1
|
Bresnahan ST, Döke MA, Giray T, Grozinger CM. Tissue-specific transcriptional patterns underlie seasonal phenotypes in honey bees (Apis mellifera). Mol Ecol 2021; 31:174-184. [PMID: 34643007 DOI: 10.1111/mec.16220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022]
Abstract
Faced with adverse conditions, such as winter in temperate regions or hot and dry conditions in tropical regions, many insect species enter a state of diapause, a period of dormancy associated with a reduction or arrest of physical activity, development and reproduction. Changes in common physiological pathways underlie diapause phenotypes in different insect species. However, most transcriptomic studies of diapause have not simultaneously evaluated and compared expression patterns in different tissues. Honey bees (Apis mellifera) represent a unique model system to study the mechanisms underpinning diapause-related phenotypes. In winter, honey bees exhibit a classic diapause phenotype, with reduced metabolic activity, increased physiological nutritional resources and altered hormonal profiles. However, winter bees actively heat their colony by vibrating their wing muscles; thus, this tissue is not quiescent. Here, we evaluated the transcriptional profiles of flight muscle tissue and fat body tissue (involved in nutrient storage, metabolism and immune function) of winter bees. We also evaluated two behavioural phenotypes of summer bees: nurses, which exhibit high nutritional stores and low flight activity, and foragers, which exhibit low nutritional stores and high flight activity. We found winter bees and nurses have similar fat body transcriptional profiles, whereas winter bees and foragers have similar flight muscle transcriptional profiles. Additionally, differentially expressed genes were enriched in diapause-related gene ontology terms. Thus, honey bees exhibit tissue-specific transcriptional profiles associated with seasonal phenotypes, laying the groundwork for future studies evaluating the mechanisms, evolution and consequences of this tissue-specific regulation.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA.,Molecular, Cellular and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Mehmet A Döke
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA.,Department of Biology and Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Tugrul Giray
- Department of Biology and Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
2
|
Ryu S, Han J, Norden‐Krichmar TM, Zhang Q, Lee S, Zhang Z, Atzmon G, Niedernhofer LJ, Robbins PD, Barzilai N, Schork NJ, Suh Y. Genetic signature of human longevity in PKC and NF-κB signaling. Aging Cell 2021; 20:e13362. [PMID: 34197020 PMCID: PMC8282271 DOI: 10.1111/acel.13362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Gene variants associated with longevity are also associated with protection against cognitive decline, dementia and Alzheimer's disease, suggesting that common physiologic pathways act at the interface of longevity and cognitive function. To test the hypothesis that variants in genes implicated in cognitive function may promote exceptional longevity, we performed a comprehensive 3‐stage study to identify functional longevity‐associated variants in ~700 candidate genes in up to 450 centenarians and 500 controls by target capture sequencing analysis. We found an enrichment of longevity‐associated genes in the nPKC and NF‐κB signaling pathways by gene‐based association analyses. Functional analysis of the top three gene variants (NFKBIA, CLU, PRKCH) suggests that non‐coding variants modulate the expression of cognate genes, thereby reducing signaling through the nPKC and NF‐κB. This matches genetic studies in multiple model organisms, suggesting that the evolutionary conservation of reduced PKC and NF‐κB signaling pathways in exceptional longevity may include humans.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | - Jeehae Han
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | | | - Quanwei Zhang
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | - Seunggeun Lee
- Department of Biostatistics University of Michigan Ann Arbor MI USA
| | - Zhengdong Zhang
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | - Gil Atzmon
- Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Biology Faculty of Natural Sciences University of Haifa Haifa Israel
| | - Laura J. Niedernhofer
- Insitute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
| | - Paul D. Robbins
- Insitute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
| | - Nir Barzilai
- Department of Medicine Albert Einstein College of Medicine Bronx NY USA
| | - Nicholas J. Schork
- The Scripps Research Institute La Jolla CA USA
- J. Craig Venter Institute La Jolla CA USA
| | - Yousin Suh
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
- Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Ophthalmology and Visual Sciences Albert Einstein College of Medicine Bronx NY USA
- Departments of Obstetrics and Gynecology, and Genetics and Development Columbia University New York NY USA
| |
Collapse
|
3
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
4
|
Gu SH, Chen CH, Hsieh HY, Lin PL. Expression of protein kinase C in relation to the embryonic diapause process in the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104010. [PMID: 31917243 DOI: 10.1016/j.jinsphys.2019.104010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we investigated the expression of protein kinase C (PKC) signaling during the embryonic diapause process of Bombyx mori. PKC activity, determined using an antibody to phosphorylated substrates of PKC, was found to be significantly higher in developing eggs as compared to that of diapause eggs. In eggs whose diapause initiation was prevented by HCl, non-diapause eggs, and eggs in which diapause had been terminated by chilling of diapausing eggs at 5 °C for 70 days and then were transferred to 25 °C, PKC-dependent phosphorylation levels of multiple proteins showed dramatic stage-dependent increases compared to those of diapause eggs. Higher protein levels of PKC were also detected in developing eggs as compared to those of diapause eggs. Determination of PKC enzymatic activity during the middle embryonic stage showed higher PKC activity in developing eggs compared to diapause eggs, thus further confirming differential regulation of PKC signaling during the embryonic diapause process. Examination of temporal changes in mRNA expression levels of classical PKC (cPKC) and atypical PKC (aPKC) showed no difference between diapause and HCl-treated eggs. These results demonstrated that differential expressions of PKC signaling between diapause and developing eggs are related to the embryonic diapause process of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Hsiao-Yen Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
5
|
Multilayered Reprogramming in Response to Persistent DNA Damage in C. elegans. Cell Rep 2018; 20:2026-2043. [PMID: 28854356 PMCID: PMC5583510 DOI: 10.1016/j.celrep.2017.08.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 11/23/2022] Open
Abstract
DNA damage causally contributes to aging and age-related diseases. Mutations in nucleotide excision repair (NER) genes cause highly complex congenital syndromes characterized by growth retardation, cancer susceptibility, and accelerated aging in humans. Orthologous mutations in Caenorhabditis elegans lead to growth delay, genome instability, and accelerated functional decline, thus allowing investigation of the consequences of persistent DNA damage during development and aging in a simple metazoan model. Here, we conducted proteome, lipidome, and phosphoproteome analysis of NER-deficient animals in response to UV treatment to gain comprehensive insights into the full range of physiological adaptations to unrepaired DNA damage. We derive metabolic changes indicative of a tissue maintenance program and implicate an autophagy-mediated proteostatic response. We assign central roles for the insulin-, EGF-, and AMPK-like signaling pathways in orchestrating the adaptive response to DNA damage. Our results provide insights into the DNA damage responses in the organismal context.
Collapse
|
6
|
Horikawa M, Sural S, Hsu AL, Antebi A. Co-chaperone p23 regulates C. elegans Lifespan in Response to Temperature. PLoS Genet 2015; 11:e1005023. [PMID: 25830239 PMCID: PMC4382338 DOI: 10.1371/journal.pgen.1005023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022] Open
Abstract
Temperature potently modulates various physiologic processes including organismal motility, growth rate, reproduction, and ageing. In ectotherms, longevity varies inversely with temperature, with animals living shorter at higher temperatures. Thermal effects on lifespan and other processes are ascribed to passive changes in metabolic rate, but recent evidence also suggests a regulated process. Here, we demonstrate that in response to temperature, daf-41/ZC395.10, the C. elegans homolog of p23 co-chaperone/prostaglandin E synthase-3, governs entry into the long-lived dauer diapause and regulates adult lifespan. daf-41 deletion triggers constitutive entry into the dauer diapause at elevated temperature dependent on neurosensory machinery (daf-10/IFT122), insulin/IGF-1 signaling (daf-16/FOXO), and steroidal signaling (daf-12/FXR). Surprisingly, daf-41 mutation alters the longevity response to temperature, living longer than wild-type at 25°C but shorter than wild-type at 15°C. Longevity phenotypes at 25°C work through daf-16/FOXO and heat shock factor hsf-1, while short lived phenotypes converge on daf-16/FOXO and depend on the daf-12/FXR steroid receptor. Correlatively daf-41 affected expression of DAF-16 and HSF-1 target genes at high temperature, and nuclear extracts from daf-41 animals showed increased occupancy of the heat shock response element. Our studies suggest that daf-41/p23 modulates key transcriptional changes in longevity pathways in response to temperature.
Collapse
Affiliation(s)
- Makoto Horikawa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Surojit Sural
- University of Michigan, Department of Internal Medicine, Division of Geriatric and Palliative Medicine, Ann Arbor, Michigan, United States of America
- University of Michigan, Department of Molecular and Integrative Physiology, Ann Arbor, Michigan, United States of America
| | - Ao-Lin Hsu
- University of Michigan, Department of Internal Medicine, Division of Geriatric and Palliative Medicine, Ann Arbor, Michigan, United States of America
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Molecular and Cellular Biology, Huffington Center on Ageing, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Hormones play a critical role in driving major stage transitions and developmental timing events in many species. In the nematode C. elegans the steroid hormone receptor, DAF-12, works at the confluence of pathways regulating developmental timing, stage specification, and longevity. DAF-12 couples environmental and physiologic signals to life history regulation, and it is embedded in a rich architecture governing diverse processes. Here, we highlight the molecular insights, extraordinary circuitry, and signaling pathways governing life stage transitions in the worm and how they have yielded fundamental insights into steroid regulation of biological time.
Collapse
Affiliation(s)
- Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|