1
|
Subramani G, Manian R. Optimizing bio-vanillin synthesis from ferulic acid via Pediococcus acidilactici: A systematic approach to process enhancement and yield maximization. J Biotechnol 2024; 393:49-60. [PMID: 39025369 DOI: 10.1016/j.jbiotec.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The use of lignocellulosic biomass to create natural flavor has drawn attention from researchers. A key flavoring ingredient that is frequently utilized in the food industry is vanillin. In this present study, Pediococcus acidilactici PA VIT effectively involved in the production of bio-vanillin by using Ferulic acid as an intermediate with a yield of 11.43 µg/mL. The bio-vanillin produced by Pediococcus acidilactici PA VIT was examined using FTIR, XRD, HPLC, and SEM techniques. These characterizations exhibited a unique fingerprinting signature like that of standard vanillin. Additionally, the one variable at a time method, placket Burmann method, and response surface approach, were employed to optimize bio-vanillin. Based on the central composite rotary design, the most important process factors were determined such as agitation speed, substrate concentration, and inoculum size. After optimization, bio-vanillin was found to have tenfold increase, with a maximum yield of 376.4 µg/mL obtained using the response surface approach. The kinetic study was performed to analyze rate of reaction and effect of metal ions in the production of bio-vanillin showing Km of 10.25, and Vmax of 1250 were required for the reaction. The metal ions that enhance the yield of bio-vanillin are Ca2+, k+, and Mg2+ and the metal ions that affects the yield of bio-vanillin are Pb+ and Cr+ were identified from the effect of metal ions in the bio-vanillin production.
Collapse
Affiliation(s)
- Gomathi Subramani
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Rameshpathy Manian
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Sci Biotechnol 2024; 33:1019-1036. [PMID: 38440686 PMCID: PMC10908958 DOI: 10.1007/s10068-023-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains. Graphical abstract
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| |
Collapse
|
3
|
Vong WC, Cerny C, Bodnar I, Azario MLO, de Boer P, Julsing M, Hugenholtz J, Xiang WJ, Ding YC, Roland WSU. High-throughput screening for aroma production in food fermentations. Food Res Int 2024; 177:113902. [PMID: 38225144 DOI: 10.1016/j.foodres.2023.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
A microtiter plate (MTP) method was developed to screen 1064 unique microorganisms-substrate fermentations for production of 68 target aroma compounds. Based on the number of hits identified by GC-MS, 50 fermentations were repeated at 50-mL scale in flasks. Comparison of GC-MS data showed that scaling up from MTP to flask did not generally result in large differences between the volatile profiles, even with a wide variety of substrates (juice, food slurry and food side-streams) and microorganisms (yeast, bacteria and fungi) used. From the screening results, Lactobacillus plantarum fermentation of chilli pepper was further studied as a high amount of phenols, especially guaiacol and 4-ethylphenol, was produced after fermentation. From HPLC-MS and sensory analysis, capsaicin was shown to be a probable precursor for these phenols and a potential mechanism was proposed. The protocol described herein to screen aroma compounds from fermentation of agri-food products and side streams can support development of clean label flavourful food ingredients.
Collapse
Affiliation(s)
- Weng Chan Vong
- Firmenich Aromatics (China) Co. Ltd., 3901 Jindu Road, Minhang District, 201108 Shanghai, China.
| | - Christoph Cerny
- Firmenich Aromatics (China) Co. Ltd., 3901 Jindu Road, Minhang District, 201108 Shanghai, China
| | - Igor Bodnar
- Firmenich S.A., Rue De La Bergere 7, Meyrin, Geneva CH-1217, Switzerland
| | - Mauro Lorenzo Ondino Azario
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Paulo de Boer
- TNO Microbiology & Systems Biology, Utrechtseweg 48, 3704 HE Zeist, the Netherlands
| | - Mattijs Julsing
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Jeroen Hugenholtz
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Wen-Juan Xiang
- Firmenich Aromatics (China) Co. Ltd., 3901 Jindu Road, Minhang District, 201108 Shanghai, China
| | - Yi-Chun Ding
- Firmenich Aromatics (China) Co. Ltd., 3901 Jindu Road, Minhang District, 201108 Shanghai, China
| | - Wibke Silke Ute Roland
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
4
|
Mostafa HS, Hashem MM. Lactic acid bacteria as a tool for biovanillin production: A review. Biotechnol Bioeng 2023; 120:903-916. [PMID: 36601666 DOI: 10.1002/bit.28328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Vanilla is the most commonly used natural flavoring agent in industries like food, flavoring, medicine, and fragrance. Vanillin can be obtained naturally, chemically, or through a biotechnological process. However, the yield from vanilla pods is low and does not meet market demand, and the use of vanillin produced by chemical synthesis is restricted in the food and pharmaceutical industries. As a result, the biotechnological process is the most efficient and cost-effective method for producing vanillin with consumer-demanding properties while also supporting industrial applications. Toxin-free biovanillin production, based on renewable sources such as industrial wastes or by-products, is a promising approach. In addition, only natural-labeled vanillin is approved for use in the food industry. Accordingly, this review focuses on biovanillin production from lactic acid bacteria (LAB), which is generally recognized as safe (GRAS), and the cost-cutting efforts that are utilized to improve the efficiency of biotransformation of inexpensive and readily available sources. LABs can utilize agro-wastes rich in ferulic acid to produce ferulic acid, which is then employed in vanillin production via fermentation, and various efforts have been applied to enhance the vanillin titer. However, different designs, such as response surface methods, using immobilized cells or pure enzymes for the spontaneous release of vanillin, are strongly advised.
Collapse
Affiliation(s)
- Heba S Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Marwa M Hashem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Bioaccessibility of Phenolic Acids and Flavonoids from Buckwheat Biscuits Prepared from Flours Fermented by Lactic Acid Bacteria. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196628. [PMID: 36235165 PMCID: PMC9572390 DOI: 10.3390/molecules27196628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
The literature reports that the consumption of common buckwheat (Fagopyrum esculentum Moench), exactly the polyphenols it contains, is associated with a wide spectrum of health benefits. Therefore, the determination of the bioaccessibility of phenolic acids and flavonoids from buckwheat biscuits formulated from liquid-state fermented flours (BBF) by selected lactic acid bacteria (LAB) after gastrointestinal digestion was addressed in this study. Bioaccessibility could be defined as the fraction of a compound that is released from the food matrix in the gastrointestinal lumen and used for intestinal absorption. The bioaccessibility of eight phenolic acids (protocatechuic, vanillic, syringic ferulic, caffeic, sinapic, p-coumaric, and t-cinnamic) and six flavonoids (epicatechin, vitexin, orientin, apigenin, kaempferol, and luteolin) were provided for BBF and BBC (buckwheat biscuits prepared from fermented and unfermented flours, respectively). The bioaccessibility indexes (BI) indicated the high bioaccessibility of phenolic acids and improved bioaccessibility of flavonoids from BBF. Moreover, the data provide evidence for the suitability of selected LAB strains to be used as natural sour agents for further bakery product development rich in phenolic acids and flavonoids with LAB-dependent bioaccessibility.
Collapse
|
6
|
Arias-Pérez I, Ontañón I, Ferreira V, Escudero A. Maturation of Moristel in Different Vineyards: Amino Acid and Aroma Composition of Mistelles and Wines with Particular Emphasis in Strecker Aldehydes. Foods 2022; 11:foods11070958. [PMID: 35407044 PMCID: PMC8998044 DOI: 10.3390/foods11070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this article was to assess the influence of the harvest date on the composition of amino acids and derived aromatic compounds in grape-mistelle and wine of the Moristel variety, in different vineyards. Two vineyards were sampled in 2016 and another one in 2017. At each sampling point, grapes were collected, destemmed, crushed and divided into four aliquots. The first three were fermented, and the latter was treated with ethanol, to produce 1-week macerates containing 15% ethanol (v/v)-mistelles. Overall, 10 mistelles and 33 wines were produced. Amino acids, Strecker aldehydes and aroma compounds were analysed. Amino acid profiles are characteristic of the vineyard and level of ripeness, converging with maturation. In fermentation, major amino acids, except proline, are consumed at a relatively fixed and specific tax, while consumption of 13 amino acids is determined by the ratios of alanine, glutamic acid, serine and threonine, with γ-aminobutyric acid. After fermentation, amino acid precursors to Strecker aldehydes are maxima in unripe and overripe samples, while Strecker aldehydes are maxima in unripe wines. No direct correlations between precursor amino acids in mistelle and aromatic compounds in wine have been found. Nevertheless, must amino acid profiles could determine wine aroma composition.
Collapse
Affiliation(s)
| | | | | | - Ana Escudero
- Correspondence: ; Tel.: +34-976-762503; Fax: +34-976-761292
| |
Collapse
|
7
|
Valorization of Fruit Peels into Biovanillin and Statistical Optimization of Process Using Enterobacter hormaechei through Solid-State Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vanillin is a secondary metabolite of plants and the major organoleptic aroma component of natural vanilla. Nowadays, the chemical synthesis method used for vanillin production has been rejected by the United States and European legislation, while plant-derived vanillin is expensive. The current study demonstrates vanillin production via solid-state fermentation (SSF) by Enterobacter hormaechei using different ferulic acid-rich fruit peels as substrates. From different ferulic acid-rich fruit peels (pomegranate, banana, and orange) screened Punica granatum (pomegranate) peels yielded maximum biovanillin (0.09 mg/g) after 24 h. Different bioprocess parameters, including moisture content, inoculum size, pH, and temperature, were optimized using central composite design (CCD) of the response surface methodology (RSM). The maximum biovanillin yield (0.462 mg/g) from Punica granatum peels was achieved at 60% moisture content, 2 mL inoculum size, 6.5 pH, and 32 °C temperature. An F-value of 12.94 and a p-value of 0.00 were recorded by the variance analysis indicated the proposed model’s significance. The coefficient of determination (R2) confirmed the model’s goodness of fit, having a value of 91.89%, which indicated the model’s accuracy. The optimally produced biovanillin was extracted and confirmed using FTIR. Further purity analysis was done by HPLC and the biovanillin was reported to be 99.2% pure. The results demonstrated that microbial conversion of ferulic acid-rich fruit peels to biovanillin offers a cost-effective approach for the industrial production of biovanillin.
Collapse
|
8
|
Production of phenolic flavoring compounds from sugarcane bagasse by Lactobacillus acidophilus MTCC 10307. Arch Microbiol 2021; 204:23. [DOI: 10.1007/s00203-021-02655-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023]
|
9
|
Martău GA, Călinoiu LF, Vodnar DC. Bio-vanillin: Towards a sustainable industrial production. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Abstract
AbstractThis paper presents the effect of polyphenols on microorganisms inhabiting the human gastrointestinal tract (mainly bacteria belonging to the Lactobacillus genus) and pathogenic microorganisms classified as the most common food contaminants. Plant secondary metabolites have the ability to modulate the growth of many microorganisms. Due to the metabolic changes induced by their presence in the environment, many pathogenic microorganisms are unable to grow, which in turn cause a significant reduction in their pathogenic potential. These processes include primarily the induction of ruptures in the cell membrane and disturbance of cell respiration. Often, the lack of integrity of cell membranes also leads to the disturbance of intracellular homeostasis and leakage of cellular components, such as proteins, ATP molecules or intracellular ions. Autoxidizing polyphenols also act as pro-oxidative substances. Hydrogen peroxide formed in the process of oxidation of polyphenolic compounds acts as a bactericidal substance (by induction of DNA breaks). With regard to intestinal microbiota, polyphenols are considered prebiotic substances that increase the number of commensal bacteria. They can positively influence the growth of Lactobacillus bacteria, which have the ability to metabolize undigested antioxidants in the digestive tract of humans and animals. Depending on the pH of the environment and the presence of ions, plant polyphenols in the human digestive tract can act as substances with antioxidant potential or become pro-oxidants. Thus, combining functional food with polyphenols and Lactobacillus bacteria not only protects food products against the development of undesirable and pathogenic microbiota, but also has a positive effect on human health. The paper also describes the possibility of changes in the genome of Lactobacillus bacteria (under the influence of polyphenols) and the influence of Lactobacillus spp. bacteria on the antimicrobial properties of polyphenols. The enzymatic abilities of bacteria of the genus Lactobacillus, which influence the transformation of polyphenolic compounds, were also described.
Collapse
|
11
|
Arias-Pérez I, Ferrero-Del-Teso S, Sáenz-Navajas MP, Fernández-Zurbano P, Lacau B, Astraín J, Barón C, Ferreira V, Escudero A. Some clues about the changes in wine aroma composition associated to the maturation of “neutral” grapes. Food Chem 2020; 320:126610. [DOI: 10.1016/j.foodchem.2020.126610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
|
12
|
Abstract
Wine sensory experience includes flavor, aroma, color, and (for some) even acoustic traits, which impact consumer acceptance. The quality of the wine can be negatively impacted by the presence of off-flavors and aromas, or dubious colors, or sediments present in the bottle or glass, after pouring (coloring matter that precipitates or calcium bitartrate crystals). Flavor profiles of wines are the result of a vast number of variations in vineyard and winery production, including grape selection, winemaker’s knowledge and technique, and tools used to produce wines with a specific flavor. Wine color, besides being provided by the grape varieties, can also be manipulated during the winemaking. One of the most important “tools” for modulating flavor and color in wines is the choice of the yeasts. During alcoholic fermentation, the wine yeasts extract and metabolize compounds from the grape must by modifying grape-derived molecules, producing flavor-active compounds, and promoting the formation of stable pigments by the production and release of fermentative metabolites that affect the formation of vitisin A and B type pyranoanthocyanins. This review covers the role of Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, on the perceived flavor and color of wines and the choice that winemakers can make by choosing to perform co-inoculation or sequential inoculation, a choice that will help them to achieve the best performance in enhancing these wine sensory qualities, avoiding spoilage and the production of defective flavor or color compounds.
Collapse
|
13
|
Arcena MR, Kebede B, Leong SY, Silcock P, Oey I. Feasibility of using integrated fingerprinting, profiling and chemometrics approach to understand (bio) chemical changes throughout commercial red winemaking: A case study on Merlot. Food Res Int 2019; 127:108767. [PMID: 31882091 DOI: 10.1016/j.foodres.2019.108767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/09/2019] [Accepted: 10/19/2019] [Indexed: 12/18/2022]
Abstract
This study assessed the feasibility of using a multiplatform approach; integrating untargeted fingerprinting of volatiles and targeted profiling of phenolic and oenological attributes (soluble solids, pH, titratable acidity and colour properties) coupled with chemometrics to understand complex (bio) chemical reactions occurring during Merlot red winemaking. The changes were investigated at three winemaking stages, starting from pre-maceration (PM), maceration-alcoholic fermentation (MAF) up to completion of malolactic fermentation (MLF). Merlot musts at PM were characterised by lighter colour and higher amount of green aroma-related volatiles. Completion of MAF led to increased extraction of anthocyanins, flavonols, and stilbenes, resulting in a more intense and darker fermenting juice. Furthermore, development of yeast-fermentation associated volatiles such as esters and alcohols was observed at this stage. The final wine, when MLF was completed, was rich in phenolic acids, esters, alcohols, and terpenes. The multiplatform analytical approach was effective to unravel the complex reactions throughout Merlot winemaking process and find relevant markers, which could help to predict expected quality attributes in the finished wine.
Collapse
Affiliation(s)
- Mylene Ross Arcena
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand
| | - Biniam Kebede
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand.
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand; Riddet Insititute, Palmerston North, New Zealand
| | - Patrick Silcock
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO BOX 56, Dunedin 9054, New Zealand; Riddet Insititute, Palmerston North, New Zealand.
| |
Collapse
|
14
|
Changes in the Composition of the Lactic Acid Bacteria Behavior and the Diversity of Oenococcus oeni Isolated from Red Wines Supplemented with Selected Grape Phenolic Compounds. FERMENTATION 2018. [DOI: 10.3390/fermentation5010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are important components of wine and are known to have an impact on the physiology of wine microbes. The influence of specific sub-sets of phenolic compounds on the growth and metabolism of lactic acid bacteria (LAB) and on the diversity of Oenococcus oeni in inoculated and non-inoculated red wines was investigated during malolactic fermentation (MLF) and subsequent storage. Representative O. oeni strains from wines treated with flavonols and trans-resveratrol were isolated and analyzed by pulsed-field gel electrophoresis of rare restriction enzyme digests (REA-PFGE). 28 days after MLF initiation, strains from all samples had entered the death phase, except those supplemented with trans-resveratrol. In the non-inoculated samples, the onset of lactic acid production was apparently delayed by all compounds tested, except for the flavan-3-ols. Increased levels of phenolics also delayed citrate consumption in inoculated samples. PFGE analysis revealed 22 genetic profiles, and some profiles were characteristics of specific samples. The commercial starter used in the inoculated wines did not dominate during MLF. The effect of the phenolics studied was dependent on the origin and concentration of each as well, as the fermentation stage and whether the wines were inoculated. The effect of flavonols and trans-resveratrol seemed to be strain-dependent, which could have implications on the final quality of wines.
Collapse
|
15
|
Diverse physiological and metabolic adaptations by Lactobacillus plantarum and Oenococcus oeni in response to the phenolic stress during wine fermentation. Food Chem 2018; 268:101-109. [DOI: 10.1016/j.foodchem.2018.06.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 11/23/2022]
|
16
|
Taira J, Toyoshima R, Ameku N, Iguchi A, Tamaki Y. Vanillin production by biotransformation of phenolic compounds in fungus, Aspergillus luchuensis. AMB Express 2018. [PMID: 29536381 PMCID: PMC5849584 DOI: 10.1186/s13568-018-0569-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vanillin is valuable and popular flavor used in foods and cosmetics. Many bacteria species have the ability to decarboxylate substituted cinnamic acids in order to form vanillin. However, the phenolic biotransformation including vanillin production in a common fungus, the Aspergillus luchuensis, which is used in distilled beverages, has not yet been clarified. This study focused on elucidating the vanillin production due to phenolic biotransformation in A. luchuensis during fermentation. The phenolic metabolites were extracted by a solid phase column and they were determined using on LC/MS and LC/MS/MS in a selective ion mode. As a result, ferulic acid, vanillin and vanillic acid, were detected in the rice koji fermentationed by A. luchuensis and also fermentated with yeast. In addition, the accurate molecular formula of vanillin glucoside (C14H17O8, 313.0927, (M-H)− and its production ions was also determined by HRESI-mass spectrometry. Based on the results including the phenolic metabolites and related genes found in A. luchuensis genome, this study proposed the vanillin production mechanism due to the side chain cleavage of ferulic acid through Coenzyme A (CoA) and feruloyl-CoA hydratase/lyase, to form vanillin and acetyl-COA. In this study, another possible vanillin production pathway also was proposed due to the neutral hexose hydrolysis of vanillin glucoside. The subsequent dehydrogenation of vanillin produced vanillic acid. In addition, vanillin was detected in the distilled alcohol indicating its contribution to the aroma profile of beverages. It has been unknown that the vanillin in the distilled solution is derived from the vanillin produced during rice-koji and/or moromi mash fermentations.
Collapse
|
17
|
Devi A, Archana KM, Bhavya PK, Anu-Appaiah KA. Non-anthocyanin polyphenolic transformation by native yeast and bacteria co-inoculation strategy during vinification. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1162-1170. [PMID: 28734048 DOI: 10.1002/jsfa.8567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/30/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Co-inoculation has been adapted by many wine-producing countries because it enhances the success of malolactic fermentation and reduces the fermentation cost, as well as time. However, wine phenolics have been sparsely highlighted during co-inoculation, even though polyphenols are an important parameter affecting wine colour, astringency and aroma. In the present study, we investigated the impact of co-inoculation on non-anthocyanin polyphenol profile for two different grape varieties. RESULTS Co-inoculation of native yeast strain (AAV2) along with Oenococcus oeni was adapted for Cabernet Sauvignon and Shiraz wine. It was observed that the co-inoculation had minimal yet significant impact on the phenolic composition of wines for both the grape varieties. Color loss, as well as fruity aroma development, was observed in co-inoculated wines. The wines were on a par with the commercial wine, as well as wines without malolactic fermentation, in terms of phenolic compounds and overall organoleptic acceptance. Principal component analysis and hierarchical cluster analysis further suggested that the varietal influence on phenolic composition was dominating compared to inoculation strategies. Among the varieties, the inoculation strategies have significantly influenced the Cabernet wines compared to Shiraz wines. CONCLUSION The results of the present study demonstrate that the phenolic compounds are not drastically affected by metabolic activities of malolactic bacteria during co-inoculation and, hence, are equally suitable for wine fermentation. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Apramita Devi
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kodira Muthanna Archana
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Panikuttria Kuttappa Bhavya
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Konerira Aiyappaa Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
18
|
Brizuela NS, Bravo-Ferrada BM, Pozo-Bayón MÁ, Semorile L, Elizabeth Tymczyszyn E. Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains. Food Res Int 2017; 106:22-28. [PMID: 29579921 DOI: 10.1016/j.foodres.2017.12.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
The ability of Patagonian L. plantarum and O. oeni strains to change the volatile profile of a sterile Pinot noir wine was studied through fermentation assays, at laboratory scale. Two strains of each LAB species were selected based on data regarding to their ability to survive in wine and to consume l-malic acid. Both O. oeni strains but only one L. plantarum (UNQLp 11) strain were able to remain viable, consuming l-malic acid through the fermentation assay with a concomitant increase of l-lactic acid. The volatile profile of Pinot noir wine, before and after LAB inoculation, was measured by using HS-SPME gas chromatography technique. This analysis showed that alcohols were the main volatile compounds after alcoholic fermentation and that after fermentation with the selected LAB strains, a decrease in the volatile alcohols concentration and an increase in the volatile esters concentration could be observed. The O. oeni UNQOe 73.2 strain produced the most notable change in the volatile profile, with the production of some important odorant esters at higher concentration, compared to O. oeni UNQOe 31b strain. Although, L. plantarum UNQLp 11 strain showed a better performance in the consumption of l-malic acid, this strain had a low capacity to modify the volatile compounds profile after incubation in red wine. The results found in the present work showed that different strains selected as potential malolactic starters could have different behavior when are incubated in real wine. Although L. plantarum UNQLp 11 strain showed a good consumption of l-malic acid, the O. oeni UNQOe 73.2 strain exhibited superior capacity to improve the flavor of wine due to its esterase activity that produce an increase of fruity and creamy odorants.
Collapse
Affiliation(s)
- Natalia S Brizuela
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
| | - Bárbara M Bravo-Ferrada
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - María Ángeles Pozo-Bayón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain
| | - Liliana Semorile
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - E Elizabeth Tymczyszyn
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
19
|
Chakraborty D, Kaur B, Obulisamy K, Selvam A, Wong JWC. Agrowaste to vanillin conversion by a natural Pediococcus acidilactici strain BD16. ENVIRONMENTAL TECHNOLOGY 2017; 38:1823-1834. [PMID: 27734757 DOI: 10.1080/09593330.2016.1237556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Owing to its flavoring, antimicrobial, antioxidant and anticarcinogenic nature, vanillin is widely used in foods, beverages, perfumes and pharmaceutical products. Ferulic acid (FA) is an important precursor of vanillin which is abundant in cereals like maize, rice and wheat and sugar beet. A major drawback of microbial vanillin production from FA is the degradation and biotransformation of toxic vanillin to other phenolic derivatives. The present study is undertaken to explore microbial vanillin production from FA precursor rice bran by employing vanillin-resistant Pediococcus acidilactici BD16, a natural lactic acid bacteria isolate. Extracellular, intracellular and cellular vanillin dehydrogenase activity was found least, which was minimized vanillin degradation, and the strain resists more than 5 g L-1 vanillin in the medium. A metabolomics approach was followed for the detection of FA, vanillin and other metabolites generated during fermentation of rice bran medium. A metabolic pathway was also predicted for vanillin biosynthesis. Approximately 1.06 g L-1 of crude vanillin was recovered from rice-bran-containing medium and this further offers scope for the industrial utilization of the organism and its genetic manipulation to enhance production of biovanillin.
Collapse
Affiliation(s)
- Debkumar Chakraborty
- a Sino-Forest Applied Research Centre for Pearl River Delta Environment , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
- b Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
| | - Baljinder Kaur
- c Department of Biotechnology , Punjabi University , Patiala , India
| | - Karthikeyan Obulisamy
- a Sino-Forest Applied Research Centre for Pearl River Delta Environment , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
- b Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
| | - Ammaiyappan Selvam
- a Sino-Forest Applied Research Centre for Pearl River Delta Environment , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
- b Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
| | - Jonathan W C Wong
- a Sino-Forest Applied Research Centre for Pearl River Delta Environment , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
- b Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
| |
Collapse
|
20
|
Chakraborty D, Selvam A, Kaur B, Wong JWC, Karthikeyan OP. Application of recombinant Pediococcus acidilactici BD16 (fcs +/ech +) for bioconversion of agrowaste to vanillin. Appl Microbiol Biotechnol 2017; 101:5615-5626. [DOI: 10.1007/s00253-017-8283-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
21
|
Cappello MS, Zapparoli G, Logrieco A, Bartowsky EJ. Linking wine lactic acid bacteria diversity with wine aroma and flavour. Int J Food Microbiol 2016; 243:16-27. [PMID: 27940412 DOI: 10.1016/j.ijfoodmicro.2016.11.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/09/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
In the last two decades knowledge on lactic acid bacteria (LAB) associated with wine has increased considerably. Investigations on genetic and biochemistry of species involved in malolactic fermentation, such as Oenococcus oeni and of Lactobacillus have enabled a better understand of their role in aroma modification and microbial stability of wine. In particular, the use of molecular techniques has provided evidence on the high diversity at species and strain level, thus improving the knowledge on wine LAB taxonomy and ecology. These tools demonstrated to also be useful to detect strains with potential desirable or undesirable traits for winemaking purposes. At the same time, advances on the enzymatic properties of wine LAB responsible for the development of wine aroma molecules have been undertaken. Interestingly, it has highlighted the high intraspecific variability of enzymatic activities such as glucosidase, esterase, proteases and those related to citrate metabolism within the wine LAB species. This genetic and biochemistry diversity that characterizes wine LAB populations can generate a wide spectrum of wine sensory outcomes. This review examines some of these interesting aspects as a way to elucidate the link between LAB diversity with wine aroma and flavour. In particular, the correlation between inter- and intra-species diversity and bacterial metabolic traits that affect the organoleptic properties of wines is highlighted with emphasis on the importance of enzymatic potential of bacteria for the selection of starter cultures to control MLF and to enhance wine aroma.
Collapse
Affiliation(s)
- Maria Stella Cappello
- CNR, Institute of Science of Food Production (ISPA), Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Antonio Logrieco
- CNR, Institute of Science of Food Production, Via G. Amendola, 122/0, 70126 Bari, Italy
| | - Eveline J Bartowsky
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
| |
Collapse
|
22
|
Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach. ENERGIES 2016. [DOI: 10.3390/en9100808] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Nsogning Dongmo S, Procopio S, Sacher B, Becker T. Flavor of lactic acid fermented malt based beverages: Current status and perspectives. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Kelly D, Zerihun A. The effect of phenol composition on the sensory profile of smoke affected wines. Molecules 2015; 20:9536-49. [PMID: 26016545 PMCID: PMC6272328 DOI: 10.3390/molecules20069536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 11/16/2022] Open
Abstract
Vineyards exposed to wildfire generated smoke can produce wines with elevated levels of lignin derived phenols that have acrid, metallic and smoky aromas and flavour attributes. While a large number of phenols are present in smoke affected wines, the effect of smoke vegetation source on the sensory descriptors has not been reported. Here we report on a descriptive sensory analysis of wines made from grapes exposed to different vegetation sources of smoke to examine: (1) the effect vegetation source has on wine sensory attribute ratings and; (2) associations between volatile and glycoconjugated phenol composition and sensory attributes. Sensory attribute ratings were determined by a trained sensory panel and phenol concentrations determined by gas chromatography-mass spectroscopy. Analysis of variance, principal component analysis and partial least squares regressions were used to evaluate the interrelationships between the phenol composition and sensory attributes. The results showed that vegetation source of smoke significantly affected sensory attribute intensity, especially the taste descriptors. Differences in aroma and taste from smoke exposure were not limited to an elevation in a range of detractive descriptors but also a masking of positive fruit descriptors. Sensory differences due to vegetation type were driven by phenol composition and concentration. In particular, the glycoconjugates of 4-hydroxy-3-methoxybenzaldehyde (vanillin), 1-(4-hydroxy-3-methoxyphenyl)ethanone (acetovanillone), 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) and 1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone (acetosyringone) concentrations were influential in separating the vegetation sources of smoke. It is concluded that the detractive aroma attributes of smoke affected wine, especially of smoke and ash, were associated with volatile phenols while the detractive flavour descriptors were correlated with glycoconjugated phenols.
Collapse
Affiliation(s)
- David Kelly
- Department of Environment and Agriculture, Margaret River Education Campus, Curtin University, Margaret River, WA 6285, Australia.
| | - Ayalsew Zerihun
- Department of Environment and Agriculture, Margaret River Education Campus, Curtin University, Margaret River, WA 6285, Australia.
| |
Collapse
|
25
|
Kaur B, Chakraborty D, Kumar B. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology. Appl Microbiol Biotechnol 2014; 98:8539-51. [PMID: 25077778 DOI: 10.1007/s00253-014-5950-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/30/2022]
Abstract
Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs (+)/ech (+)).
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Biotechnology, Punjabi University, Patiala, India,
| | | | | |
Collapse
|
26
|
Electroanalysis may be used in the Vanillin Biotechnological Production. Appl Biochem Biotechnol 2013; 172:1953-63. [DOI: 10.1007/s12010-013-0631-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
27
|
Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria. BIOMED RESEARCH INTERNATIONAL 2013; 2013:590359. [PMID: 24066293 PMCID: PMC3771242 DOI: 10.1155/2013/590359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/22/2013] [Accepted: 07/28/2013] [Indexed: 12/03/2022]
Abstract
Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.
Collapse
|
28
|
Biotransformation of rice bran to ferulic acid by pediococcal isolates. Appl Biochem Biotechnol 2013; 170:854-67. [PMID: 23615732 DOI: 10.1007/s12010-013-0223-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
Ferulic acid (FA) is widely used in foods, in beverages, and in various pharmaceutical industries as a precursor of vanillin. FA biotransformation can occur during the growth of lactic acid bacteria (LAB), and its conversion to other phenolic derivatives is observed by many scientists, where ferulic acid esterase (FAE) and ferulic acid decarboxylase (FDC) play significant roles. The present study aimed at screening a panel of LAB for their ability to release FA from rice bran, an agro waste material. FAE and FDC activities were analyzed for the preliminary screening of various dairy isolates. Two Pediococcus acidilactici isolates were selected for studying further the hydrolysis of FA from rice bran and its bioconversion into phenolic derivatives like 4-ethylphenol, vanillin, vanillic acid, and vanillyl alcohol. P. acidilactici M16, a probiotic isolate, has great potential for the production of FA from rice bran and could be exploited as starter culture in the food industry for the production of biovanillin.
Collapse
|
29
|
Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 2013; 169:1353-72. [PMID: 23306890 DOI: 10.1007/s12010-012-0066-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Vanillin is one of the most widely used flavoring agents in the world. As the annual world market demand of vanillin could not be met by natural extraction, chemical synthesis, or tissue culture technology, thus biotechnological approaches may be replacement routes to make production of bio-vanillin economically viable. This review's main focus is to highlight significant aspects of biotechnology with emphasis on the production of vanillin from eugenol, isoeugenol, lignin, ferulic acid, sugars, phenolic stilbenes, vanillic acid, aromatic amino acids, and waste residues by applying fungi, bacteria, and plant cells. Production of biovanillin using GRAS lactic acid bacteria and metabolically engineered microorganisms, genetic organization of vanillin biosynthesis operons/gene cassettes and finally the stability of biovanillin generated through various biotechnological procedures are also critically reviewed in the later sections of the review.
Collapse
|
30
|
Biotransformation of ferulic acid to 4-vinylguaiacol by Enterobacter soli and E. aerogenes. Curr Microbiol 2012; 65:752-7. [PMID: 22986816 DOI: 10.1007/s00284-012-0222-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
We investigated the conversion of ferulic acid to 4-vinylguaiacol (4-VG), vanillin, vanillyl alcohol, and vanillic acid by five Enterobacter strains. These high-value chemicals are usually synthesized by chemical methods but biological synthesis adds market value. Ferulic acid, a relatively inexpensive component of agricultural crops, is plentiful in corn hulls, cereal bran, and sugar-beet pulp. Two Enterobacter strains, E. soli, and E. aerogenes, accumulated 550-600 ppm amounts of 4-VG when grown in media containing 1,000 ppm ferulic acid; no accumulations were observed with the other strains. Decreasing the amount of ferulic acid present in the media increased the conversion efficiency. When ferulic acid was supplied in 500, 250, or 125 ppm amounts E. aerogenes converted ~72 % of the ferulic acid present to 4-VG while E. soli converted ~100 % of the ferulic acid to 4-VG when supplied with 250 or 125 ppm amounts of ferulic acid. Also, lowering the pH improved the conversion efficiency. At pH 5.0 E. aerogenes converted ~84 % and E. soli converted ~100 % of 1,000 ppm ferulic acid to 4-VG. Only small, 1-5 ppm, accumulations of vanillin, vanillyl alcohol, and vanillic acid were observed. E. soli has a putative phenolic acid decarboxylase (PAD) that is 168 amino acids long and is similar to PADs in other enterobacteriales; this protein is likely involved in the bioconversion of ferulic acid to 4-VG. E. soli or E. aerogenes might be useful as a means of biotransforming ferulic acid to 4-VG.
Collapse
|
31
|
Knockaert D, Raes K, Wille C, Struijs K, Van Camp J. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2291-2296. [PMID: 22351494 DOI: 10.1002/jsfa.5623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/24/2011] [Accepted: 01/14/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Food-isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. RESULTS Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L⁻¹), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4-vinylguaiacol (4-VG) and hydroferulic acid (HFA). Conversion to 4-VG started simultaneously with the degradation of FA, while formation of HFA started in the mid-exponential phase. Lactobacillus collinoides only formed 4-VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. CONCLUSION The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria.
Collapse
Affiliation(s)
- Dries Knockaert
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
32
|
Salgado JM, Rodríguez-Solana R, Curiel JA, de las Rivas B, Muñoz R, Domínguez JM. Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T. BIORESOURCE TECHNOLOGY 2012; 117:274-285. [PMID: 22621808 DOI: 10.1016/j.biortech.2012.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 06/01/2023]
Abstract
The enzyme PAD from Lactobacillus plantarum CECT 748T decarboxylates some cinnamic acids namely p-coumaric acid (p-CA), caffeic acid (CA), and ferulic acid (FA) into their corresponding 4-vinyl derivatives (4-VD): 4-vinyl phenol (4-VP), 4-vinyl catechol (4-VC), and 4-vinyl guaiacol (4-VG), respectively, which are valuable food additives mainly employed as flavouring agents. The gene encoding this enzyme was cloned and overexpressed in Escherichia coli. Recombinant E. coli cells overproducing L. plantarum PAD showed a preference to degrade mainly p-CA and CA. Sterilized liquors obtained after alkaline hydrolysis of corn cob or alkaline hydrolysis of the solid residue coming from acid hydrolysis of corn cob were employed as growth media in fermentations performed in shaker or bioreactor. The fermentative process allowed converting 2222.8 mg/L p-CA into 993.9 mg/L 4-VP. The process described here allowed the production with a high-yield of a valuable food additive from a by-product of the food industry.
Collapse
Affiliation(s)
- José Manuel Salgado
- Laboratory of Agro-food Biotechnology, CITI-Tecnólopole, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Suzuki K. 125th Anniversary Review: Microbiological Instability of Beer Caused by Spoilage Bacteria. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00454.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Suzuki K, Asano S, Iijima K, Kitamoto K. Sake and Beer Spoilage Lactic Acid Bacteria - A Review. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2008.tb00331.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Abstract
The perception of wine flavor and aroma is the result of a multitude of interactions between a large number of chemical compounds and sensory receptors. Compounds interact and combine and show synergistic (i.e., the presence of one compound enhances the perception of another) and antagonistic (a compound suppresses the perception of another) interactions. The chemical profile of a wine is derived from the grape, the fermentation microflora (in particular the yeast Saccharomyces cerevisiae), secondary microbial fermentations that may occur, and the aging and storage conditions. Grape composition depends on the varietal and clonal genotype of the vine and on the interaction of the genotype and its phenotype with many environmental factors which, in wine terms, are usually grouped under the concept of "terroir" (macro, meso and microclimate, soil, topography). The microflora, and in particular the yeast responsible for fermentation, contributes to wine aroma by several mechanisms: firstly by utilizing grape juice constituents and biotransforming them into aroma- or flavor-impacting components, secondly by producing enzymes that transform neutral grape compounds into flavor-active compounds, and lastly by the de novo synthesis of many flavor-active primary (e.g., ethanol, glycerol, acetic acid, and acetaldehyde) and secondary metabolites (e.g., esters, higher alcohols, fatty acids). This review aims to present an overview of the formation of wine flavor and aroma-active components, including the varietal precursor molecules present in grapes and the chemical compounds produced during alcoholic fermentation by yeast, including compounds directly related to ethanol production or secondary metabolites. The contribution of malolactic fermentation, ageing, and maturation on the aroma and flavor of wine is also discussed.
Collapse
|
36
|
Belviso S, Giordano M, Dolci P, Zeppa G. Degradation and biosynthesis of terpenoids by lactic acid bacteria isolated from cheese: first evidence. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13594-011-0003-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Curiel JA, Rodríguez H, Landete JM, de las Rivas B, Muñoz R. Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Landete JM, Rodríguez H, Curiel JA, de las Rivas B, Mancheño JM, Muñoz R. Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. J Ind Microbiol Biotechnol 2010; 37:617-24. [DOI: 10.1007/s10295-010-0709-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/04/2010] [Indexed: 11/30/2022]
|
39
|
García-Ruiz A, Bartolomé B, Cueva C, Martín-Álvarez P, Moreno-Arribas M. Inactivation of oenological lactic acid bacteria (Lactobacillus hilgardiiandPediococcus pentosaceus) by wine phenolic compounds. J Appl Microbiol 2009; 107:1042-53. [DOI: 10.1111/j.1365-2672.2009.04287.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Rodríguez H, Curiel JA, Landete JM, de las Rivas B, López de Felipe F, Gómez-Cordovés C, Mancheño JM, Muñoz R. Food phenolics and lactic acid bacteria. Int J Food Microbiol 2009; 132:79-90. [PMID: 19419788 DOI: 10.1016/j.ijfoodmicro.2009.03.025] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 11/29/2022]
Abstract
Phenolic compounds are important constituents of food products of plant origin. These compounds are directly related to sensory characteristics of foods such as flavour, astringency, and colour. In addition, the presence of phenolic compounds on the diet is beneficial to health due to their chemopreventive activities against carcinogenesis and mutagenesis, mainly due to their antioxidant activities. Lactic acid bacteria (LAB) are autochthonous microbiota of raw vegetables. To get desirable properties on fermented plant-derived food products, LAB has to be adapted to the characteristics of the plant raw materials where phenolic compounds are abundant. Lactobacillus plantarum is the commercial starter most frequently used in the fermentation of food products of plant origin. However, scarce information is still available on the influence of phenolic compounds on the growth and viability of L. plantarum and other LAB species. Moreover, metabolic pathways of biosynthesis or degradation of phenolic compounds in LAB have not been completely described. Results obtained in L. plantarum showed that L. plantarum was able to degrade some food phenolic compounds giving compounds influencing food aroma as well as compounds presenting increased antioxidant activity. Recently, several L. plantarum proteins involved in the metabolism of phenolic compounds have been genetically and biochemically characterized. The aim of this review is to give a complete and updated overview of the current knowledge among LAB and food phenolics interaction, which could facilitate the possible application of selected bacteria or their enzymes in the elaboration of food products with improved characteristics.
Collapse
Affiliation(s)
- Héctor Rodríguez
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu P, Hua D, Ma C. Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol 2007; 25:571-6. [DOI: 10.1016/j.tibtech.2007.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
|