1
|
Zhou H, Wang Z, Qian J. Engineering of the hypoxia-induced Pichia stipitis ADH2 promoter to construct a promoter library for Pichia pastoris. J Biotechnol 2023; 376:24-32. [PMID: 37690664 DOI: 10.1016/j.jbiotec.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Hypoxia-inducible promoters of a wide range of activities are desirable for fine-tuning gene expression in response to oxygen limitation, especially for the Crabtree negative yeast Pichia pastoris (Komagataella phaffii) with a high oxygen consumption rate in large-scale fermentations. Here we constructed a hypoxia-inducible promoter library for P. pastoris through error-prone PCR of Pichia stipitis ADH2 promoter (PsADH2). The library of 30 selected promoters showing 0.4- to 5.5-fold of the PsADH2 activity was obtained through high-throughput screening in microplates using the reporter yeast-enhanced green fluorescent protein. Two strong promoters, AM23 and AM30, were further characterized in shake flask cultures at high and low dissolved oxygen levels. They responded more sensitively to the low dissolved oxygen level, achieving a 4.6-, 7.9-fold and 3.6-, 7.7-fold higher fluorescence intensity and transcript level, respectively, than the wild-type PsADH2. Their hypoxia-inducible properties were confirmed with two additional reporters: β-galactosidase and Vitreoscilla hemoglobin, to demonstrate the broad applicability of the promoter library. During the typical fermentation process in shake flasks, the promoter AM30 showed strong expression with cell growth and decreased oxygen levels, without any additional chemical inducers or operations. Since the potent industrial host P. pastoris is recognized as an easy to scale-up system, it is reasonable to expect that the obtained hypoxia-inducible promoter library may have great potential to enable convenient regulation of gene expression under industrial fermentations which are usually run under oxygen limitation due to high cell density cultivations.
Collapse
Affiliation(s)
- Hangcheng Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhipeng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
2
|
Kaushik N, Lamminmäki U, Khanna N, Batra G. Enhanced cell density cultivation and rapid expression-screening of recombinant Pichia pastoris clones in microscale. Sci Rep 2020; 10:7458. [PMID: 32366873 PMCID: PMC7198582 DOI: 10.1038/s41598-020-63995-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
Cultivation of yeast Pichia pastoris in the microtiter plate, for optimisation of culture conditions, and expression screening of transformants has gained significance in recent years. However, in the microtiter plate, it has been challenging to attain cell densities similar to well-aerated shake-flask culture, due to the poor mixing resulting in oxygen limitation. To solve this problem, we investigated the influence of multiple cultivation parameters on P. pastoris cell growth, including the architecture of 96-deepwell plate (96-DWP), shaking throw diameter, shaking frequency, culture volume/well, and media composition. In the optimised conditions, a cell density of OD600 ~50 (dry cell weight ~13 g/L) with >99% cell viability was achieved in the casamino acids supplemented buffered-minimal-media in 300 to 1000 μl culture volume/well. We have devised a simplified method for coating of the culture supernatant on the polystyrene surface for immunoassay. Clones for secretory expression of envelope domain III of dengue virus serotype-1 under the control of inducible and constitutive promoter were screened using the developed method. Described microscale cultivation strategy can be used for rapid high-throughput screening of P. pastoris clones, media optimization, and high-throughput recombinant protein production. The knowledge gained through this work may also be applied, to other suspension cultures, with some modifications.
Collapse
Affiliation(s)
- Neha Kaushik
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.,School of Life Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Navin Khanna
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gaurav Batra
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
3
|
Qin X, Lu J, Zhang Y, Wu X, Qiao X, Wang Z, Chu J, Qian J. Engineering
Pichia pastoris
to improve S‐adenosyl‐
l
‐methionine production using systems metabolic strategies. Biotechnol Bioeng 2020; 117:1436-1445. [DOI: 10.1002/bit.27300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Xiulin Qin
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Junjie Lu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Yin Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Xiaole Wu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Xuefeng Qiao
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Zhipeng Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Ju Chu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| |
Collapse
|
4
|
Ata Ö, Prielhofer R, Gasser B, Mattanovich D, Çalık P. Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris. Biotechnol Bioeng 2017. [PMID: 28650069 DOI: 10.1002/bit.26363] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP ), which is one of the benchmark promoters of Pichia pastoris, was analyzed in terms of putative transcription factor binding sites. We constructed a synthetic library with distinct regulatory properties through deletion and duplication of these putative transcription factor binding sites and selected transcription factor (TF) genes were overexpressed or deleted to understand their roles on heterologous protein production. Using enhanced green fluorescent protein, an expression strength in a range between 0.35- and 3.10-fold of the wild-type PGAP was obtained. Another model protein, recombinant human growth hormone was produced under control of selected promoter variants and 1.6- to 2.4-fold higher product titers were reached compared to wild-type PGAP . In addition, a GAL4-like TF was found to be a crucial factor for the regulation of PGAP , and its overexpression enhanced the heterologous protein production considerably (up to 2.2-fold compared to the parental strain). The synthetic PGAP library generated enabled us to investigate the different putative transcription factors which are responsible for the regulation of PGAP under different growth conditions, ergo recombinant protein production under PGAP . Biotechnol. Bioeng. 2017;114: 2319-2327. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Özge Ata
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara 06800, Turkey.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Roland Prielhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Pınar Çalık
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara 06800, Turkey.,Department of Chemical Engineering, Industrial Biotechnology and Metabolic Engineering Laboratory, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
5
|
Obst U, Lu TK, Sieber V. A Modular Toolkit for Generating Pichia pastoris Secretion Libraries. ACS Synth Biol 2017; 6:1016-1025. [PMID: 28252957 DOI: 10.1021/acssynbio.6b00337] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Yeasts are powerful eukaryotic hosts for the production of recombinant proteins due to their rapid growth to high cell densities and ease of genetic modification. For large-scale industrial production, secretion of a protein offers the advantage of simple and efficient downstream purification that avoids costly cell rupture, denaturation and refolding. The methylotrophic yeast Pichia pastoris (Komagataella phaffi) is a well-established expression host that has the ability to perform post-translational modifications and is generally regarded as safe (GRAS). Nevertheless, optimization of protein secretion in this host remains a challenge due to the multiple steps involved during secretion and a lack of genetic tools to tune this process. Here, we developed a toolkit of standardized regulatory elements specific for Pichia pastoris allowing the tuning of gene expression and choice of protein secretion tag. As protein secretion is a complex process, these parts are compatible with a hierarchical assembly method to enable the generation of large and diverse secretion libraries in order to explore a wide range of secretion constructs, achieve successful secretion, and better understand the regulatory factors of importance to specific proteins of interest. To assess the performance of these parts, we built and characterized the expression and secretion efficiency of 124 constructs that combined different regulatory elements with two fluorescent reporter proteins (RFP, yEGFP). Intracellular expression from our promoters was comparatively independent of whether RFP or yEGFP, and whether plasmid-based expression or genomically integrated expression, was used. In contrast, secretion efficiency significantly varied for different genes expressed using identical regulatory elements, with differences in secretion efficiency of >10-fold observed. These results highlight the importance of generating diverse secretion libraries when searching for optimal expression conditions, and demonstrate that our toolkit is a valuable asset for the creation of efficient microbial cell factories.
Collapse
Affiliation(s)
- Ulrike Obst
- Straubing Centre of Science, 94315 Straubing, Germany
| | - Timothy K. Lu
- Biophysics
Program, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Volker Sieber
- Catalysis
Research Center, Technical University of Munich, 85748 Garching, Germany
- Fraunhofer IGB, Straubing Branch Bio, Electro, and
Chemocatalysis BioCat, 94315 Straubing, Germany
- Straubing Centre of Science, 94315 Straubing, Germany
| |
Collapse
|
6
|
Çalık P, Ata Ö, Güneş H, Massahi A, Boy E, Keskin A, Öztürk S, Zerze GH, Özdamar TH. Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Overview of regulatory strategies and molecular elements in metabolic engineering of bacteria. Mol Biotechnol 2013; 52:300-8. [PMID: 22359157 DOI: 10.1007/s12033-012-9514-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
From a viewpoint of biotechnology, metabolic engineering mainly aims to change the natural status of a pathway in a microorganism towards the overproduction of certain bioproducts. The biochemical nature of a pathway implies us that changed pathway is often the collective results of altered behavior of the metabolic enzymes encoded by corresponding genes. By finely modulating the expression of these genes or the properties of the enzyme, we can gain efficient control on the pathway. In this article, we reviewed the typical methods that have been applied to regulate the expression of genes in metabolic engineering. These methods are grouped according to the operation targets in a typical gene. The transcription of a gene is controlled by an indispensable promoter. By utilizing promoters with different strengths, expected levels of expression can be easily achieved, and screening a promoter library may find suitable mutant promoters that can provide tunable expression of a gene. Auto-responsive promoter (quorum sensing (QS)-based or oxygen-inducible) simplifies the induction process by driving the expression of a gene in an automated manner. Light responsive promoter enables reversible and noninvasive control on gene activity, providing a promising method in controlling gene expression with time and space resolution in metabolic engineering involving complicated genetic circuits. Through directed evolution and/or rational design, the encoding sequences of a gene can be altered, leading to the possibly most profound changes in properties of a metabolic enzyme. Introducing an engineered riboswitch in mRNA can make it a regulatory molecule at the same time; ribosomal binding site is commonly engineered to be more attractive for a ribosome through design. Terminator of a gene will affect the stability of an mRNA, and intergenic region will influence the expression of many related genes. Improving the performance of these elements are generally the main activities in metabolic engineering.
Collapse
|
8
|
Chu J, Qian J, Zhuang Y, Zhang S, Li Y. Progress in the research of S-adenosyl-l-methionine production. Appl Microbiol Biotechnol 2012; 97:41-9. [DOI: 10.1007/s00253-012-4536-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/21/2012] [Accepted: 10/22/2012] [Indexed: 12/30/2022]
|