1
|
Gabel F, Hovhannisyan V, Berkati AK, Goumon Y. Morphine-3-Glucuronide, Physiology and Behavior. Front Mol Neurosci 2022; 15:882443. [PMID: 35645730 PMCID: PMC9134088 DOI: 10.3389/fnmol.2022.882443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Morphine remains the gold standard painkiller available to date to relieve severe pain. Morphine metabolism leads to the production of two predominant metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). This metabolism involves uridine 5'-diphospho-glucuronosyltransferases (UGTs), which catalyze the addition of a glucuronide moiety onto the C3 or C6 position of morphine. Interestingly, M3G and M6G have been shown to be biologically active. On the one hand, M6G produces potent analgesia in rodents and humans. On the other hand, M3G provokes a state of strong excitation in rodents, characterized by thermal hyperalgesia and tactile allodynia. Its coadministration with morphine or M6G also reduces the resulting analgesia. Although these behavioral effects show quite consistency in rodents, M3G effects are much more debated in humans and the identity of the receptor(s) on which M3G acts remains unclear. Indeed, M3G has little affinity for mu opioid receptor (MOR) (on which morphine binds) and its effects are retained in the presence of naloxone or naltrexone, two non-selective MOR antagonists. Paradoxically, MOR seems to be essential to M3G effects. In contrast, several studies proposed that TLR4 could mediate M3G effects since this receptor also appears to be essential to M3G-induced hyperalgesia. This review summarizes M3G's behavioral effects and potential targets in the central nervous system, as well as the mechanisms by which it might oppose analgesia.
Collapse
Affiliation(s)
- Florian Gabel
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Volodya Hovhannisyan
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Abdel-Karim Berkati
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
- SMPMS, Mass Spectrometry Facilities of the CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
2
|
Hu HZ, Granger N, Jeffery ND. Pathophysiology, Clinical Importance, and Management of Neurogenic Lower Urinary Tract Dysfunction Caused by Suprasacral Spinal Cord Injury. J Vet Intern Med 2016; 30:1575-1588. [PMID: 27527382 PMCID: PMC5032886 DOI: 10.1111/jvim.14557] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
Management of persistent lower urinary tract dysfunction resulting from severe thoracolumbar spinal cord injury can be challenging. Severe suprasacral spinal cord injury releases the spinal cord segmental micturition reflex from supraspinal modulation and increases nerve growth factor concentration in the bladder wall, lumbosacral spinal cord, and dorsal root ganglion, which subsequently activates hypermechanosensitive C-fiber bladder wall afferents. Hyperexcitability of bladder afferents and detrusor overactivity can cause urine leaking during the storage phase. During urine voiding, the loss of supraspinal control that normally coordinates detrusor contraction with sphincter relaxation can lead to spinal cord segmental reflex-mediated simultaneous detrusor and sphincter contractions or detrusor-sphincter dyssynergia, resulting in inefficient urine voiding and high residual volume. These disease-associated changes can impact on the quality of life and life expectancy of spinal-injured animals. Here, we discuss the pathophysiology and management considerations of lower urinary tract dysfunction as the result of severe, acute, suprasacral spinal cord injury. In addition, drawing from experimental, preclinical, and clinical medicine, we introduce some treatment options for neurogenic lower urinary tract dysfunction that are designed to: (1) prevent urine leakage arising because of detrusor overactivity during bladder filling, (2) preserve upper urinary tract integrity and function by reducing intravesical pressure and subsequent vesicoureteral reflux, and (3) prevent urinary tract and systemic complications by treating and preventing urinary tract infections.
Collapse
Affiliation(s)
- H Z Hu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - N Granger
- School of Veterinary Sciences, University of Bristol, Langford House, Langford, North Somerset, UK
| | - N D Jeffery
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA.
| |
Collapse
|
3
|
Hotta H, Watanabe N. Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord. PLoS One 2015; 10:e0135185. [PMID: 26252000 PMCID: PMC4529237 DOI: 10.1371/journal.pone.0135185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/19/2015] [Indexed: 01/23/2023] Open
Abstract
Recently, we found that gentle mechanical skin stimulation inhibits the micturition reflex in anesthetized rats. However, the central mechanisms underlying this inhibition have not been determined. This study aimed to clarify the central neural mechanisms underlying this inhibitory effect. In urethane-anesthetized rats, cutaneous stimuli were applied for 1 min to the skin of the perineum using an elastic polymer roller with a smooth, soft surface. Inhibition of rhythmic micturition contractions by perineal stimulation was abolished by naloxone, an antagonist of opioidergic receptors, administered into the intrathecal space of the lumbosacral spinal cord at doses of 2–20 μg but was not affected by the same doses of naloxone administered into the subarachnoid space of the cisterna magna. Next, we examined whether perineal rolling stimulation inhibited the descending and ascending limbs of the micturition reflex. Perineal rolling stimulation inhibited bladder contractions induced by electrical stimulation of the pontine micturition center (PMC) or the descending tract of the micturition reflex pathway. It also inhibited the bladder distension-induced increase in the blood flow of the dorsal cord at L5–S1, reflecting the neural activity of this area, as well as pelvic afferent-evoked field potentials in the dorsal commissure at the lumbosacral level; these areas contain long ascending neurons to the PMC. Neuronal activities in this center were also inhibited by the rolling stimulation. These results suggest that the perineal rolling stimulation activates the spinal opioidergic system and inhibits both ascending and descending transmissions of the micturition reflex pathway in the spinal cord. These inhibitions would lead to the shutting down of positive feedback between the bladder and the PMC, resulting in inhibition of the micturition reflex. Based on the central neural mechanisms we show here, gentle perineal stimulation may be applicable to several different types of overactive bladder.
Collapse
Affiliation(s)
- Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- * E-mail:
| | - Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
4
|
Dou XL, Qin RL, Qu J, Liao YH, Lu YC, Zhang T, Shao C, Li YQ. Synaptic connections between endomorphin 2-immunoreactive terminals and μ-opioid receptor-expressing neurons in the sacral parasympathetic nucleus of the rat. PLoS One 2013; 8:e62028. [PMID: 23671582 PMCID: PMC3643968 DOI: 10.1371/journal.pone.0062028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/16/2013] [Indexed: 02/06/2023] Open
Abstract
The urinary bladder is innervated by parasympathetic preganglionic neurons (PPNs) that express μ-opioid receptors (MOR) in the sacral parasympathetic nucleus (SPN) at lumbosacral segments L6-S1. The SPN also contains endomorphin 2 (EM2)-immunoreactive (IR) fibers and terminals. EM2 is the endogenous ligand of MOR. In the present study, retrograde tract-tracing with cholera toxin subunit b (CTb) or wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) via the pelvic nerve combined with immunohistochemical staining for EM2 and MOR to identify PPNs within the SPN as well as synaptic connections between the EM2-IR terminals and MOR-expressing PPNs in the SPN of the rat. After CTb was injected into the pelvic nerve, CTb retrogradely labeled neurons were almost exclusively located in the lateral part of the intermediolateral gray matter at L6-S1 of the lumbosacral spinal cord. All of the them also expressed MOR. EM2-IR terminals formed symmetric synapses with MOR-IR, WGA-HRP-labeled and WGA-HRP/MOR double-labeled neuronal cell bodies and dendrites within the SPN. These results provided morphological evidence that EM2-containing axon terminals formed symmetric synapses with MOR-expressing PPNs in the SPN. The present results also show that EM2 and MOR might be involved in both the homeostatic control and information transmission of micturition.
Collapse
Affiliation(s)
- Xiao Liang Dou
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rong Liang Qin
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Juan Qu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yong Hui Liao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ya cheng Lu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Chen Shao
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- * E-mail: (CS); (YQL)
| | - Yun Qing Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
- * E-mail: (CS); (YQL)
| |
Collapse
|
5
|
Tayebi P, Kheirkhah F, Tayebi G, Moghadamni AA. Tramadol Effect on Morphine Dependency and Analgesia in Mice. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2008.452.459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 2005; 56:581-631. [PMID: 15602011 DOI: 10.1124/pr.56.4.4] [Citation(s) in RCA: 355] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The lower urinary tract constitutes a functional unit controlled by a complex interplay between the central and peripheral nervous systems and local regulatory factors. In the adult, micturition is controlled by a spinobulbospinal reflex, which is under suprapontine control. Several central nervous system transmitters can modulate voiding, as well as, potentially, drugs affecting voiding; for example, noradrenaline, GABA, or dopamine receptors and mechanisms may be therapeutically useful. Peripherally, lower urinary tract function is dependent on the concerted action of the smooth and striated muscles of the urinary bladder, urethra, and periurethral region. Various neurotransmitters, including acetylcholine, noradrenaline, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in this neural regulation. Muscarinic receptors mediate normal bladder contraction as well as at least the main part of contraction in the overactive bladder. Disorders of micturition can roughly be classified as disturbances of storage or disturbances of emptying. Failure to store urine may lead to various forms of incontinence, the main forms of which are urge and stress incontinence. The etiology and pathophysiology of these disorders remain incompletely known, which is reflected in the fact that current drug treatment includes a relatively small number of more or less well-documented alternatives. Antimuscarinics are the main-stay of pharmacological treatment of the overactive bladder syndrome, which is characterized by urgency, frequency, and urge incontinence. Accepted drug treatments of stress incontinence are currently scarce, but new alternatives are emerging. New targets for control of micturition are being defined, but further research is needed to advance the pharmacological treatment of micturition disorders.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
7
|
Andersson KE, Pehrson R. CNS involvement in overactive bladder: pathophysiology and opportunities for pharmacological intervention. Drugs 2004; 63:2595-611. [PMID: 14636079 DOI: 10.2165/00003495-200363230-00003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The pathophysiology of overactive bladder (OAB) syndrome is complex, and involves both peripheral and CNS factors. Several CNS disorders are associated with OAB, e.g. stroke, spinal cord injury, Parkinson's disease and multiple sclerosis, and in each disorder the pathophysiology of OAB can be multifactorial. Irrespective of cause or pathophysiology of OAB, antimuscarinic drugs are the first line of pharmacological treatment. However, adverse effects and limited efficacy makes alternative therapeutic principles desirable. Most alternative drugs used for the treatment of OAB have a peripheral site of action, mainly affecting efferent or afferent neurotransmission or the detrusor muscle itself. New targets for pharmacological intervention may be found in the CNS. Several CNS transmitters/transmitter systems are known to be involved in micturition control, but few drugs with a defined CNS site of action (e.g. baclofen, imipramine and duloxetine) have been used for the treatment of voiding disorders. GABA, glutamate, opioid, serotonin, noradrenaline (norepinephrine), and dopamine receptors and mechanisms are known to influence micturition, and drugs influencing these systems could potentially be developed for the treatment of OAB. Preclinical studies in different animal models have shown that modulation of normal micturition and detrusor overactivity by drugs acting within the spinal cord or supraspinally is possible. Promising results have been obtained in such models, e.g. with drugs interfering with GABA mechanisms, serotonin 5-HT1A receptors, mu-opioid receptors and alpha-adrenoreceptors. However, considering the limited predictability of existing animal models for efficacy in humans, positive proof of concept studies in humans are mandatory. Such studies are scarce and further investigations are needed.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden.
| | | |
Collapse
|
8
|
Abstract
Although currently available antimuscarinic agents are the standard of care for overactive bladder (OAB), they are limited by certain side effects, particularly dry mouth and constipation. Research aimed at discovering new therapies for OAB has resulted in the identification of some promising drugs. Investigations of pharmacologic targets in the central nervous system (CNS) have yielded encouraging results with several agents, including tramadol and gabapentin. Further investigation may show that drugs acting at serotonergic and noradrenergic CNS sites are clinically useful as therapies for OAB. Some peripherally acting drugs, such as resiniferatoxin and botulinum toxin, have already been proved to be of clinical value. However, development of other agents that block afferent or efferent nerve impulses in the bladder through activity at vanilloid, purinergic, or opioid-like receptor sites may result in clinically useful drugs.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
9
|
Pandita RK, Pehrson R, Christoph T, Friderichs E, Andersson KE. Actions of tramadol on micturition in awake, freely moving rats. Br J Pharmacol 2003; 139:741-8. [PMID: 12812997 PMCID: PMC1573893 DOI: 10.1038/sj.bjp.0705297] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 (+/-)-Tramadol, a widely used analgesic, is a racemate stimulating opioid receptors and inhibiting reuptake of noradrenaline and serotonin, that is, pharmacological principles previously shown to influence rat micturition. 2 We studied both (+/-)-tramadol and its enantiomers in conscious Sprague-Dawley rats undergoing continuous cystometry. The effects of these agents were compared to those of morphine ( micro -opioid receptor agonist) and tested after pretreatment with naloxone ( micro -opioid receptor antagonist). Cystometries were evaluated before and after intravenous (i.v.), intraperitoneal (i.p.) and intrathecal (i.t.) drug administrations. 3 The most conspicuous effects of i.v. (+/-)-tramadol (0.1-10 mg kg(-1)) was an increase in threshold pressure and an increase in micturition volume. 4 These effects were mimicked by (+)-tramadol (0.1-5 mg kg(-1) i.v.), whereas (-)-tramadol (5 mg kg(-1) i.v.) did not influence threshold pressure and micturition volume. 5 The effects of (+/-)-tramadol 5 mg kg(-1) on micturition volume were blocked by pretreatment with naloxone 0.3 mg kg(-1). Morphine (0.3-10 mg kg(-1) i.p.) increased threshold pressure but did not significantly increase micturition volume in doses not resulting in overflow incontinence. 6 (+/-)-Tramadol 10 mg kg(-1) increased urine production, an effect blocked by desmopressin 25 ng kg(-1). 7 (+/-)-Tramadol effectively inhibits micturition in conscious rats by stimulating micro -opioid receptors. A synergy between opioid receptor stimulation and monoamine reuptake inhibition may contribute to the micturition effects.
Collapse
Affiliation(s)
- Raj Kumar Pandita
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | - Rikard Pehrson
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | | | | | - Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
- Author for correspondence:
| |
Collapse
|
10
|
|
11
|
Abstract
Morphine is a potent opioid analgesic widely used for the treatment of acute pain and for long-term treatment of severe pain. Morphine is a member of the morphinan-framed alkaloids, which are present in the poppy plant. The drug is soluble in water, but its solubility in lipids is poor. In man, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule are considered as highly polar metabolites unable to cross the blood-brain barrier. Although morphine glucuronidation has been demonstrated in human brain tissue, the capacity is very low compared to that of the liver, indicating that the M3G and M6G concentrations observed in the cerebrospinal fluid (CSF) after systemic administration reflect hepatic metabolism of morphine and that the morphine glucuronides, despite their high polarity, can penetrate into the brain. Like morphine, M6G has been shown to be relatively more selective for mu-receptors than for delta- and kappa-receptors while M3G does not appear to compete for opioid receptor binding. The analgesic properties of M6G were recognised in the early 1970s and more recent work suggests that M6G might significantly contribute to the opioid analgesia after administration of morphine. The analgesic potency of M6G after intracerebroventricular (ICV) or intrathecal (IT) administration in rats is from 45-800 timer greater than that of morphine, depending on the animal species and the experimental antinociceptive test used. Furthermore, the development of a sensitive high-performance liquid chromatography (HPLC) assay for the quantitative determination of morphine, M6G and M3G has revealed that M6G and M3G were present in abundance after chronic oral morphine administration and that the area under the plasma concentration-time curve exceeded that of morphine. M3G has been found to antagonise morphine and M6G induced analgesia and ventilatory depression in the rat, which has led to the hypothesis that M3G may influence the development of morphine tolerance. M3G exhibits no analgesic effect after ICV or IT administration. Some studies do, however, indicate that M3G may cause non-opioid mediated hyperalgesia/allodynia and convulsions after IT administration in rats. These observations led to the hypothesis that M3G might be responsible for side-effects, hyperalgesia/allodynia and myoclonus seen after high-dose morphine treatment.
Collapse
Affiliation(s)
- L L Christrup
- Department of Pharmaceutics, Royal Danish School of Pharmacy, Copenhagen, Denmark
| |
Collapse
|
12
|
Milne RW, Nation RL, Somogyi AA. The disposition of morphine and its 3- and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab Rev 1996; 28:345-472. [PMID: 8875123 DOI: 10.3109/03602539608994011] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R W Milne
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | |
Collapse
|
13
|
Thörn SE, Wattwil M, Lindberg G, Säwe J. Systemic and central effects of morphine on gastroduodenal motility. Acta Anaesthesiol Scand 1996; 40:177-86. [PMID: 8848916 DOI: 10.1111/j.1399-6576.1996.tb04417.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gastrointestinal side effects still constitute a major drawback in both acute and chronic use of opioids. The exact mechanism behind the gastrointestinal effects is not known, but experimental studies indicate both central and peripheral actions. In an attempt to clarify to what extent the systemic effects of morphine after epidural administration contribute to the action on gastrointestinal motility, a study aiming to resemble the situation with epidural morphine was designed. Twenty healthy male volunteers were randomly allocated to two groups. Group one (n = 10) received intrathecal (0.4 mg) and intramuscular (4 mg) morphine (IT-IM-group). Group two (n = 10) received intrathecal (0.4 mg) morphine and i.m. saline (IT-group). Gastroduodenal activity was assessed by gastric emptying, manometry and electrogastrography. The plasma and urine concentrations of morphine and its inactive metabolite morphine-3-and active metabolite morphine-6-glucuronide were also determined. During the fasted state the gastrointestinal activity is characterised by a cyclic pattern with a duration of 80-120 min in the duodenum comprising three different phases with intense activity during Phase III. This pattern was seen in all volunteers. After the intrathecal administration the Phase III activity occurred significantly earlier in the IT-IM group (median 31 min; IR 34 min) compared to IT group (82 min; 37 min) (P < 0.01). The number of Phase IIIs was higher in the IT-IM group during the first 4 h after the morphine administration, compared to the IT group. However, after 6 h, there was no difference between the groups. The propagation velocity of Phase III decreased significantly in both groups (P < 0.001), but there was no difference between the groups. Tachygastria increased significantly with time in both groups. The acetaminophen absorption test showed that the area under the concentration curve (120 min) was significantly smaller in the IT-IM group compared to the IT group (P < 0.05). There were no measurable plasma concentrations of morphine or the glucoronidated metabolites M3G and M6G in the group that only received intrathecal morphine. This study showed that intrathecal morphine (0.4 mg) influenced gastroduodenal motility and that intramuscular morphine (4 mg) gave additional effects. These results might be applicable to the epidural situation and are indirect evidence that the gastroduodenal effects of epidural morphine are caused by both central and systemic effects of morphine.
Collapse
Affiliation(s)
- S E Thörn
- Department of Anesthesiology and Intensive Care, Orebro Medical Center Hospital, Sweden
| | | | | | | |
Collapse
|
14
|
|
15
|
Smith GD, Smith MT. Morphine-3-glucuronide: evidence to support its putative role in the development of tolerance to the antinociceptive effects of morphine in the rat. Pain 1995; 62:51-60. [PMID: 7478708 DOI: 10.1016/0304-3959(94)00228-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antinociceptive tolerance to morphine (MOR) was induced in groups of Sprague-Dawley rats receiving continuous intravenous infusions of morphine sulphate administered by 3 different MOR dosing regimes. At appropriate intervals throughout each infusion period, antinociceptive testing was performed using the tail-flick latency test and blood samples were collected. Groups of saline (SAL)-infused control rats also underwent antinociceptive testing and blood sample collection. Complete antinociceptive tolerance developed during each MOR infusion period and was characterized by a marked decline in the degree of antinociception from values greater than 90% of the maximum possible effect (%MPE) to pre-dosing baseline values. By contrast, %MPE values in SAL-infused control animals and in sham-operated rats were not significantly different from pre-dosing values throughout the infusion period, indicating that the experimental procedures themselves did not contribute to the development of antinociceptive tolerance to MOR. In addition, the rate of MOR tolerance development was inversely proportional to the MOR infusion rate. A very significant inverse relationship was observed between the mean degree of antinociception (%MPE) and the mean plasma molar concentration ratio, [morphine-3-glucuronide]/[MOR], for each of the 3 MOR dosing regimes and for the cumulated data. This relationship showed that near-maximum antinociception was attainable at ratio values less than approximately 0.50, whilst at ratio values above approximately 1.5, little or no antinociception was observed. Although %MPE was highly inversely correlated with the mean plasma morphine-3-glucuronide (M3G) concentrations for rats receiving regimes A and B, this was not the case for rats receiving regime C where antinociceptive tolerance was partially reversed by an increase in the morphine infusion rate part-way through the infusion period. In addition, a poor relationship was observed between %MPE and the mean plasma MOR concentration, possibly due to the confounding presence of M3G in all samples. Thus, we may conclude from this study in Sprague-Dawley rats that irrespective of the rate of antinociceptive tolerance development, the level of antinociception achievable appears to be highly inversely correlated with the mean [M3G]/[MOR] plasma molar concentration ratio and poorly correlated with the plasma MOR concentration, consistent with the notion that it is perhaps the balance between the excitatory effects of M3G and the inhibitory effects of MOR at the functional level which is the important determinant. Further research is required in carefully conducted studies in cancer patients to evaluate the possible contribution of the MOR metabolites, M3G and morphine-6-glucuronide (MbG), to increasing dosing requirements of MOR.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Gregg D Smith
- Department of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
16
|
Ishizuka O, Igawa Y, Mattiasson A, Andersson KE. Capsaicin-induced bladder hyperactivity in normal conscious rats. J Urol 1994; 152:525-30. [PMID: 7516984 DOI: 10.1016/s0022-5347(17)32787-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Capsaicin, instilled intravesically in normal, unanesthetized rats induced a concentration-dependent bladder hyperactivity, which could be abolished by hexamethonium, given intra-arterially near the bladder, or by morphine administered intrathecally. The effect was reversible and could be repeated. The NK-2 receptor selective antagonist SR 48,968 and the nonselective NK receptor antagonist spantide, given intra-arterially near the bladder, which by themselves, in the concentrations used, did not affect cystometric parameters, both counteracted the capsaicin-induced hyperactivity, whereas the NK-1 receptor selective antagonist RP 67,580 failed to do so. Blockade of tachykinin receptors in the urinary bladder does not seem to produce changes of the micturition reflex associated with bladder filling in the conscious rat. However, tachykinins released from capsaicin-sensitive nerves by various stimuli may, through stimulation of NK-2 receptors, lower the threshold for initiation of the micturition reflex. In the rat, intravesical capsaicin may be a suitable model for studies of afferent activity caused by stimuli releasing peptides from sensory nerves in the bladder, thereby provoking bladder hyperactivity.
Collapse
Affiliation(s)
- O Ishizuka
- Department of Urology, Lund University Hospital, Sweden
| | | | | | | |
Collapse
|
17
|
Abstract
This paper is the sixteenth installment of our annual review of research concerning the opiate system. It is restricted to papers published during 1993 that concern the behavioral effects of the endogenous opiate peptides, and does not include papers dealing only with their analgesic properties. The specific topics this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148
| | | | | |
Collapse
|