1
|
Matsumura N, Kikuchi-Utsumi K, Nakaki T. Activities of 7-nitroindazole and 1-(2-(trifluoromethylphenyl)-imidazole independent of neuronal nitric-oxide synthase inhibition. J Pharmacol Exp Ther 2008; 325:357-62. [PMID: 18270316 DOI: 10.1124/jpet.107.135160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
7-Nitroindazole (NI) is a widely used inhibitor of neuronal nitricoxide synthase (nNOS) used to study the role of the neuronal NO pathway in the nervous system. 7-NI prevents convulsions, including 2-amino-4-methylphosphinobutyric acid (glufosinate)-induced convulsions, in experimental models. Herein, we examined nNOS involvement in glufosinate-induced convulsions and the specificity of 7-NI for nNOS. Another nNOS inhibitor, 1-[2-(trifluoromethyl)phenyl]imidazole (TRIM), inhibited NOS activity in vivo, and it prevented glufosinate-induced convulsions. In contrast, an endothelial NOS inhibitor, N(5)-(1-iminoethyl)-l-ornithine, inhibited NOS activity in vivo, but it did not prevent the convulsions. These results suggest the involvement of nNOS in glufosinate-induced convulsions. However, a nonspecific NOS inhibitor, N(omega)-nitro-l-arginine methyl ester, inhibited NOS activity in vivo, but it failed to prevent glufosinate-induced convulsions. 6-NI and indazole, which did not inhibit NOS activity in vivo, suppressed glufosinate-induced convulsions. Moreover, glufosinate elicited convulsions in nNOS-deficient mice. These results suggest the anticonvulsant effects of 7-NI and TRIM on glufosinate-induced convulsions do not involve nNOS inhibition, instead possibly being related to an undefined property of nitrogen-containing chemical structures.
Collapse
Affiliation(s)
- Nobuko Matsumura
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | | | |
Collapse
|
2
|
Dudhgaonkar SP, Tandan SK, Kumar D, Arunadevi R, Prakash VR. Synergistic interaction between meloxicam and aminoguanidine in formalin-induced nociception in mice. Eur J Pain 2007; 12:321-8. [PMID: 17703974 DOI: 10.1016/j.ejpain.2007.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The objective of this study was to examine the nature of interaction between cyclooxygenase-2 inhibitor meloxicam and inducible nitric oxide synthase inhibitor aminoguanidine in formalin-induced nociception in mice and the possible therapeutic advantage. METHODS Antinociceptive effect of meloxicam (1, 3, 10 and 30 mg/kg, oral) and aminoguanidine (10, 30, 100 and 300 mg/kg, oral) and their combinations was examined in formalin-induced paw licking model in mice. Analysis of variance and isobolographic method were employed to identify the nature of antinociceptive interaction. RESULTS Higher doses of meloxicam (10 and 30 mg/kg) and aminoguanidine (100 and 300 mg/kg) produced significant reduction in paw licking time (antinociceptive) in late phase of formalin-induced nociception. Combination of sub-threshold dose of meloxicam (3 mg/kg) with increasing doses of aminoguanidine (10, 30, 100 and 300 mg/kg) resulted in synergistic antinociceptive effect. Similarly, co-administration of sub-threshold dose of aminoguanidine (30 mg/kg) with increasing doses of meloxicam (1, 3, 10 and 30 mg/kg) produced significant reduction in formalin-induced paw licking behaviour. The experimental ED(50) for combination with their confidence limits are below the confidence interval of theoretical line of additive interaction, suggesting synergistic nature of interaction between meloxicam and aminoguanidine in isobolographic analysis. CONCLUSION Co-administration of meloxicam and aminoguanidine showed synergistic antinociceptive effect which might possibly reduce gastrointestinal toxicity associated with the use of meloxicam.
Collapse
Affiliation(s)
- Shailesh P Dudhgaonkar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
3
|
Garcez-do-Carmo L, Santos WC. L-NAME pre-treatment partially inhibits the agmatine-evoked depression of the electrically induced twitch contraction of isolated rat vas deferens. Life Sci 2006; 79:854-60. [PMID: 16564552 DOI: 10.1016/j.lfs.2006.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 02/28/2006] [Indexed: 11/21/2022]
Abstract
The effect of the putative endogenous ligand for alpha(2)-adrenoceptors and imidazoline receptors agmatine was studied in sympathetic neurotransmission in the rat epididymal vas deferens. Tissues were obtained from N(varpi)-nitro-l-arginine methyl ester (l-NAME)-treated or normal animals and were contracted by electrical stimulation or by exogenous adenosine 5'-triphosphate (ATP). In the electrically stimulated epididymal end, agmatine produced an inhibitory effect on twitch contraction that was partially reversed in l-NAME-treated animals, whereas the inhibition produced by clonidine was not affected by l-NAME treatment. The nitric oxide (NO)-donor S-nitroso-N-acetyl-penicillamine (SNAP) also inhibited twitch contraction. Neither agmatine nor SNAP interfered with the responses induced by exogenous ATP in the epididymal end. Removal of the epithelium of the preparation did not modify the agmatine response. We conclude that a nitrergic pathway activated by agmatine plays a role in its inhibitory effect in rat vas deferens, but it remains to be investigated whether it results from a direct action on the enzyme NO-synthase or a receptor-mediated mechanism.
Collapse
Affiliation(s)
- Lúcia Garcez-do-Carmo
- Departamento de Farmacologia, UNIFESP, Escola Paulista de Medicina, Rua Botucatu, 862-Vila Clementino, CEP 04021-023, São Paulo, SP, Brasil.
| | | |
Collapse
|
4
|
Naik AK, Tandan SK, Kumar D, Dudhgaonkar SP. Nitric oxide and its modulators in chronic constriction injury-induced neuropathic pain in rats. Eur J Pharmacol 2005; 530:59-69. [PMID: 16364289 DOI: 10.1016/j.ejphar.2005.11.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022]
Abstract
This study was conducted to examine the role of nitric oxide (NO) in peripheral neuropathy induced by chronic constriction injury of sciatic nerve of rats by using NO precursor, NO donors and nitric oxide synthase (NOS) inhibitors. Chronic constriction injury of sciatic nerve of rats resulted in peripheral neuropathy as confirmed by nociceptive behavioural tests using mechanical, thermal and cold allodynia. NO precursor, L-arginine and NO donors sodium nitroprusside, S-nitroso-N-acetylpenicillamine potentiated the hyperalgesia and allodynia significantly suggesting proalgesic effect in neuropathic rats. Intracerebroventricular (i.c.v.) administration of rats with NOS inhibitors such as L-N(G)-nitroarginine methyl ester, N-iminoethyl lysine and 7-nitroindazole did not show any effect but i.p. administration of NOS inhibitors aminoguanidine, L-N(G)-nitroarginine methyl ester and 7-nitroindazole caused alleviation of pain. The study confirms the involvement of endogenously synthesized and exogenously administered NO in chronic constriction injury-induced neuropathy in rats. Significant increase in the levels of nitrate and nitrite in ligated sciatic nerve suggest that local up regulation of NO in the production and maintenance of neuropathic pain. In conclusion, initial attempt to manipulate L-arginine: NO pathway is indicative of therapeutic potential of these interventions in the management of neuropathic pain.
Collapse
Affiliation(s)
- Ajit K Naik
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar
| | | | | | | |
Collapse
|
5
|
Xavier FE, Salaices M, Márquez-Rodas I, Alonso MJ, Rossoni LV, Vassallo DV, Balfagón G. Neurogenic nitric oxide release increases in mesenteric arteries from ouabain hypertensive rats. J Hypertens 2004; 22:949-57. [PMID: 15097235 DOI: 10.1097/00004872-200405000-00017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We investigated whether chronic ouabain treatment changes the vasoconstrictor responses induced by electrical field stimulation (EFS) in endothelium-denuded rat superior mesenteric arteries and a possible role of neuronal nitric oxide (NO). METHOD Mesenteric arteries from untreated and ouabain-treated rats (approximately equal to 8.0 microg/kg per day, for 5 weeks) were used in this study. Vascular reactivity was analyzed by isometric tension recording. Expression of the neuronal NO synthase isoform was analyzed by Western blot. Noradrenaline release was evaluated in segments incubated with [H]noradrenaline. RESULTS Systolic (SBP) and diastolic (DBP) blood pressure were higher in ouabain-treated rats than in untreated rats (SBP, untreated: 120 +/- 3.5 mmHg versus ouabain-treated: 150 +/- 4.7 mmHg, P < 0.01; DBP, untreated: 87 +/- 3.0 mmHg versus ouabain-treated: 114 +/- 2.6 mmHg, P < 0.001). EFS-induced vasoconstrictions were smaller in arteries from ouabain-treated rats than in those from untreated animals, while the EFS-induced [H]noradrenaline release and the vasoconstriction induced by exogenous noradrenaline (1 nmol/l-10 micromol/l) remained unmodified. The non-selective NO synthase (NOS) inhibitor, N-nitro-L-arginine methyl ester (100 micromol/l), increased the EFS-induced vasoconstriction in mesenteric arteries from both groups, although the effect was more pronounced in segments from ouabain-treated rats. The selective neuronal NOS inhibitor, 7-nitroindazole (7-NI; 100 micromol/l) increased EFS-induced contraction only in segments from ouabain-treated rats. Neuronal NOS expression was greater in the mesenteric arteries from ouabain-treated rats than in those from untreated animals. Sodium nitroprusside (0.1 nmol/l-10 micromol/l) induced a similar vasodilatation in segments from both groups. CONCLUSIONS These results suggest that chronic ouabain treatment is accompanied by an increase in neuronal NO release that reduces EFS-induced vasoconstriction.
Collapse
Affiliation(s)
- Fabiano E Xavier
- Departamentos de Fisiología and Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Doursout MF, Liang Y, Chelly JE. NOS inhibitors exhibit antinociceptive properties in the rat formalin test. Can J Anaesth 2004; 50:909-16. [PMID: 14617588 DOI: 10.1007/bf03018738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To assess the systemic and nociceptive effects of nitric oxide synthase (NOS) inhibitors in the modulation of acute pain in rats subjected to the formalin test. METHODS Formalin 5% was injected in the hind paw in the presence and absence of NOS inhibitors (e.g., 7-nitro indazole, N-nitro-L-arginine and aminoguanidine). Catheters were chronically implanted to continuously record mean arterial blood pressure (MAP) and heart rate (HR). MAP, HR and paw lifting time were recorded at control and every five minutes for 35 min following formalin and NOS inhibitors. RESULTS Formalin injected into the rat hind paw induced a biphasic nociceptive behaviour: an initial acute phase (phase 1: during zero to five minutes after the formalin injection) followed by a prolonged tonic response (phase 2: beginning about ten minutes after the formalin injection). Aminoguanidine, an inhibitor of the inducible NOS and 7-nitro indazole, an inhibitor of the neuronal NOS, did not affect phase 1, whereas N-nitro-L-arginine, a non-selective NOS inhibitor decreased it (49%). All three NOS inhibitors diminished nociceptive behaviours during phase 2. L-arginine reversed antinociceptive effects of N-nitro-L-arginine in phase 1 and in phase 2. Pressor effects induced by formalin in phase 1 were abolished following all three NOS inhibitors. During phase 2, formalin-induced pressor effects remained unaffected by N-nitro-L-arginine and aminoguanidine but were inhibited by 7-nitro indazole. CONCLUSION Our data demonstrate that NO is predominantly generated by vascular endothelial NOS in phase 1 and phase 2, whereas the neuronal NOS and the inducible NOS exhibit antinociceptive effects through a non-NO related pathway in phases 1 and 2 in rats subjected to the formalin test.
Collapse
Affiliation(s)
- Marie-Françoise Doursout
- Department of Anesthesiology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
7
|
Arebi N, Healey ZV, Bliss PW, Ghatei M, Van Noorden S, Playford RJ, Calam J. Nitric oxide regulates the release of somatostatin from cultured gastric rabbit primary D-cells. Gastroenterology 2002; 123:566-76. [PMID: 12145809 DOI: 10.1053/gast.2002.34749] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Neuronal nitric oxide synthase (nNOS) is present in gastric D-cells. Mucosal somatostatin is diminished in H. pylori gastritis, where production of nitric oxide (NO) is increased. Therefore, we investigated the role of NO in D-cell function and the effects of prolonged exposure of D-cells to NO. METHODS Rabbit gastric D-cells were cultured. Somatostatin-14 was measured after 2 hours to examine the effects of arginine, nitric oxide sythase (NOS) inhibitors, and NO donors. Some cells were preincubated with a slow releasing NO donor for 12 hours. Results are expressed as percentage of total cell content. Nitrate content was measured by chemiluminescent assay. RESULTS L-arginine increased somatostatin-14 release in the presence of CCK8 from 4.4% +/- 0.5% to 6.4% +/- 0.4% (P < 0.02), and this was accompanied by NO release from 27 +/- 7 micromol/L to 86 +/- 12 micromol/L (P = 0.001). D-arginine and L-lysine had no effect. NOS inhibitors LNNA, SMT, and 7NI significantly attenuated the stimulatory response to L-arginine. NO donors sodium nitroprusside (SNP), 1 mmol/L, and S-nitroso-N-acetyl-D-L-penicillamine, 0.1 mmol/L, significantly increased basal and cholecystokinin-8 (CCK8) stimulated somatostatin release. Oxyhemoglobin attenuated the effect of SNP but not of L-arginine. Neither cyclic guanosine monophosphate nor guanylate cyclase were involved in the response to NO. However, inhibition of adenosine diphosphate (ADP) ribosyltransferase significantly decreased the response to L-arginine. Preincubation for 12 hours with 150 micromol/L (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate; IP3, inositol triphosphate decreased the 2-hour cellular response to CCK8 and SNP. CONCLUSIONS NO regulates rabbit D-cells. Acute exposure stimulates somatostatin mediated by ADP ribosylation, whereas long-term exposure reduces cellular responses to stimuli. The latter pathway may be responsible for the suppression of somatostatin in H. pylori gastritis.
Collapse
Affiliation(s)
- Naila Arebi
- Department of Gastroenterology, Hammersmith Hospital, Imperial College School of Medicine, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
8
|
Li SM, Yin LL, Shi J, Lin ZB, Zheng JW. The effect of 7-nitroindazole on the acquisition and expression of D-methamphetamine-induced place preference in rats. Eur J Pharmacol 2002; 435:217-23. [PMID: 11821029 DOI: 10.1016/s0014-2999(01)01610-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study investigated the role of nitric oxide (NO) in the rewarding effects of D-methamphetamine using 7-nitroindazole, a potent inhibitor of neuronal nitric oxide synthase (nNOS), as determined by the conditioned place preference paradigm. Male Sprague-Dawley rats treated with D-methamphetamine (1 mg/kg) or saline every other day for 8 days (four drug and four saline sessions) developed marked place preference for the drug-paired side. The administration of 7-nitroindazole (12.5-50 mg/kg) 30 min prior to the exposure to D-methamphetamine dose-dependently attenuated the acquisition of D-methamphetamine-induced conditioned place preference. In addition, when it was acutely administered 30 min prior to the testing session of an already established D-methamphetamine-induced conditioned place preference, 7-nitroindazole (12.5-50 mg/kg) attenuated the expression of this conditioned response in a dose-dependent manner, while 7-nitroindazole (25 and 50 mg/kg) alone showed no place preference effects. These findings indicate that nitric oxide (NO) is involved in the rewarding properties of methamphetamine and suggest that selective nNOS inhibitors maybe useful in the management of methamphetamine abuse.
Collapse
Affiliation(s)
- Su-Min Li
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38 Xueyuan Road, 100083, Beijing, PR China
| | | | | | | | | |
Collapse
|
9
|
Sotirov E, Papasova M. Nitric oxide modulates release of noradrenaline in guinea-pig gastric fundus. Brain Res Bull 2000; 51:401-5. [PMID: 10715560 DOI: 10.1016/s0361-9230(99)00264-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interaction between nitric oxide (NO) and the release of [(3)H]noradrenaline ([(3)H]NA) in conditions of non-activated and activated nicotinic receptors in guinea-pig gastric fundus preincubated with [(3)H]NA was studied. Nicotinic receptor agonist, 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) (100 microM) significantly increased the resting release of [(3)H]NA. NO-synthase inhibitor, N(omega)-nitro-L-arginine (L-NNA) (100 microM) significantly decreased DMPP-induced release of [(3)H]NA. Field electrical stimulation (FES) (2Hz; 1 ms; 360 st) significantly increased the release of [(3)H]NA above the basal levels. L-NNA significantly decreased the stimulation-evoked release of [(3)H]NA. DMPP increased the stimulation-evoked release of [(3)H]NA, effect which was significantly decreased by L-NNA. The data suggests that endogenous NO increases the release of [(3)H]NA, evoked either by activation of the nicotinic receptors or by electrical stimulation in guinea-pig gastric fundus.
Collapse
Affiliation(s)
- E Sotirov
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | |
Collapse
|
10
|
Ventura S, Hoyle CV, Burnstock G. Sodium nitroprusside enhances contractions of the guinea-pig isolated vas deferens. J Pharm Pharmacol 1998; 50:205-9. [PMID: 9530989 DOI: 10.1111/j.2042-7158.1998.tb06177.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of sodium nitroprusside on the electrical and mechanical properties of the smooth muscle of the guinea-pig vas deferens, and its responses to transmitter substances, have been investigated by use of the sucrose-gap technique. Isolated longitudinal segments of guinea-pig vas deferens contracted in response to electrical field stimulation (100 V, 0.04-0.1 ms, 1-5 Hz, 10 s train every 60 s) and application of ATP (1 mM) or noradrenaline (10 microM). Sodium nitroprusside (0.1 mM) did not affect resting tension but did enhance contractions evoked by electric-field stimulation but not by ATP or noradrenaline. The sodium nitroprusside-induced enhancement was unaffected by the nitric oxide synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME) (0.1 mM). Conversely, electrically evoked contractions were unaffected by the nitric oxide precursor L-arginine (1 mM) or the nitric oxide donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) (0.1 mM). The amplitudes of electrically evoked excitatory junction potentials (EJPs) were not affected by application of sodium nitroprusside, although it caused a small depolarization of 0.7+/-0.3 mV. Similarly, the depolarization caused by exogenous application of ATP or noradrenaline was unaffected by the presence of sodium nitroprusside. L-NAME, L-arginine and SNAP did not affect EJP amplitude or baseline membrane potential. It is concluded that sodium nitroprusside enhances electrically evoked contractions of the guinea-pig vas deferens by reducing the threshold voltage for action potential firing in smooth-muscle cells.
Collapse
Affiliation(s)
- S Ventura
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | |
Collapse
|
11
|
Abstract
Electrical field stimulation (60 V, 1 ms, single pulses or 20 s trains of 1-10 Hz) of the nerve terminals within the rat vas deferens produced biphasic contractions in preparations oriented to measure either longitudinal or circular muscle contractions. In confirmation of earlier reports, these contractions were blocked by tetrodotoxin (1 microM). The initial fast purinergic contraction was dominant in prostatic halves of the vas deferens while the second slower noradrenergic contraction was greater in epididymal halves. Although previous studies have shown nitric oxide synthase immuno-positive nerves in the vas deferens, electrical field stimulation-induced contractions were unaffected by L-arginine, sodium nitroprusside, N-nitro-L-arginine methyl ester (L-NAME) or superoxide dismutase in concentrations up to I mM. In concentrations above 1 mM, L-NAME reduced the size of the field stimulation-induced contractions but this effect could not be reversed by either L-arginine or sodium nitroprusside. Furthermore, L-arginine, sodium nitroprusside and L-NAME did not affect the contractions induced by exogenous application of noradrenaline (10 microM), ATP (1 mM) or BaCl2 (1-10 mM). We conclude that nitric oxide does not act as a neuromodulator in isolated preparations of rat vas deferens.
Collapse
Affiliation(s)
- S Ventura
- Department of Anatomy and Developmental Biology, University College London, UK
| | | |
Collapse
|
12
|
Moore PK, Handy RL. Selective inhibitors of neuronal nitric oxide synthase--is no NOS really good NOS for the nervous system? Trends Pharmacol Sci 1997; 18:204-11. [PMID: 9226999 DOI: 10.1016/s0165-6147(97)01064-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is now ten years since NO was shown to account for the biological activity of endothelium-derived relaxing factor (EDRF). It is also the tenth anniversary of the identification of L-NG monomethyl arginine (L-NMMA) as the very first inhibitor of NO biosynthesis. That EDRF and NO were one and the same sparked an explosion of interest in the biochemistry and pharmacology of NO which has yet to subside. In contrast, the first ever nitric oxide synthase (NOS) inhibitor slipped seamlessly into the literature virtually without comment at the time. Over the following decade, L-NMMA (and like NOS inhibitors) have proved invaluable as tools for probing the biological roles of NO in health and disease and, in particular, have increased our understanding of the function of NO in the nervous system. Further advances in this important area now require the development of inhibitors selective for the neuronal isoform of NOS (nNOS). Here, Philip Moore and Rachel Handy provide an up-to-date account of the literature regarding the biochemical and pharmacological characterization of NOS inhibitors with particular reference to compounds with greater selectivity for the nNOS isoform.
Collapse
Affiliation(s)
- P K Moore
- Biomedical Sciences Division, King's College, University of London, UK
| | | |
Collapse
|
13
|
García-Pascual A, Costa G, Labadia A, Persson K, Triguero D. Characterization of nitric oxide synthase activity in sheep urinary tract: functional implications. Br J Pharmacol 1996; 118:905-14. [PMID: 8799561 PMCID: PMC1909510 DOI: 10.1111/j.1476-5381.1996.tb15485.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. To define further the role of nitric oxide (NO) in urinary tract function, we have measured the presence of nitric oxide synthase (NOS) activity, and its relationship with functional NO-mediated responses to electrical field stimulation (EFS) in the urethra, the detrusor and the ureter from sheep. NOS activity was assayed by the conversion of L-[14C]-arginine to L-[14C]-citrulline. Endogenous production of citrulline was confirmed by thin layer chromatography. 2. NOS enzymatic activity was detected in the cytosolic fraction from tissue homogenates with the following regional distribution (pmol citrulline mg-1 protein min-1): urethra (33 +/- 3.3), detrusor (13.1 +/- 1.1) and ureter (1.5 +/- 0.2). No activity was detected in the particulate fraction of any region. 3. NOS activity was dependent on Ca(2+)-calmodulin and required exogenously added NADPH and tetrahydrobyoptein (BH4) for maximal activity. Exclusion of calmodulin from the incubation mixture did not modify NOS activity, but it was significantly reduced in the presence of the calmodulin antagonist, calmidazolium, suggesting the presence of enough endogenous calmodulin to sustain the observed NOS activity. 4. NOS activity was inhibited to a greater extent by NG-nitro-L-arginine (L-NOARG) and its methyl ester (L-NAME) than by NG-monomethyl-L-arginine (L-NMMA), while 7-nitroindazole (7-NI) was a weak inhibitor and L-cannavine had no effect. 5. Citrulline formation could be inhibited by superoxide dismutase in an oxyhaemoglobin-sensitive manner, suggesting feedback inhibition of NOS by NO. 6. EFS induced prominent NO-mediated relaxations in the urethra while minor or no responses were observed in the detrusor and the ureter, respectively. Urethral relaxations to EFS were inhibited by NOS inhibitors with the rank order of potency: L-NOARG = L-NAME > 7-NI > L-NMMA. 7. In conclusion, we have demonstrated the presence of NO-synthesizing enzymatic activity in the sheep urinary tract which shows similar characteristics to the constitutive NOS isoform found in brain. We suggest that the enzymatic activity measured in the urethral muscle layer may account for the NO-mediated urethral relaxation during micturition whereas regulation of detrusor and ureteral motor function by NOS containing nerves is less likely.
Collapse
Affiliation(s)
- A García-Pascual
- Department of Physiology, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Komoszyński M, Wojtczak A. Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1310:233-41. [PMID: 8611638 DOI: 10.1016/0167-4889(95)00135-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Komoszyński
- Department of Biochemistry, Institute of Biology and Environmental Protection, Nicholas Copernicus University, Toruń, Poland
| | | |
Collapse
|