1
|
Akbar D, Rhee TG, Ceban F, Ho R, Teopiz KM, Cao B, Subramaniapillai M, Kwan ATH, Rosenblat JD, McIntyre RS. Dextromethorphan-Bupropion for the Treatment of Depression: A Systematic Review of Efficacy and Safety in Clinical Trials. CNS Drugs 2023; 37:867-881. [PMID: 37792265 DOI: 10.1007/s40263-023-01032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND A significant proportion of adults with major depressive disorder (MDD) do not respond to treatments which are currently used in clinical practice such as first-generation monoamine-based antidepressants. OBJECTIVES The objective of this systematic review was to assess the efficacy, safety, and mechanisms of action of AXS-05, a combination of the NMDA-receptor antagonist dextromethorphan with bupropion, in adults with MDD. METHODS We searched PubMed, Embase, Google Scholar, and ClinicalTrials.gov for current studies reporting on efficacy and/or safety of AXS-05 in patients with MDD. The search terms included: "AXS-05" OR "dextromethorphan and bupropion" AND "depression". Studies from database inception to January 2023 were evaluated. Risk of bias was assessed using the Cochrane Risk of Bias tool. RESULTS The search yielded 54 studies of which 5 were included. All studies had low risk of bias. Depression severity, measured with the Montgomery-Åsberg Depression Rating Scale (MADRS) significantly decreased as early as 1-week post-treatment from baseline when compared to a placebo-controlled group (LS mean difference 2.2; 95% CI 0.6-3.9; p = 0.007) and at 2 weeks compared to an active control group (LS mean difference 4.7; 95% CI 0.6-8.8; p = 0.024). Treatment efficacy could be maintained for up to 12 months with mean MADRS score reduction of 23 points from baseline. Clinical remission and response rates also improved at week 1 and were maintained for 12 months. The treatment was well-tolerated, with some transient adverse events reported. CONCLUSION Current evidence suggests that the combination of dextromethorphan and bupropion is a well-tolerated, rapid-acting treatment option for adults with MDD. Initial success with AXS-05 supports the mechanistic role of glutamatergeric and sigma 1 signaling in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Dania Akbar
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA New England Mental Illness, Research, Education and Clinical Center (MIRECC), VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Felicia Ceban
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Mehala Subramaniapillai
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada
| | - Angela T H Kwan
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Wang YM, Xia CY, Jia HM, He J, Lian WW, Yan Y, Wang WP, Zhang WK, Xu JK. Sigma-1 receptor: A potential target for the development of antidepressants. Neurochem Int 2022; 159:105390. [PMID: 35810915 DOI: 10.1016/j.neuint.2022.105390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Though a great many of studies on the development of antidepressants for the therapy of major depression disorder (MDD) and the development of antidepressants have been carried out, there still lacks an efficient approach in clinical practice. The involvement of Sigma-1 receptor in the pathological process of MDD has been verified. In this review, recent research focusing on the role of Sigma-1 receptor in the etiology of MDD were summarized. Preclinical studies and clinical trials have found that stress induce the variation of Sigma-1 receptor in the blood, brain and heart. Dysfunction and absence of Sigma-1 receptor result in depressive-like behaviors in rodent animals. Agonists of Sigma-1 receptor show not only antidepressant-like activities but also therapeutical effects in complications of depression. The mechanisms underlying antidepressant-like effects of Sigma-1 receptor may include suppressing neuroinflammation, regulating neurotransmitters, ameliorating brain-derived neurotrophic factor and N-Methyl-D-Aspartate receptor, and alleviating the endoplasmic reticulum stress and mitochondria damage during stress. Therefore, Sigma-1 receptor represents a potential target for antidepressants development.
Collapse
Affiliation(s)
- Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Hong-Mei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Ping Wang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
3
|
Association between antidepressant use and ED or hospital visits in outpatients with SARS-CoV-2. Transl Psychiatry 2022; 12:341. [PMID: 35995770 PMCID: PMC9395392 DOI: 10.1038/s41398-022-02109-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Antidepressants have previously been associated with better outcomes in patients hospitalized with COVID-19, but their effect on clinical deterioration among ambulatory patients has not been fully explored. The objective of this study was to assess whether antidepressant exposure was associated with reduced emergency department (ED) or hospital visits among ambulatory patients with SARS-CoV-2 infection. This retrospective cohort study included adult patients (N = 25 034) with a positive SARS-CoV-2 test performed in a non-hospital setting. Logistic regression analyses tested associations between home use of antidepressant medications and a composite outcome of ED visitation or hospital admission within 30 days. Secondary exposures included individual antidepressants and antidepressants with functional inhibition of acid sphingomyelinase (FIASMA) activity. Patients with antidepressant exposure were less likely to experience the primary composite outcome compared to patients without antidepressant exposure (adjusted odds ratio [aOR] 0.89, 95% CI 0.79-0.99, p = 0.04). This association was only observed with daily doses of at least 20 mg fluoxetine-equivalent (aOR 0.87, 95% CI 0.77-0.99, p = 0.04), but not with daily doses lower than 20 mg fluoxetine-equivalent (aOR 0.94, 95% CI 0.80-1.11, p = 0.48). In exploratory secondary analyses, the outcome incidence was also reduced with exposure to selective serotonin reuptake inhibitors (aOR 0.87, 95% CI 0.75-0.99, p = 0.04), bupropion (aOR 0.70, 95% CI 0.55-0.90, p = 0.005), and FIASMA antidepressant drugs (aOR 0.87, 95% CI 0.77-0.99, p = 0.03). Antidepressant exposure was associated with a reduced incidence of emergency department visitation or hospital admission among SARS-CoV-2 positive patients, in a dose-dependent manner. These data support the FIASMA model of antidepressants' effects against COVID-19.
Collapse
|
4
|
Ren P, Wang J, Li N, Li G, Ma H, Zhao Y, Li Y. Sigma-1 Receptors in Depression: Mechanism and Therapeutic Development. Front Pharmacol 2022; 13:925879. [PMID: 35784746 PMCID: PMC9243434 DOI: 10.3389/fphar.2022.925879] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Depression is the most common type of neuropsychiatric illness and has increasingly become a major cause of disability. Unfortunately, the recent global pandemic of COVID-19 has dramatically increased the incidence of depression and has significantly increased the burden of mental health care worldwide. Since full remission of the clinical symptoms of depression has not been achieved with current treatments, there is a constant need to discover new compounds that meet the major clinical needs. Recently, the roles of sigma receptors, especially the sigma-1 receptor subtype, have attracted increasing attention as potential new targets and target-specific drugs due to their translocation property that produces a broad spectrum of biological functions. Even clinical first-line antidepressants with or without affinity for sigma-1 receptors have different pharmacological profiles. Thus, the regulatory role of sigma-1 receptors might be useful in treating these central nervous system (CNS) diseases. In addition, long-term mental stress disrupts the homeostasis in the CNS. In this review, we discuss the topical literature concerning sigma-1 receptor antidepressant mechanism of action in the regulation of intracellular proteostasis, calcium homeostasis and especially the dynamic Excitatory/Inhibitory (E/I) balance in the brain. Furthermore, based on these discoveries, we discuss sigma-1 receptor ligands with respect to their promise as targets for fast-onset action drugs in treating depression.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Nanxi Li
- Department of Pharmaceutical Sciences, Beijng Institute of Radiation Medicine, Beijing, China
| | - Guangxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| | - Yongqi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Hui Ma, ; Yongqi Zhao, ; Yunfeng Li,
| |
Collapse
|
5
|
Szczepańska K, Podlewska S, Dichiara M, Gentile D, Patamia V, Rosier N, Mönnich D, Ruiz Cantero MC, Karcz T, Łażewska D, Siwek A, Pockes S, Cobos EJ, Marrazzo A, Stark H, Rescifina A, Bojarski AJ, Amata E, Kieć-Kononowicz K. Structural and Molecular Insight into Piperazine and Piperidine Derivatives as Histamine H 3 and Sigma-1 Receptor Antagonists with Promising Antinociceptive Properties. ACS Chem Neurosci 2022; 13:1-15. [PMID: 34908391 PMCID: PMC8739840 DOI: 10.1021/acschemneuro.1c00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
In an attempt to extend recent studies showing that some clinically evaluated histamine H3 receptor (H3R) antagonists possess nanomolar affinity at sigma-1 receptors (σ1R), we selected 20 representative structures among our previously reported H3R ligands to investigate their affinity at σRs. Most of the tested compounds interact with both sigma receptors to different degrees. However, only six of them showed higher affinity toward σ1R than σ2R with the highest binding preference to σ1R for compounds 5, 11, and 12. Moreover, all these ligands share a common structural feature: the piperidine moiety as the fundamental part of the molecule. It is most likely a critical structural element for dual H3/σ1 receptor activity as can be seen by comparing the data for compounds 4 and 5 (hH3R Ki = 3.17 and 7.70 nM, σ1R Ki = 1531 and 3.64 nM, respectively), where piperidine is replaced by piperazine. We identified the putative protein-ligand interactions responsible for their high affinity using molecular modeling techniques and selected compounds 5 and 11 as lead structures for further evaluation. Interestingly, both ligands turned out to be high-affinity histamine H3 and σ1 receptor antagonists with negligible affinity at the other histamine receptor subtypes and promising antinociceptive activity in vivo. Considering that many literature data clearly indicate high preclinical efficacy of individual selective σ1 or H3R ligands in various pain models, our research might be a breakthrough in the search for novel, dual-acting compounds that can improve existing pain therapies. Determining whether such ligands are more effective than single-selective drugs will be the subject of our future studies.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Sabina Podlewska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Maria Dichiara
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Davide Gentile
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Niklas Rosier
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Denise Mönnich
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ma Carmen Ruiz Cantero
- Department
of Pharmacology and Neurosciences Institute (Biomedical Research Center)
and Biosanitary Research Institute ibs.GRANADA, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Tadeusz Karcz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Dorota Łażewska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agata Siwek
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Steffen Pockes
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Enrique J. Cobos
- Department
of Pharmacology and Neurosciences Institute (Biomedical Research Center)
and Biosanitary Research Institute ibs.GRANADA, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Agostino Marrazzo
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Antonio Rescifina
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Andrzej J. Bojarski
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Emanuele Amata
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Katarzyna Kieć-Kononowicz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| |
Collapse
|
6
|
Lata S, Dhir A, Kessar S, Singh K, Kulkarni S, Singh P. Synthesis and evaluation of variably substituted N-methyl tetrahydroisoquinolines and benzazepines as monoamine reuptake inhibitors. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Sałaciak K, Pytka K. Revisiting the sigma-1 receptor as a biological target to treat affective and cognitive disorders. Neurosci Biobehav Rev 2022; 132:1114-1136. [PMID: 34736882 PMCID: PMC8559442 DOI: 10.1016/j.neubiorev.2021.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Depression and cognitive disorders are diseases with complex and not-fully understood etiology. Unfortunately, the COVID-19 pandemic dramatically increased the prevalence of both conditions. Since the current treatments are inadequate in many patients, there is a constant need for discovering new compounds, which will be more effective in ameliorating depressive symptoms and treating cognitive decline. Proteins attracting much attention as potential targets for drugs treating these conditions are sigma-1 receptors. Sigma-1 receptors are multi-functional proteins localized in endoplasmic reticulum membranes, which play a crucial role in cellular signal transduction by interacting with receptors, ion channels, lipids, and kinases. Changes in their functions and expression may lead to various diseases, including depression or memory impairments. Thus, sigma-1 receptor modulation might be useful in treating these central nervous system diseases. Importantly, two sigma-1 receptor ligands entered clinical trials, showing that this compound group possesses therapeutic potential. Therefore, based on preclinical studies, this review discusses whether the sigma-1 receptor could be a promising target for drugs treating affective and cognitive disorders.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
8
|
Szczepańska K, Kuder KJ, Kieć-Kononowicz K. Dual-targeting Approach on Histamine H 3 and Sigma-1 Receptor Ligands as Promising Pharmacological Tools in the Treatment of CNS-linked Disorders. Curr Med Chem 2021; 28:2974-2995. [PMID: 32767910 DOI: 10.2174/0929867327666200806103144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
With the recent market approval of Pitolisant (Wakix®), the interest in clinical application for novel multifunctional histamine H3 receptor antagonists has clearly increased. Several combinations of different H3R pharmacophores with pharmacophoric elements of other G-protein coupled receptors, transporters, or enzymes have been synthesized by numerous pharmaceutical companies and academic institutions. Since central nervous system disorders are characterized by diverse physiological dysfunctions and deregulations of a complex network of signaling pathways, optimal multipotent drugs should simultaneously and peculiarly modulate selected groups of biological targets. Interestingly, very recent studies have shown that some clinically evaluated histamine H3 receptor antagonists possess a nanomolar affinity for sigma-1 receptor binding sites, suggesting that this property might play a role in their overall efficacy. The sigma-1 receptor, unusual and yet obscure protein, is supposed to be involved in numerous CNS pathologies through neuroprotection and neuroplasticity. These two different biological structures, histamine H3 and sigma-1 receptors, combined, can represent a potential fruitful target for therapeutic developments in tackling numerous human diseases.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| |
Collapse
|
9
|
Brimson JM, Brimson S, Chomchoei C, Tencomnao T. Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 2020; 24:1009-1028. [PMID: 32746649 DOI: 10.1080/14728222.2020.1805435] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sigma receptors are found abundantly in the central nervous system and are targets for the treatment of various diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), depression, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). However, for many of these diseases, other receptors and targets have been the focus of the most, such as acetylcholine esterase inhibitors in Alzheimer's and dopamine replacement in Parkinson's. The currently available drugs for these diseases have limited success resulting in the requirement of an alternative approach to their treatment. AREAS COVERED In this review, we discuss the potential role of the sigma receptors and their ligands as part of a multi receptor approach in the treatment of the diseases mentioned above. The literature reviewed was obtained through searches in databases, including PubMed, Web of Science, Google Scholar, and Scopus. EXPERT OPINION Given sigma receptor agonists provide neuroprotection along with other benefits such as potentiating the effects of other receptors, further development of multi-receptor targeting ligands, and or the development of multi-drug combinations to target multiple receptors may prove beneficial in the future treatment of degenerative diseases of the CNS, especially when coupled with better diagnostic techniques.
Collapse
Affiliation(s)
- James Michael Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
10
|
Maurice T, Volle JN, Strehaiano M, Crouzier L, Pereira C, Kaloyanov N, Virieux D, Pirat JL. Neuroprotection in non-transgenic and transgenic mouse models of Alzheimer's disease by positive modulation of σ 1 receptors. Pharmacol Res 2019; 144:315-330. [PMID: 31048034 DOI: 10.1016/j.phrs.2019.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/28/2019] [Accepted: 04/21/2019] [Indexed: 01/30/2023]
Abstract
The sigma-1 (σ1) receptor is an endoplasmic reticulum (ER) chaperone protein, enriched in mitochondria-associated membranes. Its activation triggers physiological responses to ER stress and modulate Ca2+ mobilization in mitochondria. Small σ1 agonist molecules activate the protein and act behaviorally as antidepressant, anti-amnesic and neuroprotective agents. Recently, several chemically unrelated molecules were shown to be σ1 receptor positive modulators (PMs), with some of them a clear demonstration of their allostericity. We here examined whether a σ1 PM also shows neuroprotective potentials in pharmacological and genetic models of Alzheimer's disease (AD). For this aim, we describe (±)-2-(3-chlorophenyl)-3,3,5,5-tetramethyl-2-oxo-[1,4,2]-oxazaphosphinane (OZP002) as a novel σ1 PM. OZP002 does not bind σ1 sites but induces σ1 effects in vivo and boosts σ1 agonist activity. OZP002 was antidepressant in the forced swim test and its effect was blocked by the σ1 antagonist NE-100 or in σ1 receptor knockout mice. It potentiated the antidepressant effect of the σ1 agonist igmesine. In mice tested for Y-maze alternation or passive avoidance, OZP002 prevented scopolamine-induced learning deficits, in a NE-100 sensitive manner. Pre-administered IP before an ICV injection of amyloid Aβ25-35 peptide, a pharmacological model of Alzheimer's disease, OZP002 prevented the learning deficits induced by the peptide after one week in the Y-maze, passive avoidance and novel object tests. Biochemical analyses of the mouse hippocampi showed that OZP002 significantly decreased Aβ25-35-induced increases in reactive oxygen species, lipid peroxidation, and increases in Bax, TNFα and IL-6 levels. Immunohistochemically, OZP002 prevented Aβ25-35-induced reactive astrogliosis and microgliosis in the hippocampus. It also alleviated Aβ25-35-induced decreases in synaptophysin level and choline acetyltransferase activity. Moreover, chronically administered in APPswe mice during 2 months, OZP002 prevented learning deficits (in all tests plus place learning in the water-maze) and increased biochemical markers. This study shows that σ1 PM with high neuropotective potential can be identified, combining pharmacological efficacy, selectivity and therapeutic safety, and identifies a novel promising compound, OZP002.
Collapse
Affiliation(s)
- Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Jean-Noël Volle
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - Manon Strehaiano
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Lucie Crouzier
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Claire Pereira
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Nikolay Kaloyanov
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - David Virieux
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - Jean-Luc Pirat
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| |
Collapse
|
11
|
Yang K, Wang C, Sun T. The Roles of Intracellular Chaperone Proteins, Sigma Receptors, in Parkinson's Disease (PD) and Major Depressive Disorder (MDD). Front Pharmacol 2019; 10:528. [PMID: 31178723 PMCID: PMC6537631 DOI: 10.3389/fphar.2019.00528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Sigma receptors, including Sigma-1 receptors and Sigma-2 receptors, are highly expressed in the CNS. They are intracellular chaperone proteins. Sigma-1 receptors localize mainly at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM). Upon stimulation, they translocate from MAM to plasma membrane (PM) and nucleus, where they interact with many proteins and ion channels. Sigma-1 receptor could interact with itself to form oligomers, its oligomerization states affect its ability to interact with client proteins including ion channels and BiP. Sigma-1 receptor shows high affinity for many unrelated and structurally diverse ligands, but the mechanism for this diverse drug receptor interaction remains unknown. Sigma-1 receptors also directly bind many proteins including G protein-coupled receptors (GPCRs) and ion channels. In recent years, significant progress has been made in our understanding of roles of the Sigma-1 receptors in normal and pathological conditions, but more studies are still required for the Sigma-2 receptors. The physiological roles of Sigma-1 receptors in the CNS are discussed. They can modulate the activity of many ion channels including voltage-dependent ion channels including Ca2+, Na+, K+ channels and NMDAR, thus affecting neuronal excitability and synaptic activity. They are also involved in synaptic plasticity and learning and memory. Moreover, the activation of Sigma receptors protects neurons from death via the modulation of ER stress, neuroinflammation, and Ca2+ homeostasis. Evidences about the involvement of Sigma-1 receptors in Parkinson’s disease (PD) and Major Depressive Disorder (MDD) are also presented, indicating Sigma-1 receptors might be promising targets for pharmacologically treating PD and MDD.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
12
|
Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a. Psychopharmacology (Berl) 2017; 234:1803-1813. [PMID: 28337525 DOI: 10.1007/s00213-017-4587-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 01/21/2023]
Abstract
RATIONALE Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. OBJECTIVES We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. METHODS Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. RESULTS Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. CONCLUSIONS PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.
Collapse
|
13
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
14
|
Abstract
Antidepressants have propensity to induce manic switch in patients with bipolar disorder. Opipramol is an atypical anxiolytic and antidepressant drug which predominantly acts on sigma receptors. Although structurally resembles tricyclic antidepressant imipramine it does not have inhibitory action on the reuptake of norepinephrine/serotonin and hence it is not presumed to cause manic switch in bipolar depression. Here, we describe a case of mania induced by opipramol, in a patient with bipolar affective disorder who was treated for moderate depressive episode with lithium and opipramol and we discuss neurochemical hypothesis of opipramol-induced mania.
Collapse
Affiliation(s)
- Kazhungil Firoz
- Department of Psychiatry, MES Medical College, Perinthalmanna, Kerala, India
| | - Asfia Khaleel
- Department of Psychiatry, MES Medical College, Perinthalmanna, Kerala, India
| | - V Rajmohan
- Department of Psychiatry, MES Medical College, Perinthalmanna, Kerala, India
| | - Manoj Kumar
- Department of Psychiatry, MES Medical College, Perinthalmanna, Kerala, India
| | - Tm Raghuram
- Department of Psychiatry, MES Medical College, Perinthalmanna, Kerala, India
| |
Collapse
|
15
|
Matsumoto RR, Nguyen L, Kaushal N, Robson MJ. Sigma (σ) receptors as potential therapeutic targets to mitigate psychostimulant effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:323-86. [PMID: 24484982 DOI: 10.1016/b978-0-12-420118-7.00009-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many psychostimulants, including cocaine and methamphetamine, interact with sigma (σ) receptors at physiologically relevant concentrations. The potential therapeutic relevance of this interaction is underscored by the ability to selectively target σ receptors to mitigate many behavioral and physiological effects of psychostimulants in animal and cell-based model systems. This chapter begins with an overview of these enigmatic proteins. Provocative preclinical data showing that σ ligands modulate an array of cocaine and methamphetamine effects are summarized, along with emerging areas of research. Together, the literature suggests targeting of σ receptors as an innovative option for combating undesired actions of psychostimulants through both neuronal and glial mechanisms.
Collapse
Affiliation(s)
- Rae R Matsumoto
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA.
| | - Linda Nguyen
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| | - Nidhi Kaushal
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| | - Matthew J Robson
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| |
Collapse
|
16
|
Matsumoto RR. Targeting sigma receptors: novel medication development for drug abuse and addiction. Expert Rev Clin Pharmacol 2012; 2:351-8. [PMID: 22112179 DOI: 10.1586/ecp.09.18] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychostimulant abuse is a serious health and societal problem in industrialized and developing countries. However, the identification of an effective pharmacotherapy to treat it has remained elusive. It has long been known that many psychostimulant drugs, including cocaine and methamphetamine, interact with sigma receptors in the brain and heart, offering a logical target for medication development efforts. However, selective pharmacological agents and molecular biological tools have only recently become available to rigorously evaluate these receptors as viable medication development targets. The current review will summarize provocative preclinical data, demonstrating the ability of sigma receptor antagonists and antisense oligonucleotides to ameliorate cocaine-induced convulsions, lethality, locomotor activity and sensitization, and conditioned place-preference in rodents. Recent studies suggest that the protective effects of sigma receptor antagonists also extend to actions produced by methamphetamine, 3,4-methylenedioxymethamphetamine, ethanol and other abused substances. Together, the data indicate that targeting sigma receptors, particularly the σ(1)-subtype, may offer an innovative approach for combating the effects of cocaine, and perhaps other abused substances.
Collapse
Affiliation(s)
- Rae R Matsumoto
- School of Pharmacy, West Virginia University, PO Box 9500, Morgantown, WV 26506, USA.
| |
Collapse
|
17
|
Influence of sildenafil on the antidepressant activity of bupropion and venlafaxine in the forced swim test in mice. Pharmacol Biochem Behav 2012; 103:273-8. [PMID: 22940586 DOI: 10.1016/j.pbb.2012.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/09/2012] [Accepted: 08/19/2012] [Indexed: 11/23/2022]
Abstract
Recent studies highlight the involvement of the nitrergic system in the mechanism of action of antidepressant drugs. Sildenafil, a selective PDE5 inhibitor, was shown to abolish the anti-immobility effects of bupropion, venlafaxine and s-citalopram in mice. In this study we assessed the effects of sildenafil on the activity of bupropion and venlafaxine in the forced swim test in mice. Swim trials were conducted by placing mice in glass cylinders filled with water for 6min and the duration of the behavioral immobility during the last 4min of the test was evaluated. Locomotor activity was evaluated with photoresistor actimeters. Brain and serum concentrations of the studied antidepressants were determined by HPLC method. Sildenafil at a dose of 20mg/kg, but not 5 and 10mg/kg, significantly increased the anti-immobility action of bupropion (20mg/kg). The antidepressant activity of venlafaxine (2mg/kg) was potentiated by joint administration with sildenafil at doses of 10 and 20mg/kg. Since the combined treatments did not increase the locomotor activity, the antidepressant-like effects were not related to non-specific behavioral activation. Data from pharmacokinetic studies revealed that sildenafil increased bupropion and venlafaxine levels in serum without affecting their concentrations in the brain. The present study demonstrates the enhancement of anti-immobility action of bupropion and venlafaxine by sildenafil co-administration. The observed changes might have been partly due to pharmacokinetic interactions. However, mechanisms underlying the effects of sildenafil on the antidepressant activity of bupropion and venlafaxine should be carefully evaluated in further studies.
Collapse
|
18
|
de Sousa FCF, Oliveira ICM, Silva MIG, de Melo CTV, Santiago VR, de Castro Chaves R, Fernandes ML, Gutierrez SJC, Vasconcelos SMM, Macêdo DS, Filho JMB. Involvement of monoaminergic system in the antidepressant-like effect of riparin I fromAniba riparia(Nees) Mez (Lauraceae) in mice. Fundam Clin Pharmacol 2012; 28:95-103. [DOI: 10.1111/j.1472-8206.2012.01069.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/07/2012] [Accepted: 07/19/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Francisca Cléa Florenço de Sousa
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | - Iris Cristina Maia Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | - Maria Izabel Gomes Silva
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | - Carla Thiciane Vasconcelos de Melo
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | - Vívian Romero Santiago
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | - Raquell de Castro Chaves
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | - Mariana Lima Fernandes
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | | | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | - Danielle Silveira Macêdo
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel Nunes de Melo 1127 60430-270 Fortaleza-Ceará Brazil
| | - José Maria Barbosa Filho
- Laboratory of Pharmaceutics Technology; Federal University of Paraíba; João Pessoa-Paraíba Brazil
| |
Collapse
|
19
|
do Amaral JF, Silva MIG, de Aquino Neto MR, Moura BA, de Carvalho AMR, Vasconcelos PF, Barbosa Filho JM, Gutierrez SJC, Vasconcelos SMM, Macêdo DS, de Sousa FCF. Antidepressant-like effect ofbis-eugenol in the mice forced swimming test: evidence for the involvement of the monoaminergic system. Fundam Clin Pharmacol 2012; 27:471-82. [DOI: 10.1111/j.1472-8206.2012.01058.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 05/19/2012] [Accepted: 06/11/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Jeferson Falcão do Amaral
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Maria Izabel Gomes Silva
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Manuel Rufino de Aquino Neto
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Brinell Arcanjo Moura
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Alyne Mara Rodrigues de Carvalho
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Patrícia Freire Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - José Maria Barbosa Filho
- Laboratory of Pharmaceutics Technology; Federal University of Paraíba; Cidade Universitária, Castelo Branco; CEP: 58051-900; João Pessoa - PB; Brazil
| | - Stanley Juan Chavez Gutierrez
- Laboratory of Pharmaceutics Technology; Federal University of Paraíba; Cidade Universitária, Castelo Branco; CEP: 58051-900; João Pessoa - PB; Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Danielle Silveira Macêdo
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Francisca Cléa Florenço de Sousa
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| |
Collapse
|
20
|
Receptor targets for antidepressant therapy in bipolar disorder: an overview. J Affect Disord 2012; 138:222-38. [PMID: 21601292 DOI: 10.1016/j.jad.2011.04.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
Abstract
The treatment of bipolar depression is one of the most challenging issues in contemporary psychiatry. Currently only quetiapine and the olanzapine-fluoxetine combination are officially approved by the FDA against this condition. The neurobiology of bipolar depression and the possible targets of bipolar antidepressant therapy remain relatively elusive. We performed a complete and systematic review to identify agents with definite positive or negative results concerning efficacy followed by a second systematic review to identify the pharmacodynamic properties of these agents. The comparison of properties suggests that the stronger predictors for antidepressant efficacy in bipolar depression were norepinephrine alpha-1, dopamine D1 and histamine antagonism, followed by 5-HT2A, muscarinic and dopamine D2 and D3 antagonism and eventually by norepinephrine reuptake inhibition and 5HT-1A agonism. Serotonin reuptake which constitutes the cornerstone in unipolar depression treatment does not seem to play a significant role for bipolar depression. Our exhaustive review is compatible with a complex model with multiple levels of interaction between the major neurotransmitter systems without a single target being either necessary or sufficient to elicit the antidepressant effect in bipolar depression.
Collapse
|
21
|
Dhir A, Malik S, Kessar SV, Singh KN, Kulkarni SK. Evaluation of antidepressant activity of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol, a β-substituted phenylethylamine in mice. Eur Neuropsychopharmacol 2011; 21:705-14. [PMID: 21277753 DOI: 10.1016/j.euroneuro.2010.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/10/2010] [Accepted: 12/18/2010] [Indexed: 01/22/2023]
Abstract
The β-phenylethylamines are known to act as ligands for the trace amine receptors, a novel family of G-protein-coupled receptors. The trace amines are stored and released along with various neurotransmitter agents such as norepinephrine, serotonin, and dopamine and thus work as neuromodulator or neurotransmitter agents. Trace amines are known to play an important role in the pathophysiology of major depression. In our earlier study, we have demonstrated the synthesis of various β-substituted phenylethylamine molecules hypothesized to be effective in various central nervous system disorders. The present study is an attempt to evaluate one of such molecules, 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-yl)-cyclohexanol, in animal models of depression. Various behavioral paradigms of despair such as forced swim and tail-suspension tests were used to assess the antidepressant-like activity. Further, an alteration in the levels of various neurotransmitters (norepinephrine, serotonin, and dopamine) in the mouse brain following 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-yl)-cyclohexanol administration was evaluated. The molecule (4-16 mg/kg., i.p.) dose-dependently inhibited the immobility period in mouse forced swim test, the effect comparable to venlafaxine. The ED50 values of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-yl)-cyclohexanol and venlafaxine in mouse forced swim test were found to be 5.27 [4.38-6.35] mg/kg., i.p and 4.66 [3.48-6.25] mg/kg., i.p., respectively. Further, 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-yl)-cyclohexanol at 4-16 mg/kg., i.p. reversed the immobility period in mouse tail-suspension test. Additionally, the molecule at 8 mg/kg., i.p. reversed reserpine-induced behavioral despair in mouse forced swim test. When administered simultaneously, it (4 and 8 mg/kg., i.p) enhanced the antidepressant activity of sub-effective doses of imipramine (2mg/kg., i.p.) or fluoxetine (2mg/kg., i.p.) in the mouse forced swim test. Neurochemical analysis revealed that the molecule at 8 mg/kg., i.p. increased the levels of norepinephrine (21% increase) without affecting serotonin in the mouse brain. However, at higher dose (16 mg/kg., i.p.), it increased the levels of norepinephrine (13% increase), serotonin (37% increase), and dopamine (42% increase). The molecule enhanced the locomotor activity in mice only at higher doses. The molecule, unlike venlafaxine, which potentiated barbiturate-induced hypnosis, was devoid of any sedative activity. In conclusion, 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-yl)-cyclohexanol, possess antidepressant-like activity in animal models of depression by modulating the neurotransmitter levels in the brain. Such an activity might be due to the modulating action of this novel molecule on trace amine receptors. Such a molecule may be the future drugs of choice for the treatment of major depression.
Collapse
Affiliation(s)
- Ashish Dhir
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | | | | | | |
Collapse
|
22
|
Seol GH, Shim HS, Kim PJ, Moon HK, Lee KH, Shim I, Suh SH, Min SS. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:187-190. [PMID: 20441789 DOI: 10.1016/j.jep.2010.04.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY The purpose of the present study was to screen aromatic essential oils that have antidepressant effects to identify the regulatory mechanisms of selected essential oils. MATERIALS AND METHODS The antidepressant effects of essential oils of Anthemis nobilis (chamomile), Salvia sclarea (clary sage; clary), Rosmarinus officinalis (rosemary), and Lavandula angustifolia (lavender) were assessed using a forced swim test (FST) in rats. Rats were treated with essential oils by intraperitoneal injection or inhalation. Serum levels of corticosterone were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS Among the essential oils tested, 5% (v/v) clary oil had the strongest anti-stressor effect in the FST. We further investigated the mechanism of clary oil antidepression by pretreatment with agonists or antagonists to serotonin (5-HT), dopamine (DA), adrenaline, and GABA receptors. The anti-stressor effect of clary oil was significantly blocked by pretreatment with buspirone (a 5-HT(1A) agonist), SCH-23390 (a D(1) receptor antagonist) and haloperidol (a D(2), D(3), and D(4) receptor antagonist). CONCLUSIONS Our findings indicate that clary oil could be developed as a therapeutic agent for patients with depression and that the antidepressant-like effect of clary oil is closely associated with modulation of the DAnergic pathway.
Collapse
Affiliation(s)
- Geun Hee Seol
- Department of Basic Nursing Science, Korea University School of Nursing, Seoul 136-713, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fishback JA, Robson MJ, Xu YT, Matsumoto RR. Sigma receptors: potential targets for a new class of antidepressant drug. Pharmacol Ther 2010; 127:271-82. [PMID: 20438757 DOI: 10.1016/j.pharmthera.2010.04.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/29/2022]
Abstract
Despite the widespread and devastating impact of depression on society, our current understanding of its pathogenesis is limited. Likewise, existing treatments are inadequate, providing relief to only a subset of people suffering from depression. The search for more effective antidepressant drugs includes the investigation of new molecular targets. Among them, current data suggests that sigma receptors are involved in multiple processes effecting antidepressant-like actions in vivo and in vitro. This review summarizes accumulated evidence supporting a role for sigma receptors in antidepressant effects and provides a conceptual framework for delineating their potential roles over the course of antidepressant treatment.
Collapse
Affiliation(s)
- James A Fishback
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Originally considered an enigmatic protein, the sigma-1 receptor has recently been identified as a unique ligand-regulated molecular chaperone in the endoplasmic reticulum of cells. This discovery causes us to look back at the many proposed roles of this receptor, even before its molecular function was identified, in many diseases such as methamphetamine or cocaine addiction, amnesia, pain, depression, Alzheimer's disease, stroke, retinal neuroprotection, HIV infection, and cancer. In this review, we examine the reports that have clearly shown an agonist-antagonist relationship regarding sigma-1 receptors in models of those diseases and also review the relatively known mechanisms of action of sigma-1 receptors in an attempt to spur the speculation of readers on how the sigma-1 receptor at the endoplasmic reticulum might relate to so many diseases. We found that the most prominent action of sigma-1 receptors in biological systems including cell lines, primary cultures, and animals is the regulation and modulation of voltage-regulated and ligand-gated ion channels, including Ca(2+)-, K(+)-, Na(+), Cl(-), and SK channels, and NMDA and IP3 receptors. We found that the final output of the action of sigma-1 receptor agonists is to inhibit all above-mentioned voltage-gated ion channels, while they potentiate ligand-gated channels. The inhibition or potentiation induced by agonists is blocked by sigma-1 receptor antagonists. Other mechanisms of action of sigma-1 receptors, and to some extent those of sigma-2 receptors, were also considered. We conclude that the sigma-1 and sigma-2 receptors represent potential fruitful targets for therapeutic developments in combating many human diseases.
Collapse
Affiliation(s)
- Tangui Maurice
- Team II Endogenous Neuroprotection in Neurodegenerative Diseases, INSERM U. 710, 34095 Montpellier Cedex 5, France
- University of Montpellier II, EPHE, CC 105, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
- EPHE, 75017 Paris, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA-NIH, Suite 3304, 333 Cassell Drive, Baltimore, MD 21224
| |
Collapse
|
25
|
Abstract
Major depression and anxiety are two of the major psychiatric disorders that have some overlapping pathophysiologies, the most significant being the dysfunction in the monoaminergic, GABAergic and glutamatergic systems. A large number of drugs that alter these neurotransmitter levels/systems are effective in the treatment of major depression and anxiety. However, full remission of the clinical symptoms has not been achieved, perhaps owing to the complex pathophysiology of the diseases. Thus, the search for newer targets and target-specific drugs continues. Recently, the role of sigma-receptors, particularly the sigma-1 receptor subtype, has been identified as a target for the pathophysiology of neuropsychiatric disorders, and sigma-1 receptor modulators are considered to be the drugs of the future for the treatment of major depression and anxiety. The present review attempts to discuss the role of sigma-1 receptors in the pathophysiology of major depression and anxiety and also tries to position the use of its receptor modulators in the treatment of these two major disorders. The role of sigma-1 receptors in the mechanism of antidepressant action of venlafaxine, bupropion, neurosteroids and one of the herbal antidepressants, berberine, is reviewed. Although, sigma-1 receptor modulators may be future therapeutic options, either as individual agents or adjuvants in the treatment of mental disorders, the topic needs further preclinical and clinical exploration.
Collapse
Affiliation(s)
- Shrinivas K Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | | |
Collapse
|
26
|
Kulkarni SK, Dhir A. Current investigational drugs for major depression. Expert Opin Investig Drugs 2009; 18:767-88. [DOI: 10.1517/13543780902880850] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Sabino V, Cottone P, Parylak SL, Steardo L, Zorrilla EP. Sigma-1 receptor knockout mice display a depressive-like phenotype. Behav Brain Res 2009; 198:472-6. [PMID: 19100292 PMCID: PMC2667953 DOI: 10.1016/j.bbr.2008.11.036] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/22/2008] [Accepted: 11/25/2008] [Indexed: 02/08/2023]
Abstract
Activation of sigma-1 receptors (Sig-1R) reportedly has antidepressant-like action. Limited data suggest that Sig-1Rs also modulate anxiety-related behaviors. The present experiments measured depressive-like, anxiety-like and motor behavior in Sig-1R knockout mice and their wildtype littermates. Sig-1R knockout mutants showed increased immobility in the forced swimming test, a depressive-like phenotype, but normal anxiety-like behavior in the elevated plus-maze and light/dark box tests and normal locomotor activity. The results further suggest that Sig-1Rs inversely modulate depressive-like behavior.
Collapse
Affiliation(s)
- Valentina Sabino
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
28
|
Arias HR, Santamaría A, Ali SF. Pharmacological and neurotoxicological actions mediated by bupropion and diethylpropion. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:223-55. [PMID: 19897080 DOI: 10.1016/s0074-7742(09)88009-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antiappetite agent diethylpropion (DEP), and the antidepressant and antismoking aid compound bupropion (BP), not only share the same structural motif but also present similar mechanisms of action in the CNS. For example, both drugs induce the release as well as inhibit the reuptake of neurotransmitters such as a dopamine (DA) and norepinephrine (NE). In general, they produce mild side effects, including reversible psychomotor alterations mostly in geriatric patients (by BP), or moderate changes in neurotransmitter contents linked to oxidative damage (by DEP). Therefore, attention must be paid during any therapeutic use of these agents. Regarding the interaction of BP with the DA transporter, residues S359, located in the middle of TM7, and A279, located close to the extracellular end of TM5, contribute to the binding and blockade of translocation mediated by BP, respectively. Additional mechanisms of action have also been determined for each compound. For example, BP is a noncompetitive antagonist (NCA) of several nicotinic acetylcholine receptors (AChRs). Based on this evidence, the dual antidepressant and antinicotinic activity of BP is currently considered to be mediated by its stimulatory action on DA and NE systems as well as its inhibitory action on AChRs. Considering the results obtained in the archetypical mouse muscle AChR, a sequential mechanism can be hypothesized to explain the inhibitory action of BP on neuronal AChRs: (1) BP first binds to AChRs in the resting state, decreasing the probability of ion channel opening, (2) the remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process, and finally (3) BP interacts with a binding domain located between the serine (position 9') and valine (position 13') rings that is shared with the NCA phencyclidine and other tricyclic antidepressants. The homologous location in the alpha3beta4 AChR is between the serine and valine/phenylalanine rings. This new evidence opens a window for further investigation using AChRs as targets for the action of safer antidepressants and novel antiaddictive compounds.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, Arizona 85308, USA
| | | | | |
Collapse
|