Parnham MJ, Bragt PC, Bast A, Zijlstra FJ. Comparison of the effects of inhibitors of cytochrome P-450-mediated reactions on human platelet aggregation and arachidonic acid metabolism.
BIOCHIMICA ET BIOPHYSICA ACTA 1981;
677:165-73. [PMID:
6457649 DOI:
10.1016/0304-4165(81)90081-7]
[Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metyrapone and SKF-525A, together with amphenone B, a structural analogue of metyrapone, which are all inhibitors of cytochrome P-450-mediated reactions, were shown to inhibit the arachidonic acid-induced aggregation of human platelets. Amphenone B, like metyrapone, exhibited a type II (ligand) binding spectrum with rat liver microsomal cytochrome P-450, in contrast to SKF 525A which is a type I (substrate) binding agent. Independently of their type of binding spectra and of their maximum spectral change, however, the affinity of the three compounds for rat liver cytochrome P-450 showed a close proportional correlation with their platelet aggregation inhibitory potency. All three compounds inhibited the formation of [1-14C]thromboxane B2 from [1-14C]arachidonic acid by human platelets aggregated with collagen. The effect of metyrapone on the remaining labelled products suggested that it is a selective thromboxane synthesis inhibitor, while amphenone B exhibited activity reminiscent of cyclo-oxygenase inhibitors. SKF 525A produced complex effects possibly attributable to cyclo-oxygenase inhibition and enhanced lipid peroxidation, since it also enhanced platelet malonaldehyde formation, which the other two compounds inhibited. These data provide further support for a role of cytochrome P-450 in thromboxane synthesis and platelet aggregation.
Collapse