1
|
Angiotensin II Blood Serum Levels in Piglets, after Intra-Dermal or Intra-Muscular Vaccination against PRRSV. Vet Sci 2022; 9:vetsci9090496. [PMID: 36136712 PMCID: PMC9503611 DOI: 10.3390/vetsci9090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes massive financial losses in pig production worldwide. Vaccination is still the most cost-effective tool to handle PRRSV infection. PRRSV induces apoptosis in different organs. Angiotensin II (Ang II) participates in the inflammatory response, cell proliferation, migration, and apoptosis. The objective of the current study was to assess the concentration of Ang II in the serum of piglets following immunization against PRRSV through intradermal (ID) or intramuscular (IM) vaccination with a commercial PRRS modified live virus (MLV) vaccine. The results indicated differences in viremia of tested piglets at 7 weeks of age, while piglets at 10 weeks of age were all found qRT-PCR positive for PRRSV. Moreover, significant differences were noticed in Ang II in 7-week-old piglets. In conclusion, our study provides evidence that ID vaccination induces less tissue damage, based on the lower measurements of Ang II in the serum of ID vaccinated piglets. Abstract The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) induces apoptosis in different organs. Angiotensin II (Ang II) is the main effector of the renin-angiotensin system and participates in apoptosis. Thus, this study aimed to investigate changes in piglet serum Ang II levels following intradermal (ID) and intramuscular (IM) vaccination with a commercial PRRS modified live virus (MLV) vaccine. The trial was conducted in a commercial pig farm, including 104 piglets which were randomly allocated to four groups: Group A—Porcilis PRRS ID, Group B—Porcilis PRRS IM, Group C—Diluvac ID and Group D—Diluvac IM. The study piglets were either vaccinated or injected at 2 weeks of age and they were tested by qRT-PCR for PRRSV and by ELISA for Ang II. The results indicated differences in viremia of tested piglets at 7 weeks of age, while piglets at 10 weeks of age were all found qRT-PCR positive for PRRSV. In addition, significant differences were noticed in Ang II in 7-week-old piglets. In conclusion, the present study provides evidence that ID vaccination induces less tissue damage, based on the lower measurements of Ang II in the serum of ID vaccinated piglets.
Collapse
|
2
|
Shin GE, Park JY, Lee KK, Ko MK, Ku BK, Park CK, Jeoung HY. Genetic diversity of porcine reproductive and respiratory syndrome virus and evaluation of three one-step real-time RT-PCR assays in Korea. BMC Vet Res 2022; 18:327. [PMID: 36042510 PMCID: PMC9429472 DOI: 10.1186/s12917-022-03407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses in the global swine industry. Frequent genetic variations in this virus cause difficulties in controlling and accurately diagnosing PRRSV. Methods In this study, we investigated the genetic characteristics of PRRSV-1 and PRRSV-2 circulating in Korea from January 2018 to September 2021 and evaluated three one-step real-time reverse transcription polymerase chain reaction (RT-PCR) assays. Results A total of 129 lung samples were collected, consisting of 47 samples for PRRSV-1, 62 samples for PRRSV-2, and 20 PRRSV-negative samples. Nucleotide sequence analysis of open reading frames (ORFs) 5, ORF6, and ORF7 genes from PRRSV samples showed that PRRSV-1 belonged to subgroup A (43/47, 91.49%) and subgroup C (4/47, 8.51%), whereas PRRSV-2 was classified as lineage 1 (25/62, 40.32%), Korean lineage (Kor) C (13/62, 20.97%), Kor B (10/62, 16.13%), lineage 5 (9/62, 14.52%), and Kor A (5/62, 8.06%). Amino acid sequence analysis showed that the neutralizing epitope and T cell epitope of PRRSV-1, and the decoy epitope region and hypervariable regions of PRRSV-2 had evolved under positive selection pressure. In particular, the key amino acid substitutions were found at positions 102 and 104 of glycoprotein 5 (GP5) in some PRRSV-2, and at positions 10 and 70 of membrane protein (M) in most PRRSV-2. In addition, one-step real-time RT-PCR assays, comprising two commercial tests and one test recommended by the World Organization for Animal Health (OIE), were evaluated. Conclusion The results revealed that two of the real-time RT-PCR assays had high sensitivities and specificities, whereas the real-time RT-PCR assay of the OIE had low sensitivity due to mismatches between nucleotides of Korean PRRSVs and forward primers. In this study, we genetically characterized recent PRRSV occurrences and evaluated three one-step real-time RT-PCR assays used in Korea. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03407-0.
Collapse
Affiliation(s)
- Go-Eun Shin
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea.,College of Veterinary Medicine, Kyungbuk National University, 80, Daehak-ro, Daegu, 41566, Korea
| | - Ji-Young Park
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Mi-Kyeong Ko
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Bok-Kyung Ku
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyungbuk National University, 80, Daehak-ro, Daegu, 41566, Korea.
| | - Hye-Young Jeoung
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea.
| |
Collapse
|
3
|
Oba P, Dione MM, Erume J, Wieland B, Mutisya C, Ochieng L, Cook EAJ, Mwiine FN. Molecular characterization of porcine reproductive and respiratory syndrome virus (PRRSv) identified from slaughtered pigs in northern Uganda. BMC Vet Res 2022; 18:176. [PMID: 35562693 PMCID: PMC9102683 DOI: 10.1186/s12917-022-03272-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background A cross sectional study was conducted to detect and characterize species of porcine reproductive and respiratory syndrome virus (PRRSv) identified from slaughtered pigs in Lira district, northern Uganda. The study was conducted from March to September 2019 in three selected slaughter slabs. Pigs brought for slaughter were randomly sampled. At necropsy, lungs were extracted from the thoracic cavity and examined for pneumonic lesions. Seventy-three (73) pigs with gross lung lesions were sampled, from which one hundred and one (101) tissue samples were taken. A real-time reverse transcriptase PCR (RT-qPCR) was used to characterize PRRSv species. Results A total of 20 samples tested positive for PRRSv. The respective prevalence of PRRSv type 1 and type 2 were 24.65% (n = 18) and 2.73% (n = 2) respectively. Of the pigs sampled (n = 73), only two pigs, 2.73% (n = 2) tested positive to both species. The likelihood of PRRSv detection decreased with pig age, but increased with gross pneumonic pathology. Conclusions This study demonstrated dual circulation of both species in northern Uganda. The association between PRRSv and lung pathology suggests that it may be an important cause of lung disease in pigs in Uganda and hence loss of production. This calls for further investigations on potential economic impacts of PRRSv on pig productivity. These findings contribute to discussions about the need of surveillance and possible vaccination strategies against PRRSv in Uganda.
Collapse
Affiliation(s)
- Peter Oba
- International Livestock Research Institute, P. O. Box 24384, Kampala, Uganda. .,National Agricultural Research Organization, Abi Zonal Agricultural Research and Development Institute (Abi ZARDI), P. O. Box 219, Arua, Uganda.
| | - Michel M Dione
- International Livestock Research Institute, c/o AfricaRice, Rue 18 Cité Mamelles, BP 24265 Ouakam, Dakar, Senegal
| | - Joseph Erume
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Barbara Wieland
- Institute of Virology and Immunology (IVI), Mittelhaeusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christine Mutisya
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Linnet Ochieng
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Elizabeth A J Cook
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Frank N Mwiine
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
4
|
Kuitio C, Rasri N, Kiriwan D, Unajak S, Choowongkomon K. Development of a biosensor from aptamers for detection of the porcine reproductive and respiratory syndrome virus. J Vet Sci 2020; 21:e79. [PMID: 33016024 PMCID: PMC7533388 DOI: 10.4142/jvs.2020.21.e79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Recently, the pork industry of Thailand faced an epidemic of highly virulent strains of porcine reproductive and respiratory syndrome virus (PRRSV), which spread throughout Southeast Asia, including the Lao People's Democratic Republic and Cambodia. Hence, the rapid and on-site screening of infected pigs on a farm is essential. OBJECTIVES To develop the new aptamer as a biosensor for detection PRRSV which are rapid and on-site screening of infected pig. METHODS New aptamers against PRSSV were identified using the combined techniques of capillary electrophoresis, colorimetric assay by gold nanoparticles, and quartz crystal microbalance (QCM). RESULTS Thirty-six candidate aptamers of the PRRSV were identified from the systematic evolution of ligands by exponential enrichment (SELEX) by capillary electrophoresis. Only 8 out of 36 aptamers could bind to the PRSSV, as shown in a colorimetric assay. Of the 8 aptamers tested, only the 1F aptamer could bind specifically to the PRSSV when presented with the classical swine fever virus and a pseudo rabies virus. The QCM was used to confirm the specificity and sensitivity of the 1F aptamer with a detection limit of 1.87 × 1010 particles. CONCLUSIONS SELEX screening of the aptamer equipped with capillary electrophoresis potentially revealed promising candidates for detecting the PRRSV. The 1F aptamer exhibited the highest specificity and selectivity against the PRRSV. These findings suggest that 1F is a promising aptamer for further developing a novel PRRSV rapid detection kit.
Collapse
Affiliation(s)
- Chakpetch Kuitio
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Natchaya Rasri
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Duangnapa Kiriwan
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
5
|
Rapid, Unbiased PRRSV Strain Detection Using MinION Direct RNA Sequencing and Bioinformatics Tools. Viruses 2019; 11:v11121132. [PMID: 31817886 PMCID: PMC6950593 DOI: 10.3390/v11121132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Prompt detection and effective control of porcine reproductive and respiratory syndrome virus (PRRSV) during outbreaks is important given its immense adverse impact on the swine industry. However, the diagnostic process can be challenging due to the high genetic diversity and high mutation rate of PRRSV. A diagnostic method that can provide more detailed genetic information about pathogens is urgently needed. In this study, we evaluated the ability of Oxford Nanopore MinION direct RNA sequencing to generate a PRRSV whole genome sequence and detect and discriminate virus at the strain-level. A nearly full length PRRSV genome was successfully generated from raw sequence reads, achieving an accuracy of 96% after consensus genome generation. Direct RNA sequencing reliably detected the PRRSV strain present with an accuracy of 99.9% using as few as 5 raw sequencing reads and successfully differentiated multiple co-infecting strains present in a sample. In addition, PRRSV strain information was obtained from clinical samples containing 104 to 106 viral copies or more within 6 hours of sequencing. Overall, direct viral RNA sequencing followed by bioinformatic analysis proves to be a promising approach for identification of the viral strain or strains involved in clinical infections, allowing for more precise prevention and control strategies during PRRSV outbreaks.
Collapse
|
6
|
Yuan X, Lv J, Lin X, Zhang C, Deng J, Wang C, Fan X, Wang Y, Xu H, Wu S. Multiplex detection of six swine viruses on an integrated centrifugal disk using loop-mediated isothermal amplification. J Vet Diagn Invest 2019; 31:415-425. [PMID: 30947641 DOI: 10.1177/1040638719841096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advances in molecular testing and microfluidic technologies have opened new avenues for rapid detection of animal viruses. We used a centrifugal microfluidic disk (CMFD) to detect 6 important swine viruses, including foot-and-mouth disease virus, classical swine fever virus, porcine reproductive and respiratory swine virus-North American genotype, porcine circovirus 2, pseudorabies virus, and porcine parvovirus. Through integrating the loop-mediated isothermal amplification (LAMP) method and microfluidic chip technology, the CMFD could be successfully performed at 62℃ in 60 min. The detection limit of the CMFD was 3.2 × 102 copies per reaction, close to the sensitivity of tube-type LAMP turbidity methods (1 × 102 copies per reaction). In addition, the CMFD was highly specific in detecting the targeted viruses with no cross-reaction with other viruses, including porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine rotavirus. The coincidence rate of CMFD and conventional PCR was ~94%; the CMFD was more sensitive than conventional PCR for detecting mixed viral infections. The positive detection rate of 6 viruses in clinical samples by CMFD was 44.0% (102 of 232), whereas PCR was 40.1% (93 of 232). Thirty-six clinical samples were determined to be coinfected with 2 or more viruses. CMFD can be used for rapid, sensitive, and accurate detection of 6 swine viruses, offering a reliable assay for monitoring these pathogens, especially for detecting viruses in widespread mixed-infection clinical samples.
Collapse
Affiliation(s)
- Xiangfen Yuan
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Jizhou Lv
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Xiangmei Lin
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Chunyan Zhang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Junhua Deng
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Caixia Wang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Xiaopan Fan
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Yonggui Wang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Hui Xu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Shaoqiang Wu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| |
Collapse
|
7
|
Zhao Y, Liu F, Li Q, Wu M, Lei L, Pan Z. A multiplex RT-PCR assay for rapid and simultaneous detection of four RNA viruses in swine. J Virol Methods 2019; 269:38-42. [PMID: 30951787 PMCID: PMC7113762 DOI: 10.1016/j.jviromet.2019.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
A multiplex reverse transcription polymerase chain rection (mRT-PCR) was developed for simultaneous detection of four RNA viruses in swine. The conserved target sequences directed to classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis coronavirus (TGEV) were selected based on alignments of genomic sequences and then specific primers were designed. The mRT-PCR assay was developed and evaluated for its specificity and sensitivity. The expected product from the single viral template was amplified by mRT-PCR and no spurious PCR amplification occurred from the genomic RNA or DNA of other pathogens. For single virus or different combinations of two viruses the detection limit of mRT-PCR was consistent with a single RT-PCR wtith 1 × 103 copies. For different combinations of the three viruses or four viruses, sensitivity of PEDV detection partially decreased. All of positive clinical specimens by the mRT-PCR were identically confirmed using Taqman RT-qPCR. Therefore, the mRT-PCR is a useful tool for epidemiological studies and laboratory diagnosis of single virus and/or mixed infections in swine.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feifei Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Mengfan Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Yang K, Tian Y, Zhou D, Duan Z, Guo R, Liu Z, Yuan F, Liu W. A Multiplex RT-PCR Assay to Detect and Discriminate Porcine Reproductive and Respiratory Syndrome Viruses in Clinical Specimens. Viruses 2017; 9:v9080205. [PMID: 28763016 PMCID: PMC5580462 DOI: 10.3390/v9080205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022] Open
Abstract
Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses in China. The attenuated vaccine (HP-PRRSV JXA1-R) was used to control HP-PRRSV. However, in recent years, co-infection with classical PRRSV (C-PRRSV), HP-PRRSV, and/or HP-PRRSV JXA1-R has been increasing in China, resulting in a significant impact on PRRSV diagnostics and management. To facilitate rapid discrimination of HP-PRRSV JXA1-R from HP-PRRSV and C-PRRSV, a multiplex RT-PCR assay for the visual detection of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV was established and evaluated with reference PRRSV strains and clinical samples. Primer specificities were evaluated with RNA/DNA extracted from 10 viral strains, and our results revealed that the primers had a high specificity for PRRSV. The assay sensitivity was 24 copies/μL for PRRSVs. A total of 516 serum samples were identified, of which 12.21% (63/516) were HP-PRRSV-positive, 2.33% (12/516) were HP-PRRSV JXA1-R-positive, and 1.16% (6/516) were C-PRRSV-positive, respectively, which was completely consistent with the sequencing method. The high specificity, sensitivity, and reliability of the multiplex RT-PCR assay described in this study indicate that it is useful for the rapid and differential diagnosis of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV.
Collapse
Affiliation(s)
- Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
9
|
García-Nicolás O, Quereda JJ, Gómez-Laguna J, Salguero FJ, Carrasco L, Ramis G, Pallarés FJ. Cytokines transcript levels in lung and lymphoid organs during genotype 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. Vet Immunol Immunopathol 2014; 160:26-40. [DOI: 10.1016/j.vetimm.2014.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 12/24/2022]
|
10
|
Simultaneous detection and differentiation of highly virulent and classical Chinese-type isolation of PRRSV by real-time RT-PCR. J Immunol Res 2014; 2014:809656. [PMID: 25114934 PMCID: PMC4119655 DOI: 10.1155/2014/809656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/15/2014] [Indexed: 11/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a leading disease in pig industry worldwide and can result in serious economic losses each year. The PRRS epidemic situation in China has been very complicated since the unprecedented large-scale highly pathogenic PRRS (HP-PRRS) outbreaks in 2006. And now the HP-PRRS virus (HP-PRRSV) and classical North American type PRRSV strains have coexisted in China. Rapid differential detection of the two strains of PRRSV is very important for effective PRRS control. The real-time RT-PCR for simultaneous detection and differentiation of HP-PRRSV and PRRSV by using both SYBR Green and TaqMan probes was developed and validated. Both assays can be used for rapid detection and strain-specific identification of HP-PRRSV and PRRSV. However, the TaqMan probe method had the highest detection rate whereas the conventional RT-PCR was the lowest. The real-time RT-PCR developed based on SYBR Green and TaqMan probe could be used for simultaneous detection and differentiation of HP-PRRSV and PRRSV in China, which will benefit much the PRRS control and research.
Collapse
|
11
|
Lin CN, Lin WH, Hung LN, Wang SY, Chiou MT. Comparison of viremia of type II porcine reproductive and respiratory syndrome virus in naturally infected pigs by zip nucleic acid probe-based real-time PCR. BMC Vet Res 2013; 9:181. [PMID: 24028493 PMCID: PMC3847877 DOI: 10.1186/1746-6148-9-181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/10/2013] [Indexed: 01/11/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a RNA virus with high genetic variation. This virus causes significant economic losses in most pig-producing countries. The clinical presentation of PRRSV ranges from asymptomatic to devastating. In this study, we developed a sensitive and specific zip nucleic acid probe-based real-time PCR assay to evaluate the viremia of natural PRRSV-infected pigs in Taiwan. Serum samples were collected from 577 pigs aged 5–12 weeks. These include 444 clinically healthy pigs and 133 symptomatic pigs were confirmed to have porcine respiratory disease complex (PRDC). Results Viremia was quantified in 79 of the 444 (17.8%) clinically healthy pigs and in 112 of the 133 (84.2%) PRDC cases. Viremias were significantly more common in pigs with PRDC compared with the clinically healthy pigs (P <0.0001). These results suggest that a high viral load is a major feature of PRRSV-affected pigs. Conclusions ZNA probe-based real-time PCR can be a useful tool to diagnose symptomatic and asymptomatic PRRSV-infected pigs. The presence of this marker in a sample of animals with high PRRSV loads (>104.2 PRRSV genomes/μl of serum) seems to indicate that it correlates with the presence of PRDC in pigs.
Collapse
Affiliation(s)
- Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
12
|
Wernike K, Hoffmann B, Dauber M, Lange E, Schirrmeier H, Beer M. Detection and typing of highly pathogenic porcine reproductive and respiratory syndrome virus by multiplex real-time rt-PCR. PLoS One 2012; 7:e38251. [PMID: 22768042 PMCID: PMC3387184 DOI: 10.1371/journal.pone.0038251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 05/04/2012] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes economic losses in the pig industry worldwide, and PRRS viruses (PRRSV) are classified into the two distinct genotypes “North American (NA, type 2)” and “European (EU, type 1)”. In 2006, a highly pathogenic NA strain of PRRSV (HP-PRRSV), characterized by high fever as well as high morbidity and mortality, emerged in swine farms in China. Therefore, a real-time reverse transcription polymerase chain reaction (RT-qPCR) assay specific for HP-PRRSV was developed and combined with type 1- and type 2-specific RT-qPCR systems. Furthermore, an internal control, based on a heterologous RNA, was successfully introduced. This final multiplex PRRSV RT-qPCR, detecting and typing PRRSV, had an analytical sensitivity of less than 200 copies per µl for the type 1-assay and 20 copies per µl for the type 2- and HP assays and a high diagnostic sensitivity. A panel of reference strains and field isolates was reliably detected and samples from an animal trial with a Chinese HP-PRRS strain were used for test validation. The new multiplex PRRSV RT-qPCR system allows for the first time the highly sensitive detection and rapid differentiation of PRRSV of both genotypes as well as the direct detection of HP-PRRSV.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Malte Dauber
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Elke Lange
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Horst Schirrmeier
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
13
|
Detection of asymptomatic antigenemia in pigs infected by porcine reproductive and respiratory syndrome virus (PRRSV) by a novel capture immunoassay with monoclonal antibodies against the nucleocapsid protein of PRRSV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1822-8. [PMID: 19828768 DOI: 10.1128/cvi.00244-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Routine surveillance for porcine reproductive and respiratory syndrome virus (PRRSV) infections is crucial for the epidemiological control of this disease. Antibody tests are widely used but cannot differentiate between vaccination and reinfection. We developed a PRRSV antigen capture enzyme-linked immunosorbent assay (ELISA) using well-characterized monoclonal antibodies (MAbs) raised against the nucleocapsid (N) protein of North American and European PRRSV. This antigen assay detected purified N protein from both genotypes at levels as low as 0.4 and 0.8 ng, respectively. The specificity and sensitivity of the N antigen assay were evaluated with ground lung tissues from 8 PRRSV-infected and 16 healthy swine, and culture supernatants from six PRRSV isolates as well as other swine viruses were confirmed by reverse transcriptase PCR (RT-PCR). Antigen assays were positive in all eight infected tissues and with six different PRRSV isolates, with no false positives among healthy tissues and other swine viruses (i.e., pseudorabies and foot and mouth disease viruses). A number of sera, field collected from 466 vaccinated and asymptomatic pigs in Guangdong, China, between 2008 and 2009, tested positive by the N antigen assay (12.45%), RT-PCR (15.02%), and a commercial test for antibodies against PRRSV (78.97%). Of the 466 sera, 47 were positive by both antigen and RT-PCR tests, 11 by antigen test only, and 23 by RT-PCR only; the two assays had an overall agreement of 92.7%, indicating a significant percentage of active PRRSV in asymptomatic pigs despite previous immunization. These findings suggest that the antigen assay is a valuable field tool for the epidemiological control of PRRSV that can be used for rapid screening, particularly in asymptomatic animals.
Collapse
|
14
|
Balka G, Hornyák A, Bálint A, Benyeda Z, Rusvai M. Development of a one-step real-time quantitative PCR assay based on primer-probe energy transfer for the detection of porcine reproductive and respiratory syndrome virus. J Virol Methods 2009; 158:41-5. [PMID: 19200443 PMCID: PMC7112897 DOI: 10.1016/j.jviromet.2009.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/28/2008] [Accepted: 01/14/2009] [Indexed: 11/15/2022]
Abstract
A one-step real-time RT-PCR method has been developed for the simultaneous detection of both genotypes of porcine reproductive and respiratory syndrome virus (PRRSV). The assay is based on primer-probe energy transfer, and the most important advantage of this is the relative tolerance towards mutations in the target-probe region. The primers and the probe were designed using an alignment of 235 Type 1 (including all subtypes) and Type 2 PRRSV strains. According to the alignment, multiple degenerations were included in the forward and reverse primers to enable the detection of all PRRSV strains deposited in the GenBank. Specificity was tested using 37 different PRRSV strains and eight other swine pathogen viruses. The detection limit was approximately 10 copies of RNA prepared from the Lelystad virus, a European Subtype 3 virus (Belarus strain Soz-8), and an American vaccine virus (Ingelvac MLV®). One TCID50 was the detection limit in the case of the cell cultured Lelystad virus and an American wild type isolate, respectively. The melting point analysis revealed melting point decrease, but no significant sensitivity and signal loss in the presence of numerous (up to five) target-probe mismatches, indicating the capability of tolerating even more mutations. The method was suitable for the detection and quantitation of phylogenetically divergent strains and can serve as a robust, high throughput tool for molecular diagnosis of the PRRSV.
Collapse
Affiliation(s)
- Gyula Balka
- Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary Science, Szent István University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|