1
|
Wu YD, Jiang HJ, Zhou HH, Xu JY, Liu Q, Sun XH, Wu YH, Lin ZY. PRP significantly promotes the adhesion and migration of vascular smooth muscle cells on stent material. Eur J Med Res 2023; 28:581. [PMID: 38071348 PMCID: PMC10710707 DOI: 10.1186/s40001-023-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The adhesion and survival state of cells on scaffold material is a major problem in tissue-engineered blood vessel (TEBV) culture. Platelet-rich plasma (PRP) contains a large amount of biologically active factors and fibrin, which is expected to play an important role in TEBV culture. PURPOSE To combine PRP with cells and scaffold material to promote cell adhesion and biological activity on the scaffold material. METHODS The adhesion status and migration of SMCs under the optimal concentration suitable for SMC growth and the optimal concentration of PRP were examined by scanning electron microscopy, HE staining, CCK-8 assays, qPCR, WB, and other experimental methods and compared with those under the conventional culture (20% FBS); finally, the effect of PRP on the deposition of ECM in vascular tissue engineering culture was verified by three-dimensional culture. RESULTS PRP at 20% is a suitable concentration for SMCs. Compared with the control group, the 20% PRP group had better migration, and the number of SMC adhesions was significantly higher than that of the control group. In addition, collagen deposition in the experimental group was significantly higher than that in the control group. CONCLUSION PRP (20%) can promote SMC adhesion, migration, and collagen deposition on the scaffold material.
Collapse
Affiliation(s)
- Yin-Di Wu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, Guangdong, China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, Guangdong, China
| | - Hao-Hao Zhou
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, 528200, Guangdong, China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Qing Liu
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yue-Heng Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, Guangdong, China
| | - Zhan-Yi Lin
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Academy of Medical Sciences), South Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Bi D, Toyama K, Lemaître V, Takai J, Fan F, Jenkins DP, Wulff H, Gutterman DD, Park F, Miura H. The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling. J Biol Chem 2013; 288:15843-53. [PMID: 23609438 PMCID: PMC3668741 DOI: 10.1074/jbc.m112.427187] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 04/12/2013] [Indexed: 01/14/2023] Open
Abstract
The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca(2+) concentration ([Ca(2+)]i) and was enhanced by elevating [Ca(2+)]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca(2+)]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca(2+)]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF β-receptors and inhibiting the rise in [Ca(2+)]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca(2+)-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Dan Bi
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Kazuyoshi Toyama
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Vincent Lemaître
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Jun Takai
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Fan Fan
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - David P. Jenkins
- the Department of Pharmacology, University of California, Davis, California 95616
| | - Heike Wulff
- the Department of Pharmacology, University of California, Davis, California 95616
| | - David D. Gutterman
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Frank Park
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Hiroto Miura
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557
- the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| |
Collapse
|
3
|
Tian M, Dong MQ, Chiu SW, Lau CP, Li GR. Effects of the antifungal antibiotic clotrimazole on human cardiac repolarization potassium currents. Br J Pharmacol 2006; 147:289-97. [PMID: 16341233 PMCID: PMC1751304 DOI: 10.1038/sj.bjp.0706590] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The antifungal antibiotic clotrimazole (CLT) shows therapeutic effects on cancer, sickle cell disease, malaria, etc. by inhibiting membrane intermediate-conductance Ca2+ -activated K+ channels (IKCa). However, it is unclear whether this drug would affect human cardiac K+ currents. The present study was therefore designed to investigate the effects of CLT on transient outward K+ current (Ito1), and ultra-rapid delayed rectifier K+ current (IKur) in isolated human atrial myocytes, and cloned hERG channel current (IhERG) and recombinant human cardiac KCNQ1/KCNE1 channel current (IKs) expressed in HEK 293 cells. It was found that CLT inhibited Ito1 with an IC50 of 29.5 microM, accelerated Ito1 inactivation, and decreased recovery of Ito1 from inactivation. In addition, CLT inhibited human atrial I(Kur) in a concentration-dependent manner (IC50 = 7.6 microM). CLT substantially suppressed IhERG (IC50 = 3.6 microM), and negatively shifted the activation conductance of IhERG. Moreover, CLT inhibited IKs (IC50 = 15.1 microM), and positively shifted the activation conductance of the current. These results indicate that the antifungal antibiotic CLT substantially inhibits human cardiac repolarization K+ currents including Ito1, IKur, IhERG, and IKs. However, caution is recommended when correlating the observed in vitro effects on cardiac ion currents to the clinical relevance.
Collapse
Affiliation(s)
- Miao Tian
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Ming-Qing Dong
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Shui-Wha Chiu
- Cardiothoracic Unit, Grantham Hospital, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Chu-Pak Lau
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Gui-Rong Li
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
- Author for correspondence:
| |
Collapse
|
4
|
Yau L, Wilson DP, Werner JP, Zahradka P. Bradykinin receptor antagonists attenuate neointimal proliferation postangioplasty. Am J Physiol Heart Circ Physiol 2001; 281:H1648-56. [PMID: 11557555 DOI: 10.1152/ajpheart.2001.281.4.h1648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin has been linked to the development of restenosis in response to vascular injury. We therefore examined the effect of bradykinin on vascular smooth muscle cell growth and neointimal formation in organ culture. Bradykinin stimulated both RNA and DNA synthesis (by 175%) in smooth muscle cells from either porcine or human coronary arteries and increased cell number in a concentration-dependent manner. Both p42/44 mitogen-activated protein kinase (MAPK) and p38 kinase were also activated. Treatment with [Hyp(3),Tyr(Me)(8)]bradykinin, a B(2) receptor agonist, stimulated thymidine incorporation by 146%, whereas B(1)-selective Lys-des-Arg(9)-bradykinin had no effect. Addition of the B(2) antagonist HOE-140 reduced the stimulation by 56%, whereas B(1)-selective des-Arg-HOE-140 had no significant effect. Similarly, HOE-140 attenuated angioplasty-induced neointimal formation in organ culture with an efficacy approaching 100% inhibition. These experiments suggest that bradykinin promotes smooth muscle proliferation after vascular injury, presumably via B(2) receptor-dependent activation of MAPK family pathways, and may explain the negative outcome of angiotensin converting enzyme inhibitor therapy on restenosis in nonrodent models.
Collapse
Affiliation(s)
- L Yau
- Department of Physiology, University of Manitoba and Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | |
Collapse
|