1
|
Transformation of Bacillus thuringiensis plasmid DNA by a new polyethylenimine polymeric nanoparticles method. J Microbiol Methods 2022; 203:106622. [PMID: 36384173 DOI: 10.1016/j.mimet.2022.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Although electroporation technique has been mostly used to transform Bacillus thuringiensis (Bt), this method is not readily applicable to strains other than the one for which it was optimized. Polyethylenimine (PEI) is a golden standard non-viral vector that interacts with plasmids to form compact polymeric nanoparticles (PNPs) via electrostatic interactions. This PNPs system is very attractive because they are easily prepared, able to carry large nucleic acid constructs, and show low toxicity. In this study, PEI/pBTdsSBV-VP1 PNPs were successfully prepared at various N/P ratios which is positively-chargeable polymer amine (N = nitrogen) groups to negatively-charged nucleic acid phosphate (P) groups, and the internalization of the complexes into Bt 4Q7 was confirmed by confocal laser scanning microscopy. The PEI-mediated transformation showed similar efficiency comparable to that of electroporation method, suggesting that the method of PNPs will be an effective alternative for transformation of Bt strains.
Collapse
|
2
|
Fu BW, Xu L, Zheng MX, Chen QX, Shi Y, Zhu YJ. Stability is essential for insecticidal activity of Vip3Aa toxin against Spodoptera exigua. AMB Express 2022; 12:92. [PMID: 35834019 PMCID: PMC9283630 DOI: 10.1186/s13568-022-01430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
Vegetative insecticidal proteins 3A (Vip3A) were important insecticidal proteins for control of lepidopteran pests. Previous study demonstrated that Vip3Aa and Vip3Ad showed significant difference in insecticidal activities against Spodoptera exigua, while the molecular mechanism remained ambiguous. Here we demonstrated that the difference in insecticidal activities between Vip3Aa and Vip3Ad might be caused by the difference in stability of Vip3Aa and Vip3Ad in S. exigua midgut protease. Vip3Aa was quite stable while Vip3Ad could be further degraded. Molecular dynamics simulation revealed that Vip3Aa was more stable than Vip3Ad, with smaller RMSD and RMSF value. Amino acid sequence alignment indicated that three were three extra prolines (P591, P605 and P779) located on Vip3Aa. We further identified that residue P591 played a crucial role on stability and insecticidal activity of Vip3Aa. Taken together, our study demonstrated that the stability was essential for the insecticidal activity of Vip3A toxins, which might provide new insight into the action mode of Vip3A toxins and contribute to the design Vip3A variants with improved stability and insecticidal activity.
Collapse
Affiliation(s)
- Bai-Wen Fu
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lian Xu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Mei-Xia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Qing-Xi Chen
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Yu-Jing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| |
Collapse
|
3
|
Proteomic Analysis and Promoter Modification of Bacillus thuringiensis to Improve Insecticidal Vip3A Protein Production. Mol Biotechnol 2021; 64:100-107. [PMID: 34553315 DOI: 10.1007/s12033-021-00401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Insecticidal protein Vip3A secreted from B. thuringiensis is a potential biocontrol agent for control of lepidopteran pests. Under laboratory conditions, high albeit variable Vip3A production from the local isolate Bt294 was only obtained from a much enriched TB culture medium. Proteomic analysis and strain improvement were therefore performed to improve Vip3A production. Studies indicated that the buffer capacity, carbon source, and nitrogen source are critical to efficiently produce Vip3A. Medium with lower amounts of peptone and yeast extract (compared to TB), with an additional carbon source and phosphate buffer (LB*G medium) was found to give reasonable yields of Vip3A. Proteomic analysis revealed higher expression of proteins involved in glutamate and histidine biosynthesis in cells cultured in TB compared to LB about 58 and 33 times, respectively. Experiments confirmed that glutamate supplementation could increase Vip3A production. In addition, promoter substitution with that of cry3A increased Vip3A yields by about 20-30%. Overall, very high yields of Vip3A could be obtained by culturing Bt294 (Pcry3A-vip3Aa64) in LB*G medium with glutamate supplementation.
Collapse
|
4
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_44-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Rabha M, Acharjee S, Sarmah BK. Multilocus sequence typing for phylogenetic view and vip gene diversity of Bacillus thuringiensis strains of the Assam soil of North East India. World J Microbiol Biotechnol 2018; 34:103. [PMID: 29951787 DOI: 10.1007/s11274-018-2489-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
Abstract
An agriculturally important insecticidal bacterium, Bacillus thuringiensis have been isolated from the soil samples of various part of Assam including the Kaziranga National Park. Previously, the isolates were characterized based on morphology, 16S rDNA sequencing, and the presence of the various classes' crystal protein gene(s). In the present study, the phylogenetic analysis of a few selected isolates was performed by an unambiguous and quick method called the multiple locus sequence typing (MLST). A known B. thuringiensis strain kurstaki 4D4 have been used as a reference strain for MLST. A total of four the MLST locus of housekeeping genes, recF, sucC, gdpD and yhfL were selected. A total of 14 unique sequence types (STs) was identified. A total number of alleles identified for the locus gdpD and sucC was 12, followed by locus yhfL was 11, however, only 6 alleles were detected for the locus recF. The phylogenetic analysis using MEGA 7.0.26 showed three major lineages. Approximately, 87% of the isolates belonged to the STs corresponding to B. thuringiensis, whereas two isolates, BA07 and BA39, were clustered to B. cereus. The isolates were also screened for the diversity of vegetative insecticidal protein (vip) genes. In all, 8 isolates showed the presence of vip1, followed by 7 isolates having vip2 and 6 isolates for vip3 genes. The expression of Vip3A proteins was analyzed by western blot analyses and expression of the Vip3A protein was observed in the isolate BA20. Thus, the phylogenetic relationship and diversity of Bt isolates from Assam soil was established based on MLST, in addition, found isolates having vip genes, which could be used for crop improvement.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
7
|
Majumder S, Sarkar C, Saha P, Gotyal BS, Satpathy S, Datta K, Datta SK. Bt Jute Expressing Fused δ-Endotoxin Cry1Ab/Ac for Resistance to Lepidopteran Pests. FRONTIERS IN PLANT SCIENCE 2018; 8:2188. [PMID: 29354143 PMCID: PMC5758602 DOI: 10.3389/fpls.2017.02188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/12/2017] [Indexed: 05/15/2023]
Abstract
Jute (Corchorus sp.) is naturally occurring, biodegradable, lignocellulosic-long, silky, golden shiny fiber producing plant that has great demands globally. Paper and textile industries are interested in jute because of the easy availability, non-toxicity and high yield of cellulosic biomass produced per acre in cultivation. Jute is the major and most industrially used bast fiber-producing crop in the world and it needs protection from insect pest infestation that decreases its yield and quality. Single locus integration of the synthetically fused cry1Ab/Ac gene of Bacillus thuringiensis (Bt) in Corchorus capsularis (JRC 321) by Agrobacterium tumefaciens-mediated shoot tip transformation provided 5 potent Bt jute lines BT1, BT2, BT4, BT7 and BT8. These lines consistently expressed the Cry1Ab/Ac endotoxin ranging from 0.16 to 0.35 ng/mg of leaf, in the following generations (analyzed upto T4). The effect of Cry1Ab/Ac endotoxin was studied against 3 major Lepidopteran pests of jute- semilooper (Anomis sabulifera Guenee), hairy caterpillar (Spilarctia obliqua Walker) and indigo caterpillar (Spodoptera exigua Hubner) by detached leaf and whole plant insect bioassay on greenhouse-grown transgenic plants. Results confirm that larvae feeding on transgenic plants had lower food consumption, body size, body weight and dry weight of excreta compared to non-transgenic controls. Insect mortality range among transgenic feeders was 66-100% for semilooper and hairy caterpillar and 87.50% for indigo caterpillar. Apart from insect resistance, the transgenic plants were at par with control plants in terms of agronomic parameters and fiber quality. Hence, these Bt jutes in the field would survive Lepidopteran pest infestation, minimize harmful pesticide usage and yield good quality fiber.
Collapse
Affiliation(s)
- Shuvobrata Majumder
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, Kolkata, India
| | - Chirabrata Sarkar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, Kolkata, India
| | - Prosanta Saha
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, Kolkata, India
| | - Bheemanna S. Gotyal
- Division of Crop Protection, Central Research Institute for Jute and Allied Fibres, Indian Council of Agricultural Research, Kolkata, India
| | - Subrata Satpathy
- Division of Crop Protection, Central Research Institute for Jute and Allied Fibres, Indian Council of Agricultural Research, Kolkata, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, Kolkata, India
| | - Swapan K. Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, Kolkata, India
- Department of Crop Sciences, Institute of Agriculture, Visva Bharati University, Santiniketan, India
| |
Collapse
|
8
|
Lone SA, Malik A, Padaria JC. Molecular cloning and characterization of a novel vip3-type gene from Bacillus thuringiensis and evaluation of its toxicity against Helicoverpa armigera. Microb Pathog 2018; 114:464-469. [DOI: 10.1016/j.micpath.2017.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
9
|
|
10
|
Proteolytic activation of Bacillus thuringiensis Vip3Aa protein by Spodoptera exigua midgut protease. Int J Biol Macromol 2017; 107:1220-1226. [PMID: 28970168 DOI: 10.1016/j.ijbiomac.2017.09.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 11/23/2022]
Abstract
Proteolysis of Vip3Aa by insect midgut proteases is essential for their toxicity against target insects. In the present study, proteolysis of Vip3Aa was evaluated by Spodoptera exigua midgut proteases (MJ). Trypsin was verified involved in the activation of Vip3Aa and three potential cleavage sites (Lys195, Lys197 and Lys198) were identified. Four Vip3Aa mutants (KKK195197198AAA, KK197198AA, KK195198AA and KK195197AA) were designed and constructed by replacing residues Lys195,197,198, Lys197,198, Lys195,198 and Lys195,197 with Ala, respectively. Proteolytic processing assays revealed that mutants KK197198AA, KK195198AA and KK195197AA could be processed into 66kDa activated toxins by trypsin or MJ while mutant KKK195197198AAA was not cleaved by trypsin and less susceptible to MJ. Bioassays demonstrated that mutants KK197198AA, KK195198AA and KK195197AA were toxic against S. exigua resembled that of wild-type Vip3Aa, however, the LC50 of mutant KKK195197198AAA against S. exigua was higher than wild-type. Those results suggested that proteolysis by MJ was associated with the insecticidal toxicity of Vip3Aa against S. exigua. It also revealed that trypsin played an important role in the formation of Vip3Aa activated toxin. Our studies characterized the proteolytic processing of Vip3Aa and provided new insight into the activation of this novel Bt toxin.
Collapse
|
11
|
Chen WB, Lu GQ, Cheng HM, Liu CX, Xiao YT, Xu C, Shen ZC, Wu KM. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests. J Invertebr Pathol 2017; 149:59-65. [PMID: 28782511 DOI: 10.1016/j.jip.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/25/2017] [Accepted: 08/01/2017] [Indexed: 01/02/2023]
Abstract
Although farmers in China have grown transgenic Bt-Cry1Ac cotton to resist the major pest Helicoverpa armigera since 1997 with great success, many secondary lepidopteran pests that are tolerant to Cry1Ac are now reported to cause considerable economic damage. Vip3AcAa, a chimeric protein with the N-terminal part of Vip3Ac and the C-terminal part of Vip3Aa, has a broad insecticidal spectrum against lepidopteran pests and has no cross resistance to Cry1Ac. In the present study, we tested insecticidal activities of Vip3AcAa against Spodoptera litura, Spodoptera exigua, and Agrotis ipsilon, which are relatively tolerant to Cry1Ac proteins. The bioassay results showed that insecticidal activities of Vip3AcAa against these three pests are superior to Cry1Ac, and after an activation pretreatment, Vip3AcAa retained insecticidal activity against S. litura, S. exigua and A. ipsilon that was similar to the unprocessed protein. The putative receptor for this chimeric protein in the brush border membrane vesicle (BBMV) in the three pests was also identified using biotinylated Vip3AcAa toxin. To broaden Bt cotton activity against a wider spectrum of pests, we introduced the vip3AcAa and cry1Ac genes into cotton. Larval mortality rates for S. litura, A. ipsilon and S. exigua that had fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and Bt-Cry1Ac cotton in a laboratory experiment. These results suggested that the Vip3AcAa protein is an excellent option for a "pyramid" strategy for integrated pest management in China.
Collapse
Affiliation(s)
- Wen-Bo Chen
- Fujian Provincial Key Laboratory of Insect Ecology, Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Qing Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hong-Mei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chen-Xi Liu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yu-Tao Xiao
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chao Xu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, Zhejiang, China.
| | - Zhi-Cheng Shen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, Zhejiang, China.
| | - Kong-Ming Wu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol Mol Biol Rev 2016; 80:329-350. [PMID: 26935135 DOI: 10.1128/mmbr.00060-15.address] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.
Collapse
Affiliation(s)
- Maissa Chakroun
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Núria Banyuls
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Yolanda Bel
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Baltasar Escriche
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
13
|
Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Sci Rep 2016; 6:23861. [PMID: 27025647 PMCID: PMC4812304 DOI: 10.1038/srep23861] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/15/2016] [Indexed: 01/02/2023] Open
Abstract
Vip proteins, a new group of insecticidal toxins produced by Bacillus thuringiensis, are effective against specific pests including Spodoptera litura. Here, we report construction of a transcriptome database of S. litura by de novo assembly along with detection of the transcriptional response of S. litura larvae to Vip3Aa toxin. In total, 56,498 unigenes with an N50 value of 1,853 bp were obtained. Results of transcriptome abundance showed that Vip3Aa toxin provoked a wide transcriptional response of the S. litura midgut. The differentially expressed genes were enriched for immunity-related, metabolic-related and Bt-related genes. Twenty-nine immunity-related genes, 102 metabolic-related genes and 62 Bt-related genes with differential expression were found. On the basis of transcriptional profiling analysis, we focus on the functional validation of trypsin which potentially participated in the activation of Vip3Aa protoxin. Zymogram analysis indicated that the presence of many proteases, including trypsin, in S. litura larvae midgut. Results of enzymolysis in vitro of Vip3Aa by trypsin, and bioassay and histopathology of the trypsin-digested Vip3Aa toxin showed that trypsin was possibly involved in the Vip3Aa activation. This study provides a transcriptome foundation for the identification and functional validation of the differentially expressed genes in an agricultural important pest, S. litura.
Collapse
|
14
|
Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol Mol Biol Rev 2016; 80:329-50. [PMID: 26935135 DOI: 10.1128/mmbr.00060-15] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.
Collapse
|
15
|
Yu Z, Luo H, Xiong J, Zhou Q, Xia L, Sun M, Li L, Yu Z. Bacillus thuringiensis
Cry6A exhibits nematicidal activity to Caenorhabditis elegans bre
mutants and synergistic activity with Cry5B to C
. elegans. Lett Appl Microbiol 2014; 58:511-9. [DOI: 10.1111/lam.12219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 01/12/2014] [Accepted: 01/12/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Z. Yu
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - H. Luo
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - J. Xiong
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - Q. Zhou
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - L. Xia
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - M. Sun
- State Key Laboratory of Agricultural Microbiology; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| | - L. Li
- State Key Laboratory of Agricultural Microbiology; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| | - Z. Yu
- State Key Laboratory of Agricultural Microbiology; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
16
|
Chakravarthy VSK, Reddy TP, Reddy VD, Rao KV. Current status of genetic engineering in cotton(Gossypium hirsutum L): an assessment. Crit Rev Biotechnol 2012. [DOI: 10.3109/07388551.2012.743502] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Ser-substituted mutations of Cys residues in Bacillus thuringiensis Vip3Aa7 exert a negative effect on its insecticidal activity. Curr Microbiol 2012; 65:583-8. [PMID: 22875104 DOI: 10.1007/s00284-012-0201-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 06/22/2012] [Indexed: 01/25/2023]
Abstract
Vegetative insecticidal proteins (VIPs), which were produced by Bacillus thuringiensis during its vegetative growth stage, display a broad insecticidal spectrum to Lepidoptera larvae. Sequence alignment of the Vip3A-type indicates that three cysteine residues were conserved in Vip3A-type proteins. To determine whether these conserved cysteine residues contributed to the insecticidal activity, the three residues were respectively substituted with serine in the Vip3Aa7 protein by site-directed mutagenesis. Bioassays using the third instar larvae of Plutella xylostella showed that the toxicity of C401S and C507S mutants were completely abolished. To find out the inactivity reason of mutants, three mutants and the wild-type Vip3Aa7 were treated with trypsin. The results indicated that the C507S mutant was rapidly cleaved and resulted in decrease of the 62 kDa toxic core fragment. These results indicated that the replacement of the Cys(507) with a Ser(507) caused decrease in C507S resistance against trypsin degradation. It is suggesting a possible association between insecticidal activity and trypsin sensitivity of Vip3A proteins. This study serves a guideline for the study of Vip3A protein structure and active mechanism.
Collapse
|
18
|
Dong F, Shi R, Zhang S, Zhan T, Wu G, Shen J, Liu Z. Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae. Appl Microbiol Biotechnol 2012; 96:921-9. [DOI: 10.1007/s00253-012-4213-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
19
|
Proteomic analysis of Bacillus thuringiensis at different growth phases by using an automated online two-dimensional liquid chromatography-tandem mass spectrometry strategy. Appl Environ Microbiol 2012; 78:5270-9. [PMID: 22636013 DOI: 10.1128/aem.00424-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The proteome of a new Bacillus thuringiensis subsp. kurstaki strain, 4.0718, from the middle vegetative (T(1)), early sporulation (T(2)), and late sporulation (T(3)) phases was analyzed using an integrated liquid chromatography (LC)-based protein identification system. The system comprised two-dimensional (2D) LC coupled with nanoscale electrospray ionization (ESI) tandem mass spectrometry (MS/MS) on a high-resolution hybrid mass spectrometer with an automated data analysis system. After deletion of redundant proteins from the different batches and B. thuringiensis subspecies, 918, 703, and 778 proteins were identified in the respective three phases. Their molecular masses ranged from 4.6 Da to 477.4 Da, and their isoelectric points ranged from 4.01 to 11.84. Function clustering revealed that most of the proteins in the three phases were functional metabolic proteins, followed by proteins participating in cell processes. Small molecular and macromolecular metabolic proteins were further classified according to the Kyoto Encyclopedia of Genes and Genome and BioCyc metabolic pathway database. Three protoxins (Cry2Aa, Cry1Aa, and Cry1Ac) as well as a series of potential intracellular active factors were detected. Many significant proteins related to spore and crystal formation, including sporulation proteins, help proteins, chaperones, and so on, were identified. The expression patterns of two identified proteins, CotJc and glutamine synthetase, were validated by Western blot analysis, which further confirmed the MS results. This study is the first to use shotgun technology to research the proteome of B. thuringiensis. Valuable experimental data are provided regarding the methodology of analyzing the B. thuringiensis proteome (which can be used to produce insecticidal crystal proteins) and have been added to the related protein database.
Collapse
|
20
|
Co-expression and Synergism Analysis of Vip3Aa29 and Cyt2Aa3 Insecticidal Proteins from Bacillus thuringiensis. Curr Microbiol 2012; 64:326-31. [DOI: 10.1007/s00284-011-0070-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
|
21
|
Chen Y, Tian JC, Shen ZC, Peng YF, Hu C, Guo YY, Ye GY. Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions. JOURNAL OF ECONOMIC ENTOMOLOGY 2010; 103:1444-1453. [PMID: 20857760 DOI: 10.1603/ec10014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Six transgenic rice, Oryza sativa L., lines (G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6) expressing a fused Cry1Ab/Vip3H protein, were evaluated for resistance against the Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and the stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) in the laboratory and field. The bioassay results indicated that the mortality of Asiatic rice borer and S. inferens neonate larvae on six transgenic lines from seedling to filling stage was up to 100% at 168 h after infestation. The cumulative feeding area by Asiatic rice borer neonate larvae on all transgenic lines was significantly reduced compared with the untransformed parental 'Xiushui 110' rice. A 2-yr field evaluation showed that damage during the vegetative stage (deadheart) or during the reproductive stage (whitehead) caused by Asiatic rice borer and S. inferens for transgenic lines was much lower than the control. For three lines (G6H1, G6H2, and G6H6), no damage was found during the entire growing period. Estimation of fused Cry1Ab/Vip3H protein concentrations using PathoScreen kit for Bt-Cry1Ab/1Ac protein indicated that the expression levels of Cry1Ab protein both in main stems (within the average range of 0.006-0.073% of total soluble protein) and their flag leaves (within the average range of 0.001-0.038% of total soluble protein) were significantly different among six transgenic lines at different developmental stages. Both laboratory and field researches suggested that the transgenic rice lines have considerable potential for protecting rice from attack by both stem borers.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Bacillus thuringiensis has been widely used as a biopesticide for a long time. Here we report the finished and annotated genome sequence of B. thuringiensis mutant strain BMB171, an acrystalliferous mutant strain with a high transformation frequency obtained and stocked in our laboratory.
Collapse
|
23
|
Peng D, Luo Y, Guo S, Zeng H, Ju S, Yu Z, Sun M. Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J Appl Microbiol 2009; 106:1849-58. [PMID: 19291242 DOI: 10.1111/j.1365-2672.2009.04151.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To elaborate an effective electroporation protocol for large plasmids and wild type strains of Bacillus thuringiensis. METHODS AND RESULTS The effect of DNA desalting, wall-weakening agency, cell growth conditions, electroporation solutions, and electric fields on electroporation efficiency was evaluated to optimize electroporation conditions for B. thuringiensis. By using this improved method, the greatest efficiency was reached 2 x 10(10 )CFU microg(-1) with pHT304, which is 10(4) times higher than previously reported. Four large plasmids (29.1, 44.9, 58 and 60 kb) were successfully transferred into the acrystalliferous B. thuringiensis strain BMB171; these results have not been achieved with previous protocols. Three wild type B. thuringiensis strains which could not be transformed previously were also transferred successfully. CONCLUSIONS This improved method is more efficient for small plasmids; it is also appropriate for large plasmids and wild type B. thuringiensis strains which were not transformed by previous procedures. SIGNIFICANCE AND IMPACT OF THE STUDY The present study established an effective electroporation protocol for large plasmids and wild type strains of B. thuringiensis. This method is well suited for the cloning and expression of huge DNA fragments such as gene clusters in B. thuringiensis. It also can be used as a reference method for other Bacillus strains that are refractory to electroporate.
Collapse
Affiliation(s)
- D Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang G, Zhang J, Song F, Gu A, Uwais A, Shao T, Huang D. RecombinantBacillus thuringiensisstrain shows high insecticidal activity againstPlutella xylostellaandLeptinotarsa decemlineatawithout affecting nontarget species in the field. J Appl Microbiol 2008; 105:1536-43. [DOI: 10.1111/j.1365-2672.2008.03866.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Milne R, Liu Y, Gauthier D, Frankenhuyzen KV. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). J Invertebr Pathol 2008; 99:166-72. [DOI: 10.1016/j.jip.2008.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/29/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
|
26
|
Song R, Peng D, Yu Z, Sun M. Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Appl Microbiol Biotechnol 2008; 80:647-54. [DOI: 10.1007/s00253-008-1613-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 11/28/2022]
|
27
|
Jeffers LA, Michael Roe R. The movement of proteins across the insect and tick digestive system. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:319-332. [PMID: 18177888 DOI: 10.1016/j.jinsphys.2007.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 10/20/2007] [Accepted: 10/22/2007] [Indexed: 05/25/2023]
Abstract
The movement of intact proteins across the digestive system was shown in a number of different blood-feeding and non-blood-feeding insects in the orders Blattaria, Coleoptera, Diptera, Hemiptera, Lepidoptera, Orthoptera, Neuroptera and Siphonaptera, as well as in two tick families Ixodidae and Argasidae. Protein movement was observed for both normal dietary and xenobiotic proteins, which suggest that the mechanism for transfer is not substrate specific. The number of studies on the mechanism of movement is limited. The research so far suggests that movement can occur by either a transcellular or an intercellular pathway in the ventriculus with most of the research describing the former. Transfer is by continuous diffusion with no evidence of pinocytosis or vesicular transport common in mammalian systems. Proteins can move across the digestive system without modification of their primary or multimeric structure and with retention of their functional characteristics. Accumulation in the hemolymph is the result of the protein degradation rate in the gut and hemolymph and transfer rate across the digestive system and can be highly variable depending on species. Research on the development of delivery systems to enhance protein movement across the insect digestive system is in its infancy. The approaches so far considered with some success include the use of lipophilic-polyethylene glycol (PEG) polymers, the development of fusion proteins with lectins, reduced gut protease activity and the development of amphiphilic peptidic analogs. Additional research on understanding the basic mechanisms of protein delivery across the insect digestive system, the importance of structure activity in this transfer and the development of technology to improve movement across the gut could be highly significant to the future of protein and nucleic acid-based insecticide development as well as traditional chemical insecticidal technologies.
Collapse
Affiliation(s)
- Laura A Jeffers
- Department of Entomology, Dearstyne Entomology Building, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | |
Collapse
|
28
|
Chaoyin Y, Wei S, Sun M, Lin L, Faju C, Zhengquan H, Ziniu Y. Comparative study on effect of different promoters on expression of cry1Ac in Bacillus thuringiensis chromosome. J Appl Microbiol 2007; 103:454-61. [PMID: 17650206 DOI: 10.1111/j.1365-2672.2006.03269.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this work was to investigate the effect of cry3A promoter on the expression of cry1Ac in Bacillus thuringiensis chromosome and stably enhance the production of different cry genes under the control of cry3A promoter. METHODS AND RESULTS The cry1Ac gene, which is specific to Lepidopteran larvae, was integrated into the chromosome of a B. thuringiensis plasmid-free and acrystalliferous strain BMB171, under the control of cry3A promoter and cry1Ac promoter, respectively. The expression of cry1Ac genes in the chromosome of host strain was investigated. The results from sodium dodecyl sulfate-polyacrymide gel electrophoresis, crystal observation and bioassay showed that either integrated with cry3A promoter (cry3Apro-cry1Ac) or with its native promoter (cry1Acpro-cry1Ac), cry1Ac gene could efficiently and stably express in the chromosome. The production of cry3Apro-cry1Ac gene was higher than that of cry1Acpro-cry1Ac gene. CONCLUSIONS The cry3A promoter enhanced the expression of cry1Ac gene efficiently either on the chromosome or on the plasmid in B. thuringiensis strain. SIGNIFICANCE AND IMPACT OF THE STUDY So far, the comparative studies on cry3A promoter and other cry promoters were carried on B. thuringiensis plasmids. This system offers an additional method for potentially improving the efficacy of B. thuringiensis insecticidal proteins efficiently, stably and safely.
Collapse
Affiliation(s)
- Y Chaoyin
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Peng D, Chen S, Ruan L, Li L, Yu Z, Sun M. Safety assessment of transgenic Bacillus thuringiensis with VIP insecticidal protein gene by feeding studies. Food Chem Toxicol 2007; 45:1179-85. [PMID: 17320261 DOI: 10.1016/j.fct.2006.12.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 10/12/2006] [Accepted: 12/22/2006] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the toxicology safety of a genetically modified (GM) Bacillus thuringiensis with vegetative insecticidal protein (VIP) gene. Acute and subacute toxicity studies by using its powder preparation were conducted in Wistar rats. The result of the acute study showed the no-observable-adverse-effect level (NOAEL) of this GM B. thuringiensis powder preparation was greater than 5000 mg/kg body weight (BW). In the subacute study, the data analysis of body weight gain, food and water consumptions, clinical observations, haematology, serum biochemistry, organ weight ratios and histopathological findings did not show significant differences between control and treated groups. These results proved the NOAEL of this GM B. thuringiensis powder preparation in subacute test was greater than 5000 mg/kg BW. Since both the acute and subacute oral toxicity were not detected at the highest dose recommended by OECD guidelines, this GM B. thuringiensis could be generally regarded as safe for use in bio-pesticide industry.
Collapse
Affiliation(s)
- Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Zhu C, Yu Z, Sun M. Restraining Erwinia virulence by expression of N-acyl homoserine lactonase gene pro3A-aiiA in Bacillus thuringiensis subsp leesis. Biotechnol Bioeng 2006; 95:526-32. [PMID: 16838380 DOI: 10.1002/bit.21032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To widen the biological control function of a genetically modified Bacillus thuringiensis subsp leesis strain BMB-005, an acyl homoserine lactonase (AHL lactonase) gene aiiA transcribed by the promoter of insecticidal crystal protein coding gene cry3A, was transformed into strain BMB-005. The amount of AHL lactonase protein produced by transformant BMB821A was 2.4-fold more than that produced by BMB-005. AHL-degradation assay showed that transformant BMB821A could degrade more AHLs molecules than the original strain BMB-005. The result of Erwinia carotovora pathogenicity test showed that the parental strain BMB-005 had no restraint of Erwinia infection, but the transformants exhibited strong restraint of E. carotovora infection on potato slices and cactus stems. Insecticidal bioassay against lepidopteran Spodoptera exigua showed that both strain BMB-005 and transformant BMB821A were toxic to S. exigua. The toxicity of transformant BMB821A (LC(50) was 3.8) was a little attenuated comparing with the toxicity of the original strain BMB-005 (LC(50) was 2.9). The B. thuringiensis strain BMB-005 has high toxicity against Helicoverpa armigera, Plutella xylostella, and S. exigua. This work provided new strategy for developing genetically engineered multi-functional B. thuringiensis strain that possesses insecticidal activity together with restraint of bacterial pathogenicity.
Collapse
Affiliation(s)
- Chenguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|