used in various industries, contributing significantly to global plastic consumption. PUR pose unique challenges in terms of degradability and recyclability, as they are characterised by intricate compositions and diverse formulations. Additives and proprietary structures used in commercial PUR formulations further complicate recycling efforts, making the effective management of PUR waste a daunting task. In this review, we delve into the complex challenge of enzymatic degradation of PUR, focusing on the structural and functional attributes of both enzymes and PUR. We also present documented native enzymes with reported efficacy in hydrolysing specific bonds within PUR, analysis of these enzyme structures, reaction mechanisms, substrate specificity, and binding site architecture. Furthermore, we propose essential features for the future redesign of enzymes to optimise PUR biodegradation efficiency. By outlining prospective research directions aimed at advancing the field of enzymatic biodegradation of PUR, we aim to contribute to the development of sustainable solutions for managing PUR waste and reducing environmental pollution.
Collapse
Affiliation(s)
- Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland; Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France; Faculty of Chemistry, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France.
| |
Collapse
|
4
|
Zhao Y, Liu J, Wang H, Gou F, He Y, Yang L. Advancements in Fermented Beverage Safety: Isolation and Application of Clavispora lusitaniae Cl-p for Ethyl Carbamate Degradation and Enhanced Flavor Profile. Microorganisms 2024; 12:882. [PMID: 38792712 PMCID: PMC11124150 DOI: 10.3390/microorganisms12050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/26/2024] Open
Abstract
Ethyl carbamate (EC) is a natural by-product in the production of fermented food and alcoholic beverages and is carcinogenic and genotoxic, posing a significant food safety concern. In this study, Clavispora lusitaniae Cl-p with a strong EC degradation ability was isolated from Daqu rich in microorganisms by using EC as the sole nitrogen source. When 2.5 g/L of EC was added to the fermentation medium, the strain decomposed 47.69% of ethyl carbamate after five days of fermentation. It was unexpectedly found that the strain had the ability to produce aroma and ester, and the esterification power reached 30.78 mg/(g·100 h). When the strain was added to rice wine fermentation, compared with the control group, the EC content decreased by 41.82%, and flavor substances such as ethyl acetate and β-phenylethanol were added. The EC degradation rate of the immobilized crude enzyme in the finished yellow rice wine reached 31.01%, and the flavor substances of yellow rice wine were not affected. The strain is expected to be used in the fermented food industry to reduce EC residue and improve the safety of fermented food.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
| | - Jun Liu
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
- Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Han Wang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
| | - Fayuan Gou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
| | - Yiwei He
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
| | - Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
- Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| |
Collapse
|
5
|
Han K, Lee H, Kang TG, Lee J, Kim SK. Direct and efficient elimination of ethyl carbamate by engineered Saccharomyces cerevisiae displaying urethanase. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Yao X, Kang T, Pu Z, Zhang T, Lin J, Yang L, Yu H, Wu M. Sequence and Structure-Guided Engineering of Urethanase from Agrobacterium tumefaciens d3 for Improved Catalytic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7267-7278. [PMID: 35653287 DOI: 10.1021/acs.jafc.2c01406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amidase from Agrobacterium tumefaciens d3 (AmdA) degrades the carcinogenic ethyl carbamate (EC) in alcoholic beverages. However, its limited catalytic activity hinders practical applications. Here, multiple sequence alignment was first used to predict single variants with improved activity. Afterward, AlphaFold 2 was applied to predict the three-dimensional structure of AmdA and 21 amino acids near the catalytic triad were randomized by saturation mutagenesis. Each of the mutation libraries was then screened, and the improved single variants were combined to obtain the best double variant I97L/G195A that showed a 3.1-fold increase in the urethanase activity and a 1.5-fold increase in ethanol tolerance. MD simulations revealed that the mutations shortened the distance between catalytic residues and the substrate and enhanced the occurrence of a critical hydrogen bond in the catalytic pocket. This study displayed a useful strategy to engineer an amidase for the improvement of urethanase activity, and the variant obtained provided a good candidate for applications in the food industry.
Collapse
Affiliation(s)
- Xiumiao Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Tingting Kang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhongji Pu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733 Jianshe San Road, Xiaoshan District, Hangzhou 311200, Zhejiang, P. R. China
| | - Tao Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, P. R. China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733 Jianshe San Road, Xiaoshan District, Hangzhou 311200, Zhejiang, P. R. China
| | - Haoran Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733 Jianshe San Road, Xiaoshan District, Hangzhou 311200, Zhejiang, P. R. China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, P. R. China
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 31800, P. R. China
| |
Collapse
|
7
|
Sponge–Microbial Symbiosis and Marine Extremozymes: Current Issues and Prospects. SUSTAINABILITY 2022. [DOI: 10.3390/su14126984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Marine microorganisms have great potential for producing extremozymes. They enter useful relationships like many other organisms in the marine habitat. Sponge–microbial symbiosis enables both sponges and microorganisms to mutually benefit each other while performing their activities within the ecosystem. Sponges, because of their nature as marine cosmopolitan benthic epifaunas and filter feeders, serve as a host for many extremophilic marine microorganisms. Potential extremozymes from microbial symbionts are largely dependent on their successful relationship. Extremozymes have found relevance in food processing, bioremediation, detergent, and drug production. Species diversity approach, industrial-scale bioremediation, integrative bioremediation software, government and industrial support are considered. The high cost of sampling, limited research outcomes, low species growth in synthetic media, laborious nature of metagenomics projects, difficulty in the development of synthetic medium, limited number of available experts, and technological knowhow are current challenges. The unique properties of marine extremozymes underpin their application in industry and biotechnological processes. There is therefore an urgent need for the development of cost-effective methods with government and industry support.
Collapse
|
8
|
Features and application potential of microbial urethanases. Appl Microbiol Biotechnol 2022; 106:3431-3438. [PMID: 35536404 DOI: 10.1007/s00253-022-11953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
Urethanase (EC 3.5.1.75) can reduce ethyl carbamate (EC), a group 2A carcinogen found in foods and liquor. However, it is not yet commercially available. Urethanase has been detected as an intracellular enzyme from yeast, filamentous fungi, and bacteria. Based on the most recent progress in the sequence analysis of this enzyme, it was observed that amidase-type enzyme can degrade EC. All five enzymes had highly conserved sequences of amidase signature family, and their molecular masses were in the range of 52-62 kDa. The enzymes of Candida parapsilosis and Aspergillus oryzae formed a homotetramer, and that of Rhodococcus equi strain TB-60 existed as a monomer. Most urethanases exhibited amidase activity, and those of C. parapsilosis and A. oryzae also demonstrated high activity against acrylamide, which is a group 2A carcinogen. It was recently reported that urease and esterase also exhibited urethanase activity. Although research on the enzymatic degradation of EC has been very limited, recently some sequences of EC-degrading enzyme have been elucidated, and it is anticipated that new enzymes would be developed and applied into practical use. KEY POINTS: • Recently, some urethanase sequences have been elucidated • The amino acid residues that formed the catalytic triad were conserved • Urethanase shows amidase activity and can also degrade acrylamide.
Collapse
|
9
|
Kang T, Lin J, Yang L, Wu M. Expression, isolation, and identification of an ethanol-resistant ethyl carbamate-degrading amidase from Agrobacterium tumefaciens d 3. J Biosci Bioeng 2021; 132:220-225. [PMID: 34148792 DOI: 10.1016/j.jbiosc.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
Ethyl carbamate (EC), widely found in alcoholic beverages, has been revealed to be a probable carcinogen in humans. Urethanase (EC 3.5.1.75) is an effective enzyme for the degradation of EC; however, the previously identified urethanases exhibited insufficient acid and alcohol resistance. In this study, an enantioselective amidase (AmdA) screened from Agrobacterium tumefaciens d3 exhibited urethanase activity with excellent alcohol resistance. AmdA was first overexpressed in Escherichia coli; however, the recombinant protein was primarily located in inclusion bodies, and thus, co-expression of molecular chaperones was used. The activity of AmdA increased 3.1 fold to 307 U/L, and the specific activity of urethanase with C-terminal His-tags reached 0.62 U/mg after purification through a Ni-NTA column. Subsequently, the enzymatic properties and kinetic constants of AmdA were investigated. The optimum temperature for AmdA was 55 °C, it showed the highest activity at pH 7.5, and the Km was 0.964 mM. Moreover, after 1 h of heat treatment at 37 °C in a 5-20% (v/v) ethanol solution, the residual urethanase activity was higher than 91%, considerably more than that reported thus far.
Collapse
Affiliation(s)
- Tingting Kang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China.
| |
Collapse
|
10
|
Magnin A, Pollet E, Avérous L. Characterization of the enzymatic degradation of polyurethanes. Methods Enzymol 2021; 648:317-336. [PMID: 33579410 DOI: 10.1016/bs.mie.2020.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For decades, polyurethanes (PUR) have mainly been synthesized for long-term applications and are therefore highly persistent in the environment. Proper waste disposal approaches, including recycling techniques, must be developed to limit the accumulation of PUR in the environment. Evaluation of enzymatic polyurethane degradation is needed for the development of enzymatic recycling. A series of techniques has been carefully implemented to monitor the biotic and abiotic degradation of PUR. Both the degraded polymer and the degradation products are analyzed to obtain a complete overview of the degradation.
Collapse
Affiliation(s)
- Audrey Magnin
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France.
| |
Collapse
|
11
|
Masaki K, Fujihara K, Kakizono D, Mizukure T, Okuda M, Mukai N. Aspergillus oryzae acetamidase catalyzes degradation of ethyl carbamate. J Biosci Bioeng 2020; 130:577-581. [DOI: 10.1016/j.jbiosc.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022]
|
12
|
Fang R, Chandra Syahputra J, Airhunmwunde O, Wu Y, Lv C, Huang J, Xiao G, Chen Q. Improving the enzyme property of ornithine transcarbamylase from Lactobacillus brevis through site-directed mutation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Benladghem Z, Seddiki SML, Mahdad YM. Identification of bacterial biofilms on desalination reverse osmosis membranes from the mediterranean sea. BIOFOULING 2020; 36:1065-1073. [PMID: 33233947 DOI: 10.1080/08927014.2020.1851366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Nanofiltration and reverse osmosis are two of the most effective surface water treatment processes. They provide water of high quality and eliminate a large amount of microorganisms, organic matter and micropollutants. However, the main limitation of membrane nanofiltration is fouling, which imposes an additional cost. This study focused on the search for microorganisms capable of reducing the performance of nanofilters and also to study autoaggregation and biofilms formation by bacterial strains isolated from the nanomembranes used in the seawater desalination plant of Souk Tlata (Algeria). It provides new microbiological data on the desalination of seawater in the southern Mediterranean basin. The results revealed 14 bacterial species isolated from six fouled reverse osmosis membranes; their quantities were significant with the dominance of Raoultella sp., Klebsiella sp., Staphylococcus sp., Stenotrophomonas sp., Micrococcus sp., and Escherichia coli. In addition, electron imaging of nanomembrane surfaces revealed complex structures of microorganisms forming biofilms.
Collapse
Affiliation(s)
- Zakaria Benladghem
- LAPSAB Lab: Antifungal Antibiotic, Physico-Chemical Synthesis and Biological Activity, University of Tlemcen, Tlemcen, Algeria
| | - Sidi Mohamed Lahbib Seddiki
- LAPSAB Lab: Antifungal Antibiotic, Physico-Chemical Synthesis and Biological Activity, University of Tlemcen, Tlemcen, Algeria
- Department of Biology, University Center of Naâma, Naâma, Algeria
| | - Yassine Moustafa Mahdad
- Department of Biology, University Center of Naâma, Naâma, Algeria
- PPABIONUT Lab: Physiology, Physiopathology and Biochemistry of Nutrition, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
14
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Identification of an urethanase from Lysinibacillus fusiformis for degrading ethyl carbamate in fermented foods. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Masaki K, Mizukure T, Kakizono D, Fujihara K, Fujii T, Mukai N. New urethanase from the yeast Candida parapsilosis. J Biosci Bioeng 2020; 130:115-120. [PMID: 32253090 DOI: 10.1016/j.jbiosc.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023]
Abstract
Urethanase (EC 3.5.1.75) is an effective enzyme for removing ethyl carbamate (EC) present in alcoholic beverages. However, urethanase is not well studied and has not yet been developed for practical use. In this study, we report a new urethanase (CPUTNase) from the yeast Candida parapsilosis. Because C. parapsilosis can assimilate EC as its sole nitrogen source, the enzyme was extracted from yeast cells and purified using ion-exchange chromatography. The CPUTNase was estimated as a homotetramer comprising four units of a 61.7 kDa protein. In a 20% ethanol solution, CPUTNase had 73% activity compared with a solution without ethanol. Residual activity after 18 h indicated that CPUTNase was stable in 0%-40% ethanol solutions. The optimum temperature of CPUTNase was 43°C. This enzyme showed urethanase activity at pH 5.5-10.0 and exhibited its highest activity at pH 10. The gene of CPUTNase was identified, and a recombinant enzyme was expressed in the yeast Saccharomyces cerevisiae. Characteristics of recombinant CPUTNase were identical to the native enzyme. The putative amino acid sequence indicated that CPUTNase was an amidase family protein. Further, substrate specificity supported this sequence analysis because CPUTNase showed higher activities toward amide compounds. These results suggest that amidase could be a candidate for urethanase. We discovered a new enzyme and investigated its enzymatic characteristics, sequence, and recombinant CPUTNase expression. These results contribute to a further understanding of urethanase.
Collapse
Affiliation(s)
- Kazuo Masaki
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima 739-0046, Japan; Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
| | - Taichi Mizukure
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Dararat Kakizono
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima 739-0046, Japan
| | - Kanako Fujihara
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Tsutomu Fujii
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima 739-0046, Japan; Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Nobuhiko Mukai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima 739-0046, Japan
| |
Collapse
|
17
|
Fang R, Zhou W, Chen Q. Ethyl carbamate regulation and genomic expression of Saccharomyces cerevisiae during mixed-culture yellow rice wine fermentation with Lactobacillus sp. Food Chem 2019; 292:90-97. [DOI: 10.1016/j.foodchem.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/17/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
|
18
|
Mohapatra BR. Biocatalytic efficacy of immobilized cells of Chryseobacterium sp. Alg-SU10 for simultaneous hydrolysis of urethane and urea. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1445228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Bidyut R. Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| |
Collapse
|
19
|
Mohapatra BR. An Insight into the Prevalence and Enzymatic Abatement of Urethane in Fermented Beverages. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Ethyl carbamate: An emerging food and environmental toxicant. Food Chem 2017; 248:312-321. [PMID: 29329860 DOI: 10.1016/j.foodchem.2017.12.072] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Ethyl carbamate (EC), a chemical substance widely present in fermented food products and alcoholic beverages, has been classified as a Group 2A carcinogen by the International Agency for Research on Cancer (IARC). New evidence indicates that long-term exposure to EC may cause neurological disorders. Formation of EC in food and its metabolism have therefore been studied extensively and analytical methods for EC in various food matrices have been established. Due to the potential threat of EC to human health, mitigation strategies for EC in food products by physical, chemical, enzymatic, and genetic engineering methods have been developed. Natural products are suggested to provide protection against EC-induced toxicity through the modulation of oxidative stress. This review summarizes knowledge on the formation and metabolism of EC, detection of EC in food products, toxic effects of EC on various organs, and mitigation strategies including prevention of EC-induced tumorigenesis and genotoxicity by natural products.
Collapse
|
21
|
Fang RS, Dong YC, Chen F, Chen QH. Bacterial Diversity Analysis during the Fermentation Processing of Traditional Chinese Yellow Rice Wine Revealed by 16S rDNA 454 Pyrosequencing. J Food Sci 2015; 80:M2265-71. [PMID: 26409170 DOI: 10.1111/1750-3841.13018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/04/2015] [Indexed: 01/08/2023]
Abstract
Rice wine is a traditional Chinese fermented alcohol drink. Spontaneous fermentation with the use of the Chinese starter and wheat Qu lead to the growth of various microorganisms during the complete brewing process. It's of great importance to fully understand the composition of bacteria diversity in rice wine in order to improve the quality and solve safety problems. In this study, a more comprehensive bacterial description was shown with the use of bacteria diversity analysis, which enabled us to have a better understanding. Rarefaction, rank abundance, alpha Diversity, beta diversity and principal coordinates analysis simplified their complex bacteria components and provide us theoretical foundation for further investigation. It has been found bacteria diversity is more abundant at mid-term and later stage of brewing process. Bacteria community analysis reveals there is a potential safety hazard existing in the fermentation, since most of the sequence reads are assigned to Enterobacter (7900 at most) and Pantoea (7336 at most), followed by Staphylococcus (2796 at most) and Pseudomonas (1681 at most). Lactic acid bacteria are rare throughout the fermentation process which is not in accordance with other reports. This work may offer us an opportunity to investigate micro ecological fermentation system in food industry.
Collapse
Affiliation(s)
- Ruo-si Fang
- Dept. of Food Science and Nutrition, Zhejiang Univ, Hangzhou, 310058, China
| | - Ya-chen Dong
- Dept. of Food Science and Nutrition, Zhejiang Univ, Hangzhou, 310058, China
| | - Feng Chen
- Dept. of Food Science and Nutrition, Zhejiang Univ, Hangzhou, 310058, China
| | - Qi-he Chen
- Food Science and Human Nutrition, Clemson Univ, S.C, 29634, U.S.A
| |
Collapse
|
22
|
Fang RS, Dong YC, Li HJ, Chen QH. Ethyl carbamate formation regulated bySaccharomyces cerevisiaeZJU in the processing of Chinese yellow rice wine. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ruo-Si Fang
- Department of Food Science and Nutrition; Zhejiang University; Yuhangtang Rd.866 Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| | - Ya-Chen Dong
- Department of Food Science and Nutrition; Zhejiang University; Yuhangtang Rd.866 Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| | - Hong-Ji Li
- Department of Food Science and Nutrition; Zhejiang University; Yuhangtang Rd.866 Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| | - Qi-He Chen
- Department of Food Science and Nutrition; Zhejiang University; Yuhangtang Rd.866 Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| |
Collapse
|
23
|
High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol 2014; 99:301-8. [PMID: 25027572 DOI: 10.1007/s00253-014-5916-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022]
Abstract
Ethylcarbamate, a carcinogenic compound, is formed from urea and ethanol in rice wine, and enzymatic elimination of urea is always attractive. In the present work, we amplified the acid urease gene cluster ureABCEFGD from Lactobacillus reuteri CICC6124 and constructed robust Lactococcus lactis cell factories for the production of acid urease. The titer of the recombinant acid urease was increased from 1,550 to 11,560 U/L by optimization of the cultivation process. Meanwhile, the enzyme showed satisfied properties toward urea elimination in the rice wine model system. By incubating the enzyme (50 U/L) at 20 °C for 60 h, about 95.8% of urea in rice wine was removed. Interestingly, this acid urease also exhibited activity toward ethylcarbamate. The results demonstrated that this recombinant acid urease has great potential in the elimination of urea in rice wine.
Collapse
|
24
|
Zhou ND, Gu XL, Zha XH, Tian YP. Purification and Characterization of a Urethanase from Penicillium variabile. Appl Biochem Biotechnol 2013; 172:351-60. [DOI: 10.1007/s12010-013-0526-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/15/2013] [Indexed: 11/24/2022]
|
25
|
Wu Q, Zhao Y, Wang D, Xu Y. Immobilized Rhodotorula mucilaginosa: A Novel Urethanase-Producing Strain for Degrading Ethyl Carbamate. Appl Biochem Biotechnol 2013; 171:2220-32. [DOI: 10.1007/s12010-013-0493-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/29/2013] [Indexed: 11/29/2022]
|
26
|
Zhao X, Du G, Zou H, Fu J, Zhou J, Chen J. Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.05.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Zhou ND, Gu XL, Tian YP. Isolation and Characterization of Urethanase from Penicillium variabile and Its Application to Reduce Ethyl Carbamate Contamination in Chinese Rice Wine. Appl Biochem Biotechnol 2013; 170:718-28. [DOI: 10.1007/s12010-013-0178-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/04/2013] [Indexed: 10/26/2022]
|
28
|
Selvin J, Ninawe A, Seghal Kiran G, Lipton A. Sponge-microbial interactions: Ecological implications and bioprospecting avenues. Crit Rev Microbiol 2010; 36:82-90. [DOI: 10.3109/10408410903397340] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Wang G. Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 2006; 33:545-51. [PMID: 16761166 DOI: 10.1007/s10295-006-0123-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.
Collapse
Affiliation(s)
- Guangyi Wang
- Department of Oceanography, University of Hawaii at Manoa, 1680 East-West Road, POST 103B, Honolulu, HI 96822, USA.
| |
Collapse
|
30
|
Debashish G, Malay S, Barindra S, Joydeep M. Marine enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:189-218. [PMID: 16566092 DOI: 10.1007/b135785] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Marine enzyme biotechnology can offer novel biocatalysts with properties like high salt tolerance, hyperthermostability, barophilicity, cold adaptivity, and ease in large-scale cultivation. This review deals with the research and development work done on the occurrence, molecular biology, and bioprocessing of marine enzymes during the last decade. Exotic locations have been accessed for the search of novel enzymes. Scientists have isolated proteases and carbohydrases from deep sea hydrothermal vents. Cold active metabolic enzymes from psychrophilic marine microorganisms have received considerable research attention. Marine symbiont microorganisms growing in association with animals and plants were shown to produce enzymes of commercial interest. Microorganisms isolated from sediment and seawater have been the most widely studied, proteases, carbohydrases, and peroxidases being noteworthy. Enzymes from marine animals and plants were primarily studied for their metabolic roles, though proteases and peroxidases have found industrial applications. Novel techniques in molecular biology applied to assess the diversity of chitinases, nitrate, nitrite, ammonia-metabolizing, and pollutant-degrading enzymes are discussed. Genes encoding chitinases, proteases, and carbohydrases from microbial and animal sources have been cloned and characterized. Research on the bioprocessing of marine-derived enzymes, however, has been scanty, focusing mainly on the application of solid-state fermentation to the production of enzymes from microbial sources.
Collapse
Affiliation(s)
- Ghosh Debashish
- Environmental Science Programme and Department of Life Science & Biotechnology, Jadavpur University, 700 032 Kolkata, India
| | | | | | | |
Collapse
|
31
|
Muffler K, Ulber R. Downstream Processing in Marine Biotechnology. MARINE BIOTECHNOLOGY II 2005; 97:63-103. [PMID: 16261806 DOI: 10.1007/b135823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Downstream processing is one of the most underestimated steps in bioprocesses and this is not only the case in marine biotechnology. However, it is well known, especially in the pharmaceutical industry, that downstreaming is the most expensive and unfortunately the most ineffective part of a bioprocess. Thus, one might assume that new developments are widely described in the literature. Unfortunately this is not the case. Only a few working groups focus on new and more effective procedures to separate products from marine organisms. A major characteristic of marine biotechnology is the wide variety of products. Due to this variety a broad spectrum of separation techniques must be applied. In this chapter we will give an overview of existing general techniques for downstream processing which are suitable for marine bioprocesses, with some examples focussing on special products such as proteins (enzymes), polysaccharides, polyunsaturated fatty acids and other low molecular weight products. The application of a new membrane adsorber is described as well as the use of solvent extraction in marine biotechnology.
Collapse
Affiliation(s)
- Kai Muffler
- Institute of Technical Chemistry, University of Hannover, Callinstr. 3, 30167 Hannover, Germany.
| | | |
Collapse
|
32
|
Mohapatra BR, Bapuji M, Sree A. Antifungal efficacy of bacteria isolated from marine sedentary organisms. Folia Microbiol (Praha) 2002; 47:51-5. [PMID: 11980270 DOI: 10.1007/bf02818565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The antibiotic-producing ability of 57 bacteria isolated from 8 marine sedentary organisms, 6 sponges (Spirastrella sp., Phyllospongia sp., Ircinia sp., Aaptos sp., Azorica sp., Axinella sp.), 1 soft coral (Lobophytum sp.) and 1 alga (Sargassum sp.), was evaluated against 6 phytopathogenic fungi (Helminthosporium oryzae, Rhizoctonium solani, Pyricularia oryzae, Fusarium oxysporum, Aspergillus oryzae and A. fumigatus). Bacteria of the genus Bacillus (20%), Pseudomonas (33%) and Flavobacterium (40%) were predominant among the heterotrophic bacteria isolated from the marine sponges, soft coral and alga, respectively. Bioassay results revealed that 36 (63%) bacterial isolates displayed antifungal activity against at least one fungus, the alga (Sargassum sp.) being the source of highest number (80%) of producer strains. Twelve bacterial isolates inhibited all fungi. The MIC of the organic extracts of 12 bacteria ranged from 0.3 to 22.8 mg/L.
Collapse
Affiliation(s)
- B R Mohapatra
- Forest and Marine Products Division, Regional Research Laboratory CSIR, Bhubaneswar 751 013, Orissa, India
| | | | | |
Collapse
|