1
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Catalytic activities of wild-type C. elegans DAF-2 kinase and dauer-associated mutants. FEBS J 2024. [PMID: 39428852 DOI: 10.1111/febs.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
DAF-2, the Caenorhabditis elegans insulin-like receptor homolog, regulates larval development, metabolism, stress response, and lifespan. The availability of numerous daf-2 mutant alleles has made it possible to elucidate the genetic mechanisms underlying these physiological processes. The DAF-2 pathway is significantly conserved with the human insulin/IGF-1 signaling pathway; it includes proteins homologous to human IRS, GRB-2, and PI3K, making it an important model to investigate human pathological conditions. We expressed and purified the kinase domain of wild-type DAF-2 to examine the catalytic activity and substrate specificity of the enzyme. Like the human insulin receptor kinase, DAF-2 kinase phosphorylates tyrosines within specific YxN or YxxM motifs, which are important for recruiting downstream effectors. DAF-2 kinase phosphorylated peptides derived from the YxxM and YxN motifs located in the C-terminal extension of the receptor tyrosine kinase, consistent with the idea that the DAF-2 receptor may possess independent signaling capacity. Unlike the human insulin or IGF-1 receptor kinases, DAF-2 kinase was poorly inhibited by the small-molecule inhibitor linsitinib. We also expressed and purified mutant kinases corresponding to daf-2 alleles that result in partial loss-of-function phenotypes in C. elegans. These mutations caused a complete loss of kinase function in vitro. Our biochemical investigations provide new insights into DAF-2 kinase function, and the approach should be useful for studying other mutations to shed light on DAF-2 signaling in C. elegans physiology.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
- Department of Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
2
|
Makhoul P, Galas S, Paniagua-Gayraud S, Deleuze-Masquefa C, Hajj HE, Bonnet PA, Richaud M. Uncovering the Molecular Pathways Implicated in the Anti-Cancer Activity of the Imidazoquinoxaline Derivative EAPB02303 Using a Caenorhabditis elegans Model. Int J Mol Sci 2024; 25:7785. [PMID: 39063027 PMCID: PMC11277376 DOI: 10.3390/ijms25147785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Imiqualines are analogues of the immunomodulatory drug imiquimod. EAPB02303, the lead of the second-generation imiqualines, is characterized by significant anti-tumor effects with IC50s in the nanomolar range. We used Caenorhabditis elegans transgenic and mutant strains of two key signaling pathways (PI3K-Akt and Ras-MAPK) disrupted in human cancers to investigate the mode of action of EAPB02303. The ability of this imiqualine to inhibit the insulin/IGF1 signaling (IIS) pathway via the PI3K-Akt kinase cascade was explored through assessing the lifespan of wild-type worms. Micromolar doses of EAPB02303 significantly enhanced longevity of N2 strain and led to the nuclear translocation and subsequent activation of transcription factor DAF-16, the only forkhead box transcription factor class O (Fox O) homolog in C. elegans. Moreover, EAPB02303 significantly reduced the multivulva phenotype in let-60/Ras mutant strains MT2124 and MT4698, indicative of its mode of action through the Ras pathway. In summary, we showed that EAPB02303 potently reduced the activity of IIS and Ras-MAPK signaling in C. elegans. Our results revealed the mechanism of action of EAPB02303 against human cancers associated with hyperactivated IIS pathway and oncogenic Ras mutations.
Collapse
Affiliation(s)
- Perla Makhoul
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
- Department of Biology, Faculty of Sciences, GSBT Laboratory, Lebanese University, R. Hariri Campus, Hadath 1533, Lebanon
| | - Simon Galas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| | - Stéphanie Paniagua-Gayraud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| | - Carine Deleuze-Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Riad El-Solh, P.O. Box 11-0236, Beirut 1107, Lebanon;
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| | - Myriam Richaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| |
Collapse
|
3
|
de Oliveira Pereira FS, Oliveira de Souza ME, Viçozzi GP, Caurio AC, Pinton S, Denardin CC, Haas SE, Gasparotto Denardin EL, Ávila DS. Bougainvillea glabra Choisy bracts extract in free and liposomal forms reduce hyperplasia induced by let-60gain-of-function in Caenorhabditis elegans. Chem Biodivers 2024; 21:e202300865. [PMID: 38180793 DOI: 10.1002/cbdv.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
In this study, we evaluated the toxicological and antiproliferative effects of B. glabra Choisy bract extract (BGCE) in its free and loaded into liposomes forms administered to C. elegans mutants with let-60 gain-of-function (gf). Our results demonstrated that the concentration up to 75 μg CAE/mL of BGCE was safe for the worms. Notably, we developed BGCE-loaded liposomes to extend the pharmacological window up to 100 μg CAE/mL without toxicity. In addition, the extract and liposomes reduced the number and area of the multivulva formed in let-60 gf mutants. There was also an increase in the apoptotic signaling in the germline cells and increased longevity mediated through DAF-16 nuclear translocation with GST-4 activation in the treated animals. Our findings demonstrated that the BGCE-loaded liposomes possess antitumoral effects due to the activation of the apoptotic signaling and DAF-16 nuclear translocation.
Collapse
Affiliation(s)
| | - Maria Eduarda Oliveira de Souza
- Research Group in Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Gabriel Pedroso Viçozzi
- Research Group in Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Aline Castro Caurio
- Physicochemical Studies and Natural Products Laboratory, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group in Toxicology and Biochemistry in Bioactive Compounds, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | | | | | - Daiana Silva Ávila
- Research Group in Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| |
Collapse
|
4
|
Branicky R, Wang Y, Khaki A, Liu JL, Kramer-Drauberg M, Hekimi S. Stimulation of RAS-dependent ROS signaling extends longevity by modulating a developmental program of global gene expression. SCIENCE ADVANCES 2022; 8:eadc9851. [PMID: 36449615 PMCID: PMC9710873 DOI: 10.1126/sciadv.adc9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
We show that elevation of mitochondrial superoxide generation increases Caenorhabditis elegans life span by enhancing a RAS-dependent ROS (reactive oxygen species) signaling pathway (RDRS) that controls the expression of half of the genome as well as animal composition and physiology. RDRS stimulation mimics a program of change in gene expression that is normally observed at the end of postembryonic development. We further show that RDRS is regulated by negative feedback from the superoxide dismutase 1 (SOD-1)-dependent conversion of superoxide into cytoplasmic hydrogen peroxide, which, in turn, acts on a redox-sensitive cysteine (C118) of RAS. Preventing C118 oxidation by replacement with serine, or mimicking oxidation by replacement with aspartic acid, leads to opposite changes in the expression of the same large set of genes that is affected when RDRS is stimulated by mitochondrial superoxide. The identities of these genes suggest that stimulation of the pathway extends life span by boosting turnover and repair while moderating damage from metabolic activity.
Collapse
|
5
|
Laskovs M, Partridge L, Slack C. Molecular inhibition of RAS signalling to target ageing and age-related health. Dis Model Mech 2022; 15:276620. [PMID: 36111627 PMCID: PMC9510030 DOI: 10.1242/dmm.049627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RAS/MAPK pathway is a highly conserved signalling pathway with a well-established role in cancer. Mutations that hyperactivate this pathway are associated with unregulated cell proliferation. Evidence from a range of model organisms also links RAS/MAPK signalling to ageing. Genetic approaches that reduce RAS/MAPK signalling activity extend lifespan and also improve healthspan, delaying the onset and/or progression of age-related functional decline. Given its role in cancer, therapeutic interventions that target and inhibit this pathway's key components are under intense investigation. The consequent availability of small molecule inhibitors raises the possibility of repurposing these compounds to ameliorate the deleterious effects of ageing. Here, we review evidence that RAS/MAPK signalling inhibitors already in clinical use, such as trametinib, acarbose, statins, metformin and dihydromyricetin, lead to lifespan extension and to improved healthspan in a range of model systems. These findings suggest that the repurposing of small molecule inhibitors of RAS/MAPK signalling might offer opportunities to improve health during ageing, and to delay or prevent the development of age-related disease. However, challenges to this approach, including poor tolerance to treatment in older adults or development of drug resistance, first need to be resolved before successful clinical implementation. Summary: This Review critically discusses the links between RAS signalling and ageing, and how RAS inhibitors could extend lifespan and enhance healthspan.
Collapse
Affiliation(s)
- Mihails Laskovs
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| | - Linda Partridge
- Institute of Healthy Ageing 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- University College London 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- Max Planck Institute for Biology of Ageing 3 , Joseph-Stelzmann-Strasse 9b, 50931 Cologne , Germany
| | - Cathy Slack
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| |
Collapse
|
6
|
Zhao Y, Zhang B, Marcu I, Athar F, Wang H, Galimov ER, Chapman H, Gems D. Mutation of daf-2 extends lifespan via tissue-specific effectors that suppress distinct life-limiting pathologies. Aging Cell 2021; 20:e13324. [PMID: 33609424 PMCID: PMC7963334 DOI: 10.1111/acel.13324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022] Open
Abstract
In aging Caenorhabditis elegans, as in higher organisms, there is more than one cause of death. C. elegans exhibit early death with a swollen, infected pharynx (P death), and later death with pharyngeal atrophy (p death). Interventions that alter lifespan can differentially affect frequency and timing of each type of death, generating complex survival curve shapes. Here, we use mortality deconvolution analysis to investigate how reduction of insulin/IGF‐1 signaling (IIS), which increases lifespan (the Age phenotype), affects different forms of death. All daf‐2 insulin/IGF‐1 receptor mutants exhibit increased lifespan in the p subpopulation (p Age), while pleiotropic class 2 daf‐2 mutants show an additional marked reduction in P death frequency. The latter is promoted by pharyngeal expression of the IIS‐regulated DAF‐16 FOXO transcription factor, and at higher temperature by reduced pharyngeal pumping rate. Pharyngeal DAF‐16 also promotes p Age in class 2 daf‐2 mutants, revealing a previously unknown role for the pharynx in the regulation of aging. Necropsy analysis of daf‐2 interactions with the daf‐12 steroid receptor implies that previously described opposing effects of daf‐12 on daf‐2 longevity are attributable to internal hatching of larvae, rather than complex interactions between insulin/IGF‐1 and steroid signaling. These findings support the view that wild‐type IIS acts through multiple distinct mechanisms which promote different life‐limiting pathologies, each of which contribute to late‐life mortality. This study further demonstrates the utility of mortality deconvolution analysis to better understand the genetics of lifespan.
Collapse
Affiliation(s)
- Yuan Zhao
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Bruce Zhang
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Ioan Marcu
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Faria Athar
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Hongyuan Wang
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Evgeniy R. Galimov
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Hannah Chapman
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - David Gems
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| |
Collapse
|
7
|
Mata-Cabana A, Pérez-Nieto C, Olmedo M. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. ADVANCES IN GENETICS 2020; 107:33-87. [PMID: 33641748 DOI: 10.1016/bs.adgen.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developmental programs are under strict genetic control that favors robustness of the process. In order to guarantee the same outcome in different environmental situations, development is modulated by input pathways, which inform about external conditions. In the nematode Caenorhabditis elegans, the process of postembryonic development involves a series of stereotypic cell divisions, the progression of which is controlled by the nutritional status of the animal. C. elegans can arrest development at different larval stages, leading to cell arrest of the relevant divisions of the stage. This means that studying the nutritional control of development in C. elegans we can learn about the mechanisms controlling cell division in an in vivo model. In this work, we reviewed the current knowledge about the nutrient sensing pathways that control the progression or arrest of development in response to nutrient availability, with a special focus on the arrest at the L1 stage.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - Carmen Pérez-Nieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain.
| |
Collapse
|
8
|
Huang K, Chen W, Zhu F, Li PWL, Kapahi P, Bai H. RiboTag translatomic profiling of Drosophila oenocytes under aging and induced oxidative stress. BMC Genomics 2019; 20:50. [PMID: 30651069 PMCID: PMC6335716 DOI: 10.1186/s12864-018-5404-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, liver shows age-related dysregulation of lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear. In the fruit fly, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat body and oenocytes. Compared to fat body, little is known about how oenocytes age and what are their roles in aging regulation. To characterize age- and stress-regulated gene expression in oenocytes, we performed cell-type-specific ribosome profiling (RiboTag) to examine the impacts of aging and oxidative stress on oenocyte translatome in Drosophila. RESULTS We show that aging and oxidant paraquat significantly increased the levels of reactive oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among all age-regulated genes, oxidative phosphorylation, ribosome, proteasome, fatty acid metabolism, and cytochrome P450 pathways were down-regulated, whereas DNA replication and immune response pathways were up-regulated. In addition, most of the peroxisomal genes were down-regulated in aged oenocytes, including genes involved in peroxisomal biogenesis factors and fatty acid beta-oxidation. Many age-related mRNA translational changes in oenocytes are similar to aged mammalian liver, such as up-regulation of innate immune response and Ras/MAPK signaling pathway and down-regulation of peroxisome and fatty acid metabolism. Furthermore, oenocytes highly expressed genes involving in liver-like processes (e.g., ketogenesis). CONCLUSIONS Our oenocyte-specific translatome analysis identified many genes and pathways that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular and functional similarities between the two tissues. Many of these genes were altered in both oenocytes and liver during aging. Thus, our translatome analysis provide important genomic resource for future dissection of oenocyte function and its role in lipid metabolism, stress response and aging regulation.
Collapse
Affiliation(s)
- Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Wenhao Chen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Pervasive Positive and Negative Feedback Regulation of Insulin-Like Signaling in Caenorhabditis elegans. Genetics 2018; 211:349-361. [PMID: 30425043 DOI: 10.1534/genetics.118.301702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
The Caenorhabditis elegans insulin-like signaling network supports homeostasis and developmental plasticity. The genome encodes 40 insulin-like peptides and one known receptor. Feedback regulation has been reported, but the extent of feedback and its effect on signaling dynamics in response to changes in nutrient availability has not been determined. We measured messenger RNA expression for each insulin-like peptide, the receptor daf-2, components of the PI3K pathway, and its transcriptional effectors daf-16/FoxO and skn-1/Nrf at high temporal resolution during transition from a starved, quiescent state to a fed, growing state in wild type and mutants affecting daf-2/InsR and daf-16/FoxO. We also analyzed the effect of temperature on insulin-like gene expression. We found that most PI3K pathway components and insulin-like peptides are affected by signaling activity, revealing pervasive positive and negative feedback regulation at intra- and intercellular levels. Reporter gene analysis demonstrated that the daf-2/InsR agonist daf-28 positively regulates its own transcription and that the putative agonist ins-6 cross-regulates DAF-28 protein expression through feedback. Our results show that positive and negative feedback regulation of insulin-like signaling is widespread, giving rise to an organismal FoxO-to-FoxO signaling network that supports homeostasis during fluctuations in nutrient availability.
Collapse
|
10
|
Huang HW, Lin YH, Lin MH, Huang YR, Chou CH, Hong HC, Wang MR, Tseng YT, Liao PC, Chung MC, Ma YJ, Wu SC, Chuang YJ, Wang HD, Wang YM, Huang HD, Lu TT, Liaw WF. Extension of C. elegans lifespan using the ·NO-delivery dinitrosyl iron complexes. J Biol Inorg Chem 2018; 23:775-784. [DOI: 10.1007/s00775-018-1569-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
|
11
|
Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol 2018; 217:93-106. [PMID: 29074705 PMCID: PMC5748989 DOI: 10.1083/jcb.201707168] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
Nutrients are necessary for life, as they are a crucial requirement for biological processes including reproduction, somatic growth, and tissue maintenance. Therefore, signaling systems involved in detecting and interpreting nutrient or energy levels-most notably, the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, mechanistic target of rapamycin (mTOR), and adenosine monophosphate-activated protein kinase (AMPK)-play important roles in regulating physiological decisions to reproduce, grow, and age. In this review, we discuss the connections between reproductive senescence and somatic aging and give an overview of the involvement of nutrient-sensing pathways in controlling both reproductive function and lifespan. Although the molecular mechanisms that affect these processes can be influenced by distinct tissue-, temporal-, and pathway-specific signaling events, the progression of reproductive aging and somatic aging is systemically coordinated by integrated nutrient-sensing signaling pathways regulating somatic tissue maintenance in conjunction with reproductive capacity.
Collapse
Affiliation(s)
- Nicole M Templeman
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| |
Collapse
|
12
|
Abstract
It is now widely recognised that ageing and its associated functional decline are regulated by a wide range of molecules that fit into specific cellular pathways. Here, we describe several of the evolutionary conserved cellular signalling pathways that govern organismal ageing and discuss how their identification, and work on the individual molecules that contribute to them, has aided in the design of therapeutic strategies to alleviate the adverse effects of ageing and age-related disease.
Collapse
|
13
|
Abstract
Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.
Collapse
Affiliation(s)
- Cathy Slack
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| |
Collapse
|
14
|
Dillon J, Holden-Dye L, O'Connor V, Hopper NA. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans. INVERTEBRATE NEUROSCIENCE : IN 2016; 16:4. [PMID: 27209024 PMCID: PMC4875951 DOI: 10.1007/s10158-016-0187-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/13/2016] [Indexed: 12/31/2022]
Abstract
Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment.
Collapse
Affiliation(s)
- James Dillon
- Centre for Biological Science, University of Southampton, Highfield Campus, University Road, Southampton, Hants, SO17 1BJ, UK.
| | - Lindy Holden-Dye
- Centre for Biological Science, University of Southampton, Highfield Campus, University Road, Southampton, Hants, SO17 1BJ, UK
| | - Vincent O'Connor
- Centre for Biological Science, University of Southampton, Highfield Campus, University Road, Southampton, Hants, SO17 1BJ, UK
| | - Neil A Hopper
- Centre for Biological Science, University of Southampton, Highfield Campus, University Road, Southampton, Hants, SO17 1BJ, UK
| |
Collapse
|
15
|
A novel function for the DEAD-box RNA helicase DDX-23 in primary microRNA processing in Caenorhabditis elegans. Dev Biol 2016; 409:459-72. [DOI: 10.1016/j.ydbio.2015.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
|
16
|
Geary JF, Lovato R, Wanji S, Guderian R, O'Neill M, Specht S, Madrill N, Geary TG, Mackenzie CD. A histochemical study of the Nras/let-60 activity in filarial nematodes. Parasit Vectors 2015; 8:353. [PMID: 26130134 PMCID: PMC4493820 DOI: 10.1186/s13071-015-0947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Control and elimination of filarial pathogens is a central focus of major global health efforts directed at parasitic diseases of developing countries. Accomplishment of these goals would be markedly enhanced by the enhanced destruction of the adult stage of filariae. The identification of new, more quantitative biomarkers that correlate with mortality or chemotherapeutic damage to adult filariae, would greatly facilitate, for example, the development of new macrofilaricides. METHODS An immunocytochemical approach using an antibody against human Nras was used to identify and detect changes in the nematode homolog let-60 that is associated with cell growth and maintenance. Single Onchocerca volvulus nodules were removed from each of 13 patients treated with ivermectin (as part of a community-wide mass drug administration programme), and from each of 13 untreated individuals; these 26 nodules were stained with the anti-Nras antibody. The localization and degree of positivity of Nras/let-60 staining were assessed subjectively and compared between the two groups; the positivity of staining was also quantified, using image analysis, in a subgroup of these nodules. In addition, the specific morphological association between Nras/let-60 and the Wolbachia endosymbiont present in these parasites was also observed in 4 additional filarial species using an anti-Wolbachia surface protein (WSP) antibody under light and confocal microscopy. RESULTS Nras/let-60 is present in many structures within the adult female worms. A statistically significant decrease in the general staining intensity of Nras/let-60 was observed in adult female O. volvulus treated with ivermectin when compared with parasites from untreated patients. Nras/let-60 staining was frequently observed to be co-localized with WSP in O.volvulus, Brugia malayi, Litomosoides sigmodontis and Dirofilaria immitis. Nras/let60 is also present in Onchocerca ochengi. CONCLUSION Nras/let-60, as detected by immunocytochemical staining, is decreased in ivermectin-treated adult female O. volvulus relative to untreated control specimens, suggesting a suppressive effect of ivermectin on the overall biochemical activity of these parasites. Co-localization of Nras/let-60 and WSP suggests the possibility that the endosymbiont utilizes this nematode protein as part of a mutualistic relationship. Nras/let60 appears to be a useful biomarker for assessing the health of filariae.
Collapse
Affiliation(s)
- James F Geary
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.
| | - Raquel Lovato
- Ecuadorian Onchocerciasis Control Program, Ministry of Health, Quito, Ecuador.
| | - Samuel Wanji
- Research Foundation for Tropical Diseases and Environment, P.O. Box, 474, Buea, Cameroon.
| | - Ron Guderian
- Ecuadorian Onchocerciasis Control Program, Ministry of Health, Quito, Ecuador.
- Hospital Vozandes, Quito, Ecuador.
| | - Maeghan O'Neill
- Institute of Parasitology, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Sabine Specht
- Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany.
| | - Nicole Madrill
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.
| | - Timothy G Geary
- Institute of Parasitology, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Charles D Mackenzie
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA.
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
| |
Collapse
|
17
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
18
|
Perrin AJ, Gunda M, Yu B, Yen K, Ito S, Forster S, Tissenbaum HA, Derry WB. Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways. Cell Death Differ 2012; 20:97-107. [PMID: 22935616 DOI: 10.1038/cdd.2012.101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The insulin/IGF-1 pathway controls a number of physiological processes in the nematode worm Caenorhabditis elegans, including development, aging and stress response. We previously found that the Akt/PKB ortholog AKT-1 dampens the apoptotic response to genotoxic stress in the germline by negatively regulating the p53-like transcription factor CEP-1. Here, we report unexpected rearrangements to the insulin/IGF-1 pathway, whereby the insulin-like receptor DAF-2 and 3-phosphoinositide-dependent protein kinase PDK-1 oppose AKT-1 to promote DNA damage-induced apoptosis. While DNA damage does not affect phosphorylation at the PDK-1 site Thr350/Thr308 of AKT-1, it increased phosphorylation at Ser517/Ser473. Although ablation of daf-2 or pdk-1 completely suppressed akt-1-dependent apoptosis, the transcriptional activation of CEP-1 was unaffected, suggesting that daf-2 and pdk-1 act independently or downstream of cep-1 and akt-1. Ablation of the akt-1 paralog akt-2 or the downstream target of the insulin/IGF-1 pathway daf-16 (a FOXO transcription factor) restored sensitivity to damage-induced apoptosis in daf-2 and pdk-1 mutants. In addition, daf-2 and pdk-1 mutants have reduced levels of phospho-MPK-1/ERK in their germ cells, indicating that the insulin/IGF-1 pathway promotes Ras signaling in the germline. Ablation of the Ras effector gla-3, a negative regulator of mpk-1, restored sensitivity to apoptosis in daf-2 mutants, suggesting that gla-3 acts downstream of daf-2. In addition, the hypersensitivity of let-60/Ras gain-of-function mutants to damage-induced apoptosis was suppressed to wild-type levels by ablation of daf-2. Thus, insulin/IGF-1 signaling selectively engages AKT-2/DAF-16 to promote DNA damage-induced germ cell apoptosis downstream of CEP-1 through the Ras pathway.
Collapse
Affiliation(s)
- A J Perrin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nakdimon I, Walser M, Fröhli E, Hajnal A. PTEN negatively regulates MAPK signaling during Caenorhabditis elegans vulval development. PLoS Genet 2012; 8:e1002881. [PMID: 22916028 PMCID: PMC3420937 DOI: 10.1371/journal.pgen.1002881] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/19/2012] [Indexed: 11/20/2022] Open
Abstract
Vulval development in Caenorhabditis elegans serves as an excellent model to examine the crosstalk between different conserved signaling pathways that are deregulated in human cancer. The concerted action of the RAS/MAPK, NOTCH, and WNT pathways determines an invariant pattern of cell fates in three vulval precursor cells. We have discovered a novel form of crosstalk between components of the Insulin and the RAS/MAPK pathways. The insulin receptor DAF-2 stimulates, while DAF-18 PTEN inhibits, RAS/MAPK signaling in the vulval precursor cells. Surprisingly, the inhibitory activity of DAF-18 PTEN on the RAS/MAPK pathway is partially independent of its PIP3 lipid phosphatase activity and does not involve further downstream components of the insulin pathway, such as AKT and DAF-16 FOXO. Genetic and biochemical analyses indicate that DAF-18 negatively regulates vulval induction by inhibiting MAPK activation. Thus, mutations in the PTEN tumor suppressor gene may result in the simultaneous hyper-activation of two oncogenic signaling pathways. The human tumor suppressor PTEN is mutated in many different types of cancer. Using the roundworm C. elegans as a model to study how cells communicate during animal development, we discovered a new mechanism by which PTEN inhibits the activity of the oncogenic RAS/MAPK signaling pathway. Focusing on the development of the vulva, the egg-laying organ of the hermaphrodite, as a model to investigate the regulation of RAS/MAPK signaling, we could distinguish between two distinct inhibitory activities of PTEN on the RAS/MAPK signaling pathway. On the one hand, PTEN acts as a lipid phosphatase that inhibits the production of PIP3, which in turn stimulates RAS/MAPK signaling. On the other hand, PTEN acts as a protein phosphatase that negatively regulates RAS/MAPK signaling by inhibiting signal transduction at the level of the MAPK, which is a key component in the pathway. Understanding the detailed molecular mechanism by which the PTEN tumor suppressor homolog regulates signal transduction in C. elegans can help predict the consequences of mutations in human PTEN for cancer development in humans.
Collapse
Affiliation(s)
- Itay Nakdimon
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Cancer Network Zürich PhD Program, Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Michael Walser
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Sciences PhD Program, Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Erika Fröhli
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Monje JM, Brokate-Llanos AM, Pérez-Jiménez MM, Fidalgo MA, Muñoz MJ. pkc-1 regulates daf-2 insulin/IGF signalling-dependent control of dauer formation in Caenorhabditis elegans. Aging Cell 2011; 10:1021-31. [PMID: 21933341 DOI: 10.1111/j.1474-9726.2011.00747.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In Caenorhabditis elegans, the insulin/IGF pathway participates in the decision to initiate dauer development. Dauer is a diapause stage that is triggered by environmental stresses, such as a lack of nutrients. Insulin/IGF receptor mutants arrest constitutively in dauer, an effect that can be suppressed by mutations in other elements of the insulin/IGF pathway or by a reduction in the activity of the nuclear hormone receptor daf-12. We have isolated a pkc-1 mutant that acts as a novel suppressor of the dauer phenotypes caused by insulin/IGF receptor mutations. Interactions between insulin/IGF mutants and the pkc-1 suppressor mutant are similar to those described for daf-12 or the DAF-12 coregulator din-1. Moreover, we show that the expression of the DAF-12 target daf-9, which is normally elevated upon a reduction in insulin/IGF receptor activity, is suppressed in a pkc-1 mutant background, suggesting that pkc-1 could link the daf-12 and insulin/IGF pathways. pkc-1 has been implicated in the regulation of peptide neurosecretion in C. elegans. Although we demonstrate that pkc-1 expression in the nervous system regulates dauer formation, our results suggest that the requirement for pkc-1 in neurosecretion is independent of its role in modulating insulin/IGF signalling. pkc-1 belongs to the novel protein kinase C (nPKC) family, members of which have been implicated in insulin resistance and diabetes in mammals, suggesting a conserved role for pkc-1 in the regulation of the insulin/IGF pathway.
Collapse
Affiliation(s)
- José M Monje
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC/Universidad Pablo de Olavide, Seville, Spain
| | | | | | | | | |
Collapse
|
21
|
Abstract
Increase in life span in RasGrf1-deficient mice revealed that RasGrf1 deficiency promotes longevity. Interestingly, RasGrf1 is one of parentally imprinted genes transcribed from paternally-derived chromosome. Erasure of its imprinting results in RasGrf1 downregulation and has been demonstrated in a population of pluripotent adult tissues-derived very small embryonic like stem cells (VSELs), stem cells involved in tissue organ rejuvenation. Furthermore, based on recent observation that RasGrf1 signaling molecule is located downstream from insulin (Ins) and insulin like growth factor-1 (Igf-1) receptors, the extended life-span of RasGrf1-/- mice may support beneficial effect of reduced Ins/Igf-1 signaling on longevity. Similarly, downregulation of RasGrf1 in VSELs renders them resistant to chronic Ins/Igf-1 signaling and protects from premature depletion from adult tissues. Thus, the studies in RasGrf1-/- mice indicate that some of the imprinted genes may play a role in ontogenetic longevity and suggest that there are sex differences in life span that originate at the genome level. All this in toto supports a concept that the sperm genome may have a detrimental effect on longevity in mammals. We will discuss a role of RasGrf1 on life span in context of genomic imprinting and VSELs.
Collapse
|
22
|
Tan KT, Luo SC, Ho WZ, Lee YH. Insulin/IGF-1 receptor signaling enhances biosynthetic activity and fat mobilization in the initial phase of starvation in adult male C. elegans. Cell Metab 2011; 14:390-402. [PMID: 21907144 DOI: 10.1016/j.cmet.2011.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/05/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
Abstract
Upon nutrient deprivation, cells are thought to suppress biosynthesis but activate catabolic pathways to provide alternative energy sources and nutrients. However, here we provide evidence that in adult male C. elegans, both biosynthesis and degradation activities, including ribosome biogenesis and turnover, are enhanced during early starvation and appear to depend on the availability of intestinal lipid stores. Upon depletion of the intestinal lipids, further food deprivation results in a significant reduction in metabolic activity in the starved male worms. Our data show that adult C. elegans exhibits a two-phase metabolic response to starvation stress: an initial phase with enhanced metabolic activity that rapidly exhausts the lipid stores, followed by a phase with low metabolic activity, which outlasts the life of fed control worms. DAF-2 insulin/IGF-1 receptor signaling to the RAS pathway is required for the starvation-induced ribosome biogenesis and rapid lipid depletion in the initial phase of starvation.
Collapse
Affiliation(s)
- Kien Thiam Tan
- Laboratory of Molecular Pathology, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
23
|
Chen L, Fu Y, Ren M, Xiao B, Rubin CS. A RasGRP, C. elegans RGEF-1b, couples external stimuli to behavior by activating LET-60 (Ras) in sensory neurons. Neuron 2011; 70:51-65. [PMID: 21482356 PMCID: PMC3081643 DOI: 10.1016/j.neuron.2011.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2011] [Indexed: 11/17/2022]
Abstract
RasGRPs, which load GTP onto Ras and Rap1, are expressed in vertebrate and invertebrate neurons. The functions, regulation, and mechanisms of action of neuronal RasGRPs are unknown. Here, we show how C. elegans RGEF-1b, a prototypical neuronal RasGRP, regulates a critical behavior. Chemotaxis to volatile odorants was disrupted in RGEF-1b-deficient (rgef-1⁻/⁻) animals and wild-type animals expressing dominant-negative RGEF-1b in AWC sensory neurons. AWC-specific expression of RGEF-1b-GFP restored chemotaxis in rgef-1⁻/⁻ mutants. Signals disseminated by RGEF-1b in AWC neurons activated a LET-60 (Ras)-MPK-1 (ERK) signaling cascade. Other RGEF-1b and LET-60 effectors were dispensable for chemotaxis. A bifunctional C1 domain controlled intracellular targeting and catalytic activity of RGEF-1b and was essential for sensory signaling in vivo. Chemotaxis was unaffected when Ca²+-binding EF hands and a conserved phosphorylation site of RGEF-1b were inactivated. Diacylglycerol-activated RGEF-1b links external stimuli (odorants) to behavior (chemotaxis) by activating the LET-60-MPK-1 pathway in specific neurons.
Collapse
Affiliation(s)
- Lu Chen
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
24
|
Tazearslan Ç, Ayyadevara S, Bharill P, Shmookler Reis RJ. Positive feedback between transcriptional and kinase suppression in nematodes with extraordinary longevity and stress resistance. PLoS Genet 2009; 5:e1000452. [PMID: 19360094 PMCID: PMC2661368 DOI: 10.1371/journal.pgen.1000452] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP(2) to form PIP(3), a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust-implying that maternally contributed trace amounts of PI3K activity or of PIP(3) block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP(3)-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO-dependent and -independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode.
Collapse
Affiliation(s)
- Çagdaþ Tazearslan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare Service, Little Rock, Arkansas, United States of America
| | - Puneet Bharill
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Robert J. Shmookler Reis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare Service, Little Rock, Arkansas, United States of America
| |
Collapse
|
25
|
Bonafè M, Olivieri F. Genetic polymorphism in long-lived people: cues for the presence of an insulin/IGF-pathway-dependent network affecting human longevity. Mol Cell Endocrinol 2009; 299:118-23. [PMID: 19027825 DOI: 10.1016/j.mce.2008.10.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 01/17/2023]
Abstract
Longevity in yeast, nematodes, fruit flies and mice is affected by mutations in the insulin/IGF-1 or homologous pathways. Studies on long-living people revealed some associations between genetic variants of the insulin/IGF-1 pathway and longevity. Here, we review such investigations, and we will report human longevity association studies regarding the variability of genes which modulate lifespan in model organisms by interacting with the insulin/IGF-1 pathway. These studies will be presented in three groups: (1) insulin/IGF-1 pathway transcriptional target, superoxide dismutase 2, heat shock protein, cytochrome p450 isoenzymes, glutathione transferases; (2) insulin/IGF-1 pathway accessory transduction proteins H-Ras, p66Shc; and (3) longevity pathways that converge on the insulin/IGF-1 pathway (Klotho, p53, Sirtuins, TGF-beta). The data reported support the notion that the insulin/IGF-1 pathway drives an evolutionarily conserved network that regulates lifespan and affects longevity across species.
Collapse
Affiliation(s)
- Massimiliano Bonafè
- Center for Applied Biomedical Research, (CRBA), St. Orsola-Malpighi University Hospital, Italy.
| | | |
Collapse
|
26
|
Shen J, Curtis C, Tavaré S, Tower J. A screen of apoptosis and senescence regulatory genes for life span effects when over-expressed in Drosophila. Aging (Albany NY) 2009; 1:191-211. [PMID: 20157509 PMCID: PMC2806004 DOI: 10.18632/aging.100018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/29/2009] [Indexed: 12/01/2022]
Abstract
Conditional expression of
transgenes in Drosophila was produced using the Geneswitch system,
wherein feeding the drug RU486/Mifepristone activates the artificial
transcription factor Geneswitch. Geneswitch was expressed using the Actin5C
promoter and this was found to yield conditional, tissue-general expression
of a target transgene (UAS-GFP) in both larvae and adult flies. Nervous
system-specific (Elav-GS) and fat body-specific Geneswitch drivers were
also characterized using UAS-GFP. Fourteen genes implicated in growth,
apoptosis and senescence regulatory pathways were over-expressed in adult
flies or during larval development, and assayed for effects on adult fly
life span. Over-expression of a dominant p53 allele (p53-259H)
in adult flies using the ubiquitous driver produced increased life span in
females but not males, consistent with previous studies. Both wingless
and Ras activated form transgenes were lethal when expressed in
larvae, and reduced life span when expressed in adults, consistent with
results from other model systems indicating that the wingless and Ras
pathways can promote senescence. Over-expression of the caspase inhibitor baculovirus
p35 during larval development reduced the mean life span of male and
female adults, and also produced a subset of females with increased life
span. These experiments suggest that baculovirus p35 and the wingless
and Ras pathways can have sex-specific and developmental
stage-specific effects on adult Drosophila life span, and these
reagents should be useful for the further analysis of the role of these
conserved pathways in aging.
Collapse
Affiliation(s)
- Jie Shen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
27
|
Mendenhall AR, LeBlanc MG, Mohan DP, Padilla PA. Reduction in ovulation or male sex phenotype increases long-term anoxia survival in a daf-16-independent manner in Caenorhabditis elegans. Physiol Genomics 2008; 36:167-78. [PMID: 19050081 DOI: 10.1152/physiolgenomics.90278.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identifying genotypes and phenotypes that enhance an organism's ability to survive stress is of interest. We used Caenorhabditis elegans mutants, RNA interference (RNAi), and the chemical 5-fluorodeoxyuridine (FUDR) to test the hypothesis that a reduction in progeny would increase oxygen deprivation (anoxia) survival. In the hermaphrodite gonad, germ line processes such as spermatogenesis and oogenesis can be simultaneously as well as independently disrupted by genetic mutations. We analyzed genetic mutants [glp-1(q158), glp-4(bn2ts), plc-1(rx1), ksr-1(ku68), fog-2(q71), fem-3(q20), spe-9(hc52ts), fer-15(hc15ts)] with reduced progeny production due to various reproductive defects. Furthermore, we used RNAi to inhibit the function of gene products in the RTK/Ras/MAPK signaling pathway, which is known to be involved in a variety of developmental processes including gonad function. We determined that reduced progeny production or complete sterility enhanced anoxia survival except in the case of sterile hermaphrodites [spe-9(hc52ts), fer-15(hc15ts)] undergoing oocyte maturation and ovulation as exhibited by the presence of laid unfertilized oocytes. Furthermore, the fog-2(q71) long-term anoxia survival phenotype was suppressed when oocyte maturation and ovulation were induced by mating with males that have functional or nonfunctional sperm. The mutants with a reduced progeny production survive long-term anoxia in a daf-16- and hif-1-independent manner. Finally, we determined that wild-type males were able to survive long-term anoxia in a daf-16-independent manner. Together, these results suggest that the insulin signaling pathway is not the only mechanism to survive oxygen deprivation and that altering gonad function, in particular oocyte maturation and ovulation, leads to a physiological state conducive for oxygen deprivation survival.
Collapse
|
28
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
29
|
Artal-Sanz M, Tavernarakis N. Mechanisms of aging and energy metabolism in Caenorhabditis elegans. IUBMB Life 2008; 60:315-22. [PMID: 18421774 DOI: 10.1002/iub.66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging studies on diverse species ranging from yeast to man have culminated in the delineation of several signaling pathways that influence the process of senescent decline and aging. While understanding these interlinked signal-transduction cascades is becoming even more detailed and comprehensive, the cellular and biochemical processes they impinge upon to modulate the rate of senescent decline and aging have lagged considerably behind. This fundamental question is one of the most important challenges of modern aging research and has been the focus of recent research efforts. Emerging findings provide insight into the facets of cellular metabolism which can be fine-tuned by upstream signaling events to ultimately promote longevity. Here, we survey the mechanisms regulating aging in the simple nematode worm Caenorhabditis elegans, aiming to highlight recent discoveries that shed light into the interface between aging signaling pathways and cellular energy metabolism. Our objective is to review the current understanding of the processes involved and discuss mechanisms that are likely conserved in higher organisms.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | |
Collapse
|
30
|
Araiz C, Château MT, Galas S. 14-3-3 regulates life span by both DAF-16-dependent and -independent mechanisms in Caenorhabditis elegans. Exp Gerontol 2008; 43:505-19. [PMID: 18423931 DOI: 10.1016/j.exger.2008.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 02/13/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
Caenorhabditis elegans life span, stress resistance and metabolism are regulated by the Insulin/IGF-1/DAF-2/DAF-16 pathway. DAF-16, a member of FOXO/Forkhead transcription factor family, can be targeted by 14-3-3 proteins to promote stress resistance. We have identified a 14-3-3 C. elegans homolog which promotes life span by both DAF-2-dependent and -independent mechanisms and by an unexpected DAF-16-independent mechanism. Our results demonstrate that C. elegans 14-3-3 proteins modulate stress-responsive genes throughout adulthood. In conclusion, 14-3-3 can be considered as an acute stress-responsive regulator as well as a sustained modulator of the Insulin/IGF-1/DAF-2/DAF-16 regulatory pathway in promoting life expectancy of growing old worms.
Collapse
Affiliation(s)
- Caroline Araiz
- CRBM-CNRS, 1919 route de Mende, F34293 Montpellier cedex 5, France
| | | | | |
Collapse
|
31
|
Kammenga JE, Phillips PC, De Bono M, Doroszuk A. Beyond induced mutants: using worms to study natural variation in genetic pathways. Trends Genet 2008; 24:178-85. [PMID: 18325626 DOI: 10.1016/j.tig.2008.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/30/2023]
Abstract
Induced mutants in the nematode Caenorhabditis elegans are used to study genetic pathways of processes ranging from aging to behavior. The effects of such mutations are usually analyzed in a single wildtype background: N2. However, studies in other species demonstrate that the phenotype(s) of induced mutations can vary widely depending on the genetic background. Moreover, induced mutations in one genetic background do not reveal the allelic effects that segregate in natural populations and contribute to phenotypic variation. Because other wildtype Caenorhabditis spp., including C. elegans, are now available, we review how current mapping resources and methodologies within and between species support the use of Caenorhabditis spp. for studying genetic variation, with a focus on pathways associated with human disease.
Collapse
Affiliation(s)
- Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Clustering of genetically defined allele classes in the Caenorhabditis elegans DAF-2 insulin/IGF-1 receptor. Genetics 2008; 178:931-46. [PMID: 18245374 PMCID: PMC2248335 DOI: 10.1534/genetics.107.070813] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The DAF-2 insulin/IGF-1 receptor regulates development, metabolism, and aging in the nematode Caenorhabditis elegans. However, complex differences among daf-2 alleles complicate analysis of this gene. We have employed epistasis analysis, transcript profile analysis, mutant sequence analysis, and homology modeling of mutant receptors to understand this complexity. We define an allelic series of nonconditional daf-2 mutants, including nonsense and deletion alleles, and a putative null allele, m65. The most severe daf-2 alleles show incomplete suppression by daf-18(0) and daf-16(0) and have a range of effects on early development. Among weaker daf-2 alleles there exist distinct mutant classes that differ in epistatic interactions with mutations in other genes. Mutant sequence analysis (including 11 newly sequenced alleles) reveals that class 1 mutant lesions lie only in certain extracellular regions of the receptor, while class 2 (pleiotropic) and nonconditional missense mutants have lesions only in the ligand-binding pocket of the receptor ectodomain or the tyrosine kinase domain. Effects of equivalent mutations on the human insulin receptor suggest an altered balance of intracellular signaling in class 2 alleles. These studies consolidate and extend our understanding of the complex genetics of daf-2 and its underlying molecular biology.
Collapse
|
33
|
Abstract
A dissection of longevity in Caenorhabditis elegans reveals that animal life span is influenced by genes, environment, and stochastic factors. From molecules to physiology, a remarkable degree of evolutionary conservation is seen.
Collapse
Affiliation(s)
- Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
34
|
Byrne AB, Weirauch MT, Wong V, Koeva M, Dixon SJ, Stuart JM, Roy PJ. A global analysis of genetic interactions in Caenorhabditis elegans. J Biol 2007; 6:8. [PMID: 17897480 PMCID: PMC2373897 DOI: 10.1186/jbiol58] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/31/2007] [Accepted: 08/17/2007] [Indexed: 01/10/2023] Open
Abstract
Background Understanding gene function and genetic relationships is fundamental to our efforts to better understand biological systems. Previous studies systematically describing genetic interactions on a global scale have either focused on core biological processes in protozoans or surveyed catastrophic interactions in metazoans. Here, we describe a reliable high-throughput approach capable of revealing both weak and strong genetic interactions in the nematode Caenorhabditis elegans. Results We investigated interactions between 11 'query' mutants in conserved signal transduction pathways and hundreds of 'target' genes compromised by RNA interference (RNAi). Mutant-RNAi combinations that grew more slowly than controls were identified, and genetic interactions inferred through an unbiased global analysis of the interaction matrix. A network of 1,246 interactions was uncovered, establishing the largest metazoan genetic-interaction network to date. We refer to this approach as systematic genetic interaction analysis (SGI). To investigate how genetic interactions connect genes on a global scale, we superimposed the SGI network on existing networks of physical, genetic, phenotypic and coexpression interactions. We identified 56 putative functional modules within the superimposed network, one of which regulates fat accumulation and is coordinated by interactions with bar-1(ga80), which encodes a homolog of β-catenin. We also discovered that SGI interactions link distinct subnetworks on a global scale. Finally, we showed that the properties of genetic networks are conserved between C. elegans and Saccharomyces cerevisiae, but that the connectivity of interactions within the current networks is not. Conclusions Synthetic genetic interactions may reveal redundancy among functional modules on a global scale, which is a previously unappreciated level of organization within metazoan systems. Although the buffering between functional modules may differ between species, studying these differences may provide insight into the evolution of divergent form and function.
Collapse
Affiliation(s)
- Alexandra B Byrne
- Department of Medical Genetics and Microbiology, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Matthew T Weirauch
- Department of Biomolecular Engineering, 1156 High Street, Mail Stop SOE2, University of California, Santa Cruz, CA 95064, USA
| | - Victoria Wong
- Department of Medical Genetics and Microbiology, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Martina Koeva
- Department of Biomolecular Engineering, 1156 High Street, Mail Stop SOE2, University of California, Santa Cruz, CA 95064, USA
| | - Scott J Dixon
- Department of Medical Genetics and Microbiology, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Joshua M Stuart
- Department of Biomolecular Engineering, 1156 High Street, Mail Stop SOE2, University of California, Santa Cruz, CA 95064, USA
| | - Peter J Roy
- Department of Medical Genetics and Microbiology, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, ON, M5S 3E1, Canada
| |
Collapse
|
35
|
Kim Y, Sun H. Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell 2007; 6:489-503. [PMID: 17608836 DOI: 10.1111/j.1474-9726.2007.00302.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genetic studies in many organisms suggest that an increased animal lifespan phenotype is often accompanied by enhanced resistance toward reactive oxygen species (ROS). In Caenorhabditis elegans, mutations in daf-2, which encode an insulin/insulin-like growth factor 1 receptor-like molecule, lead to an extended animal lifespan and increased resistance to ROS. We have optimized an assay to monitor ROS resistance in worms using the ROS-generating chemical paraquat. We have employed this assay to screen the RNAi library along chromosomes III and IV for genes that, when silenced, confer paraquat resistance. The positive RNAi clones were subsequently screened for a lifespan extension phenotype. Using this approach, we have identified 84 genes that, when inactivated by RNAi, lead to significant increases in animal lifespan. Among the 84 genes, 29 were found to act in a manner dependent on daf-16. DAF-16, a forkhead transcription factor, is known to integrate signals from multiple pathways, including the daf-2 pathway, to regulate animal lifespan. Most of the 84 genes have not been previously linked to aging, and potentially participate in important cellular processes such as signal transduction, cell-cell interaction, gene expression, protein degradation, and energy metabolism. Our screen has also identified a group of genes that potentially function in a nutrient-sensing pathway to regulate lifespan in C. elegans. Our study provides a novel approach to identify genes involved in the regulation of aging.
Collapse
Affiliation(s)
- Yongsoon Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
36
|
Houthoofd K, Vanfleteren JR. Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 2007; 277:601-17. [PMID: 17364197 DOI: 10.1007/s00438-007-0225-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/20/2007] [Indexed: 12/18/2022]
Abstract
Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms.
Collapse
Affiliation(s)
- Koen Houthoofd
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | |
Collapse
|
37
|
Ruaud AF, Bessereau JL. The P-type ATPase CATP-1 is a novel regulator ofC. elegansdevelopmental timing that acts independently of its predicted pump function. Development 2007; 134:867-79. [PMID: 17251264 DOI: 10.1242/dev.02790] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During postembryonic stages, metazoans synchronize the development of a large number of cells, tissues and organs by mechanisms that remain largely unknown. In Caenorhabditis elegans larvae, an invariant cell lineage is tightly coordinated with four successive molts, thus defining a genetically tractable system to analyze the mechanisms underlying developmental synchronization. Illegitimate activation of nicotinic acetylcholine receptors(nAChRs) by the nicotinic agonist dimethylphenylpiperazinium (DMPP) during the second larval stage (L2) of C. elegans causes a lethal heterochronic phenotype. DMPP exposure delays cell division and differentiation without affecting the molt cycle, hence resulting in deadly exposure of a defective cuticle to the surrounding environment. In a screen for DMPP-resistant mutants, we identified catp-1 as a gene coding for a predicted cation-transporting P-type ATPase expressed in the epidermis. Larval development was specifically slowed down at the L2 stage in catp-1mutants compared with wild-type animals and was not further delayed after exposure to DMPP. We demonstrate that CATP-1 interacts with the insulin/IGF and Ras-MAPK pathways to control several postembryonic developmental events. Interestingly, these developmental functions can be fulfilled independently of the predicted cation-transporter activity of CATP-1, as pump-dead engineered variants of CATP-1 can rescue most catp-1-mutant defects. These results obtained in vivo provide further evidence for the recently proposed pump-independent scaffolding functions of P-type ATPases in the modulation of intracellular signaling.
Collapse
|
38
|
Wolff S, Dillin A. The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 2006; 41:894-903. [PMID: 16919905 DOI: 10.1016/j.exger.2006.06.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/06/2006] [Accepted: 06/12/2006] [Indexed: 11/28/2022]
Abstract
Insulin signaling, mitochondrial respiration, and dietary restriction share conserved roles not only in the regulation of lifespan, but also in the timing and control of diverse functions such as reproduction, stress resistance and metabolism. These autonomous pathways differ in their dependence on known transcription factors and in their temporal requirements, but converge to manipulate the core set of physiological systems necessary for extended lifespan in worms. Recent work suggests that components of these pleiotrophic pathways might be manipulated specifically for their effects on aging without affecting additional downstream functions. Examination of these findings will help us to understand how the molecular mechanisms of distinct pathways can unite in the regulation of longevity.
Collapse
Affiliation(s)
- Suzanne Wolff
- The Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
39
|
van der Horst A, de Vries-Smits AMM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BMT. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 2006; 8:1064-73. [PMID: 16964248 DOI: 10.1038/ncb1469] [Citation(s) in RCA: 378] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/21/2006] [Indexed: 02/07/2023]
Abstract
FOXO (Forkhead box O) transcription factors are important regulators of cellular metabolism, cell-cycle progression and cell death. FOXO activity is regulated by multiple post-translational modifications, including phosphorylation, acetylation and polyubiquitination. Here, we show that FOXO becomes monoubiquitinated in response to increased cellular oxidative stress, resulting in its re-localization to the nucleus and an increase in its transcriptional activity. Deubiquitination of FOXO requires the deubiquitinating enzyme USP7/HAUSP (herpesvirus-associated ubiquitin-specific protease), which interacts with and deubiquitinates FOXO in response to oxidative stress. Oxidative stress-induced ubiquitination and deubiquitination by USP7 do not influence FOXO protein half-life. However, USP7 does negatively regulate FOXO transcriptional activity towards endogenous promoters. Our results demonstrate a novel mechanism of FOXO regulation and indicate that USP7 has an important role in regulating FOXO-mediated stress responses.
Collapse
Affiliation(s)
- Armando van der Horst
- Department of Physiological Chemistry, Centre for Biomedical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Baugh LR, Sternberg PW. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr Biol 2006; 16:780-5. [PMID: 16631585 DOI: 10.1016/j.cub.2006.03.021] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 02/27/2006] [Accepted: 03/02/2006] [Indexed: 11/20/2022]
Abstract
Development is typically studied as a continuous process under laboratory conditions, but wild animals often develop in variable and stressful environments. C. elegans larvae hatch in a developmentally arrested state (L1 arrest) and initiate post-embryonic development only in the presence of food (E. coli in lab). In contrast to the well-studied dauer arrest, L1 arrest occurs without morphological modification, although larvae in L1 arrest are more resistant to environmental stress than developing larvae . Consistent with its role in dauer formation and aging, we show that insulin/insulin-like growth factor (IGF) signaling regulates L1 arrest. daf-2 insulin/IGF receptor mutants have a constitutive-L1-arrest phenotype when fed and extended survival of L1 arrest when starved. Conversely, daf-16/FOXO mutants have a defective-arrest phenotype, failing to arrest development and dying rapidly when starved. We show that DAF-16 is required for transcription of the cyclin-dependent kinase inhibitor cki-1 in stem cells in response to starvation, accounting for the failure of daf-16/FOXO mutants to arrest cell division during L1 arrest. Other developmental events such as cell migration, cell fusion, and expression of the microRNA lin-4, a temporal regulator of post-embryonic development, are also observed in starved daf-16/FOXO mutants. These results suggest that DAF-16/FOXO promotes developmental arrest via transcriptional regulation of numerous target genes that control various aspects of development.
Collapse
Affiliation(s)
- L Ryan Baugh
- Howard Hughes Medical Institute and California Institute of Technology, Division of Biology, Pasadena, California 91125, USA
| | | |
Collapse
|
41
|
Iser WB, Gami MS, Wolkow CA. Insulin signaling in Caenorhabditis elegans regulates both endocrine-like and cell-autonomous outputs. Dev Biol 2006; 303:434-47. [PMID: 17257591 PMCID: PMC2262836 DOI: 10.1016/j.ydbio.2006.04.467] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 03/24/2006] [Accepted: 04/28/2006] [Indexed: 01/18/2023]
Abstract
In C. elegans, insulin signaling affects development, lifespan and stress resistance. Several studies have shown that insulin signaling affects lifespan in an endocrine-like manner from different cells, while the major downstream target of insulin, the FOXO transcription factor encoded by daf-16, may act preferentially in intestinal cells to prolong lifespan. This discrepancy raised the possibility that insulin may have both endocrine and cell-intrinsic outputs. Here, we further investigated the types of cells capable of producing endocrine outputs of insulin and also identified a new cell-intrinsic insulin output. We found that insulin signaling within groups of neurons promoted wildtype lifespan, showing that the endocrine outputs of insulin were not restricted to specific cells. In contrast, DAF-16 appeared to have a greater effect on lifespan when expressed in a combination of tissues. These results suggest that insulin signaling may regulate DAF-16 through cell-intrinsic and endocrine pathways. We also found that an insulin-dependent response to fasting in intestinal cells was preferentially regulated by intestinal insulin signaling and was less responsive to insulin signaling from non-intestinal cells. Together, these results show that C. elegans insulin signaling has endocrine as well as tissue-specific outputs which could influence lifespan in a combinatorial fashion.
Collapse
|
42
|
Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 2006; 124:1055-68. [PMID: 16530050 DOI: 10.1016/j.cell.2006.01.039] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 01/05/2006] [Accepted: 01/31/2006] [Indexed: 11/22/2022]
Abstract
In C. elegans, removing the germ cells extends life span by triggering the nuclear localization and activation of the DAF-16/FOXO transcription factor in the intestine. In this study, we identify and analyze genes required for germline removal to extend life span. We find that the reproductive system communicates with the intestine through lipophilic-hormone signaling and that a gene called kri-1 is likely to act in the intestine to promote DAF-16 nuclear localization in response to this signal. This lipophilic-signaling pathway and kri-1 are not required for DAF-16's nuclear localization and life-span extension in animals with decreased insulin/IGF-1 signaling. Thus, this pathway specifically enables the integration of cues from the reproductive system with central DAF-16-activation pathways to influence the aging of the animal.
Collapse
Affiliation(s)
- Jennifer R Berman
- Department of Biochemistry and Biophysics, Mission Bay Genentech Hall, 600 16th Street, Room S312D, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
43
|
Hopper NA. The adaptor protein soc-1/Gab1 modifies growth factor receptor output in Caenorhabditis elegans. Genetics 2006; 173:163-75. [PMID: 16547100 PMCID: PMC1461424 DOI: 10.1534/genetics.106.055822] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 03/06/2006] [Indexed: 12/15/2022] Open
Abstract
Previous genetic analysis has shown that dos/soc-1/Gab1 functions positively in receptor tyrosine kinase (RTK)-stimulated Ras/Map kinase signaling through the recruitment of csw/ptp-2/Shp2. Using sensitized assays in Caenorhabditis elegans for let-23/Egfr and daf-2/InsR (insulin receptor-like) signaling, it is shown that soc-1/Gab1 inhibits phospholipase C-gamma (PLCgamma) and phosphatidylinositol 3'-kinase (PI3K)-mediated signaling. Furthermore, as well as stimulating Ras/Map kinase signaling, soc-1/Gab1 stimulates a poorly defined signaling pathway that represses class 2 daf-2 phenotypes. In addition, it is shown that SOC-1 binds the C-terminal SH3 domain of SEM-5. This binding is likely to be functional as the sem-5(n2195)G201R mutation, which disrupts SOC-1 binding, behaves in a qualitatively similar manner to a soc-1 null allele in all assays for let-23/Egfr and daf-2/InsR signaling that were examined. Further genetic analysis suggests that ptp-2/Shp2 mediates the negative function of soc-1/Gab1 in PI3K-mediated signaling, as well as the positive function in Ras/Map kinase signaling. Other effectors of soc-1/Gab1 are likely to inhibit PLCgamma-mediated signaling and stimulate the poorly defined signaling pathway that represses class 2 daf-2 phenotypes. Thus, the recruitment of soc-1/Gab1, and its effectors, into the RTK-signaling complex modifies the cellular response by enhancing Ras/Map kinase signaling while inhibiting PI3K and PLCgamma-mediated signaling.
Collapse
Affiliation(s)
- Neil A Hopper
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom.
| |
Collapse
|