Martinez B, Stratton J, Bianchini A, Wegulo S, Weaver G. Transmission of Escherichia coli O157:H7 to internal tissues and its survival on flowering heads of wheat.
J Food Prot 2015;
78:518-24. [PMID:
25719875 DOI:
10.4315/0362-028x.jfp-14-298]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli O157:H7 is a human pathogen that can cause bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. E. coli O157:H7 illnesses are mainly associated with undercooked beef; however, in recent years, outbreaks have been linked to fresh produce, such as spinach, lettuce, and sprouts. In 2009, flour was implicated as the contamination source in an outbreak involving consumption of raw cookie dough that resulted in 77 illnesses. The objectives of this research were to determine (i) whether E. coli O157:H7 could be translocated into the internal tissues of wheat (Triticum aestivum) seedlings from contaminated seed, soil, or irrigation water and (ii) whether the bacterium could survive on flowering wheat heads. The levels of contamination of kanamycin-resistant E. coli O157:H7 strains in seed, soil, and irrigation water were 6.88 log CFU/g, 6.60 log CFU/g, and 6.76 log CFU/ml, respectively. One hundred plants per treatment were sown in pot trays with 50 g of autoclaved soil or purposely contaminated soil, watered every day with 5 ml of water, and harvested 9 days postinoculation. In a fourth experiment, flowering wheat heads were spray inoculated with water containing 4.19 log CFU/ml E. coli O157:H7 and analyzed for survival after 15 days, near the harvest period. To detect low levels of internalization, enrichment procedures were performed and Biotecon real-time PCR detection assays were used to determine the presence of E. coli O157:H7 in the wheat, using a Roche Applied Science LightCycler 2.0 instrument. The results showed that internalization was possible using contaminated seed, soil, and irrigation water in wheat seedlings, with internalization rates of 2, 5, and 10%, respectively. Even though the rates were low, to our knowledge this is the first study to demonstrate the ability of this strain to reach the phylloplane in wheat. In the head contamination experiment, all samples tested positive, showing the ability of E. coli O157:H7 to survive on the wheat head.
Collapse