1
|
Abstract
Currently, most undergraduate textbooks that cover the autonomic nervous system retain the concept that autonomic nerves release either acetylcholine or norepinephrine. However, in recent years, a large volume of research has superseded this concept with one in which autonomic nerves normally release at least one cotransmitter along with a dominant transmitter that may or may not be acetylcholine or norepinephrine. Cotransmission involving the simultaneous release of norepinephrine, ATP, and neuropeptide Y can easily be demonstrated in an isometric ring preparation of the rat tail artery, which is described here. The experiment clearly demonstrates the principle of cotransmission but allows more advanced concepts in autonomic cotransmission to be addressed.
Collapse
Affiliation(s)
- Christopher D Johnson
- Centre for Biomedical Science Education, Queen's University, Belfast, Northern Ireland.
| |
Collapse
|
2
|
Tsurumaki T, Nagai S, Bo X, Toyosato A, Higuchi H. Potentiation by neuropeptide Y of 5HT2A receptor-mediated contraction in porcine coronary artery. Eur J Pharmacol 2006; 544:111-7. [PMID: 16844110 DOI: 10.1016/j.ejphar.2006.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 06/13/2006] [Accepted: 06/15/2006] [Indexed: 11/30/2022]
Abstract
Potentiation by neuropeptide Y of serotonin (5-HT)-induced vasoconstriction was investigated in porcine coronary artery. 5-HT caused concentration-dependent contraction through 5-HT2A receptors. Neuropeptide Y (30 nM) significantly increased the 5HT-induced contraction by 16+/-5% in arteries with intact endothelium. Removal of the endothelium abolished the potentiation. A neuropeptide Y1 antagonist, BIBP3226, blocked this neuropeptide Y-induced potentiation. In vessels with intact endothelium, the potentiation by neuropeptide Y was inhibited by in the presence of a cyclo-oxygenase inhibitor, indomethacin (30 microM), but not by the presence of ETA or ETB endothelin receptor antagonists or an NO synthase inhibitor, NG-nitro-L-arginine (L-NNA) (1 mM) at all. A thromboxane A2 (TXA2) synthase inhibitor, ozagrel, and prostanoid TP receptor antagonists, seratrodast and ONO-3708, also inhibited the neuropeptide Y-induced potentiation. In the endothelium-denuded arteries, a prostanoid TP receptor agonist, U-46619 (0.01-0.1 nM), potentiated 5-HT-induced contraction. These results indicate that neuropeptide Y potentiates the 5-HT-induced contraction, due to release of TXA2 from the endothelium via neuropeptide Y1 receptors, in porcine coronary artery.
Collapse
Affiliation(s)
- Tatsuru Tsurumaki
- Division of Pharmacology, Department of Molecular Genetics and Signal Transduction Research, Course for Molecular and Cellular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan
| | | | | | | | | |
Collapse
|
3
|
Prieto D, Arcos LRDL, Martínez P, Benedito S, García-Sacristán A, Hernández M. Heterogeneity of the neuropeptide Y (NPY) contractile and relaxing receptors in horse penile small arteries. Br J Pharmacol 2004; 143:976-86. [PMID: 15557288 PMCID: PMC1575958 DOI: 10.1038/sj.bjp.0706005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The distribution of neuropeptide Y (NPY)-immunorective nerves and the receptors involved in the effects of NPY upon electrical field stimulation (EFS)- and noradrenaline (NA)-elicited contractions were investigated in horse penile small arteries. NPY-immunoreactive nerves were widely distributed in the erectile tissues with a particularly high density around penile intracavernous small arteries. In small arteries isolated from the proximal part of the corpora cavernosa, NPY (30 nM) produced a variable modest enhancement of the contractions elicited by both EFS and NA. At the same concentration, the NPY Y(1) receptor agonist, [Leu(31), Pro(34)]NPY, markedly potentiated responses to EFS and NA, whereas the NPY Y(2) receptor agonist, NPY(13-36), enhanced exogenous NA-induced contractions. In arteries precontracted with NA, NPY, peptide YY (PYY), [Leu(31), Pro(34)]NPY and the NPY Y(2) receptor agonists, N-acetyl[Leu(28,31)]NPY (24-36) and NPY(13-36), elicited concentration-dependent contractile responses. Human pancreatic polypeptide (hPP) evoked a biphasic response consisting of a relaxation followed by contraction. NPY(3-36), the compound 1229U91 (Ile-Glu-Pro-Dapa-Tyr-Arg-Leu-Arg-Tyr-NH2, cyclic(2,4')diamide) and eventually NPY(13-36) relaxed penile small arteries. The selective NPY Y(1) receptor antagonist BIBP3226 ((R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide) (0.3 microM) shifted to the right the concentration-response curves to both NPY and [Leu(31), Pro(34)]NPY and inhibited the contractions induced by the highest concentrations of hPP but not the relaxations observed at lower doses. In the presence of the selective NPY Y(2) receptor antagonist BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2, 4-triazol-4-yl]ethyl]-argininamide) (0.3 microM), the Y(2) receptor agonists NPY(13-36) and N-acetyl[Leu(28,31)]NPY (24-36) evoked potent slow relaxations in NA-precontracted arteries, under conditions of nitric oxide (NO) synthase blockade. Mechanical removal of the endothelium markedly enhanced contractions of NPY on NA-precontracted arteries, whereas blockade of the neuronal voltage-dependent Ca(2+) channels did not alter NPY responses. These results demonstrate that NPY can elicit dual contractile/relaxing responses in penile small arteries through a heterogeneous population of postjunctional NPY receptors. Potentiation of the contractions evoked by NA involve both NPY Y(1) and NPY Y(2) receptors. An NO-independent relaxation probably mediated by an atypical endothelial NPY receptor is also shown and unmasked in the presence of selective antagonists of the NPY contractile receptors.
Collapse
Affiliation(s)
- Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
4
|
Malmström RE. 5. Neuropeptide Y receptor antagonists in cardiovascular pharmacology. PROGRESS IN MEDICINAL CHEMISTRY 2004; 42:207-44. [PMID: 15003722 DOI: 10.1016/s0079-6468(04)42005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Rickard E Malmström
- Department of Physiology and Pharmacology, Division of Pharmacology, Karolinska Institute, S-17177 Stockholm, Sweden
| |
Collapse
|
5
|
Bradley E, Law A, Bell D, Johnson CD. Effects of varying impulse number on cotransmitter contributions to sympathetic vasoconstriction in rat tail artery. Am J Physiol Heart Circ Physiol 2003; 284:H2007-14. [PMID: 12742824 DOI: 10.1152/ajpheart.01061.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the contributions of the cotransmitters norepinephrine (NE), ATP, and neuropeptide Y (NPY) to sympathetically evoked vasoconstriction in the rat tail artery in isolated vascular rings by using 1-100 stimulation impulses at 20 Hz. Phentolamine (2 microM), the alpha-adrenoceptor antagonist, markedly reduced responses to all stimuli, although responses to lower impulse numbers were reduced less than responses to longer trains. The purinergic receptor antagonist suramin (100 microM) reduced all responses, but to a much greater extent with few impulse trains. Responses were further reduced or abolished by addition of the second antagonist. Any remaining responses were abolished by the NPY-Y(1) receptor antagonist BIBP-3226 (75 nM). NPY had a direct agonist action and potentiated sympathetically mediated responses. NPY (75 nM) potentiated responses and BIBP-3226 decreased responses to 2- and 20-impulse trains. Both affected responses from 2 impulses to >20 impulses, but there was no preferential effect on purinergic contributions to responses because neurally released NPY potentiated both "pure" NE and ATP responses equally. We conclude that all three cotransmitters contribute significantly to vascular responses and their contribution varies markedly with impulse numbers. There is considerable synergy between cotransmitters, especially with lower impulse numbers where NPY contributions are greater than expected.
Collapse
Affiliation(s)
- Eamonn Bradley
- Department of Physiology, School of Medicine, Queen's University Belfast, Medical Biology Centre, United Kingdom
| | | | | | | |
Collapse
|
6
|
Tsurumaki T, Yamaguchi T, Higuchi H. Marked neuropeptide Y-induced contractions via NPY-Y1 receptor and its desensitization in rat veins. Vascul Pharmacol 2002; 39:325-33. [PMID: 14567071 DOI: 10.1016/s1537-1891(03)00044-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate neuropeptide Y (NPY)-induced vasoconstrictions in rat blood vessels and which NPY receptor subtype is involved in vasoconstrictions. NPY produced marked contractions in rat common jugular, brachial, portal, femoral and tail veins, and vena cava inferior, whereas it produced little or no contractions in rat common carotid, brachial, femoral and tail arteries, and thoracic and abdominal aortae. The maximal NPY-induced contractions were larger than maximal phenylephrine (PE)-induced contractions in the veins. These NPY-induced contractions were blocked by the Y1 antagonists, SRL-21, and BIBP3226 but not by the Y5 antagonist, L-152804. A Y2 agonist, NPY (13-36), did not produce contractions. RT-PCR showed that NPY-Y1 was the only receptor subtype in the veins indicating that NPY-induced contractions are mediated through the Y1 receptor. Pretreatment with NPY showed a rapid and long-lasting desensitization of these contractions. The marked NPY-induced contractions and its desensitization in the veins suggest the physiological relevance of NPY in the venous circulation.
Collapse
Affiliation(s)
- Tatsuru Tsurumaki
- Division of Pharmacology, Department of Molecular Genetics and Signal Transduction Research, Course for Molecular and Cellular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan
| | | | | |
Collapse
|
7
|
Malmström RE. Pharmacology of neuropeptide Y receptor antagonists. Focus on cardiovascular functions. Eur J Pharmacol 2002; 447:11-30. [PMID: 12106798 DOI: 10.1016/s0014-2999(02)01889-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y is one of the most abundant mammalian neuropeptides identified to date. The possible actions of neuropeptide Y, that is co-localized and released with noradrenaline, as a sympathetic co-transmitter has attracted much attention during the last decade. In recent years, several non-peptide antagonists with high subtype selectivity for neuropeptide Y receptors have been introduced. With them, the status of neuropeptide Y as a sympathetic transmitter has been established, and so have profound cardiovascular effects mediated by neuropeptide Y Y(1) and Y(2) receptors. Significant release of neuropeptide Y occurs especially upon stronger sympathetic activation, and recent data suggest that the importance of neuropeptide Y seems enhanced in stress-related cardiovascular disorders. The true significance of neuropeptide Y has thus started to unfold, owing to the presence of the first generation of selective neuropeptide Y receptor antagonists. This review concerns the pharmacology of these agents, what we have learnt from them, and might find out in the future.
Collapse
Affiliation(s)
- Rickard E Malmström
- Division of Pharmacology, Department of Physiology and Pharmacology, Karolinska Institute, S-17177, Stockholm, Sweden.
| |
Collapse
|
8
|
Prieto D, García-Sacristán A, Simonsen U. Characterization of NPY receptors mediating contraction in rat intramyocardial coronary arteries. REGULATORY PEPTIDES 1998; 75-76:155-60. [PMID: 9802404 DOI: 10.1016/s0167-0115(98)00063-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In vitro experiments in a microvascular myograph were designed in order to characterize the receptor subtypes and the mechanisms underlying the contractions induced by neuropeptide Y (NPY) in rat coronary small arteries. The rank order of potency for NPY-receptor agonist-induced increases in tension in endothelium-intact preparations was polypeptide Y (PYY)> NPY > or = [Leu31Pro34]NPY, while NPY(13-36) only induced small contractions at the highest concentration applied. The selective neuropeptide Y1 receptor antagonist, BIBP 3226, caused rightward shifts in the concentration-response curves for NPY and the slope of the Schild plot was not significantly different from unity. The pA2 value for BIBP 3226 against NPY was 7.88+/-0.15 (n = 6). We have earlier shown that endothelial cell removal does not change the contractile responses induced by NPY, but indomethacin (3 x 10(-6) M) significantly reduced the contractions induced by the peptide. In contrast, the thromboxane receptor antagonist, SQ29548, which abolished the contractions induced by the thromboxane analogue, U46619, did not change the concentration-response curves for NPY. In conclusion, the present study suggests that Y1 receptors mediate NPY-induced contractions in rat coronary resistance arteries, and that a non-thromboxane prostanoid is involved in the contractile mechanism.
Collapse
MESH Headings
- Animals
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic
- Coronary Vessels/drug effects
- Coronary Vessels/physiology
- Fatty Acids, Unsaturated
- Hydrazines/pharmacology
- In Vitro Techniques
- Indomethacin/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Neuropeptide Y/analogs & derivatives
- Neuropeptide Y/pharmacology
- Neuropeptide Y/physiology
- Peptide YY/pharmacology
- Peptide YY/physiology
- Prostaglandins/physiology
- Rats
- Rats, Wistar
- Receptors, Neuropeptide Y/classification
- Receptors, Neuropeptide Y/drug effects
- Receptors, Neuropeptide Y/physiology
- Receptors, Thromboxane/antagonists & inhibitors
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- D Prieto
- Departamento de Fisiologia, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
9
|
Vanderheyden PM, Van Liefde I, DeBacker JP, Ebinger G, Vauquelin G. Effect of BIBP3226 on inositol phosphate accumulation and cytosolic calcium level in control and NPY Y1 receptor expressing CHO-K1 cells. REGULATORY PEPTIDES 1998; 75-76:191-9. [PMID: 9802409 DOI: 10.1016/s0167-0115(98)00068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BIBP3226 was developed as a potent, selective and competitive antagonist for NPY Y1 receptors by mimicking the C-terminal part of NPY. In agreement with previous studies, NPY mediated a pertussis toxin sensitive elevation of intracellular calcium concentration in CHO-K1 cells that express recombinant human NPY Y1 receptors which can be inhibited by BIBP3226. Surprisingly micromolar concentrations of BIBP3226 were found to induce by itself a fast increase of intracellular calcium concentration followed by a sustained elevated level of this ion. These responses of BIBP3226 are not mediated by NPY receptor activation since (1) they are still present after NPY receptor activation and desensitization, (2) they are also evoked by the receptor inactive enantiomer BIBP3435, (3) they are not affected by pretreatment of the cells with pertussis toxin, (4) they also occur in non-transfected CHO-K1 cells. Preincubation of the cells with EGTA abolished only the sustained increase calcium concentration elicited by BIBP3226 suggesting that the fast increase of intracellular calcium concentration reflects the mobilization of intracellular calcium pools. The ability of thapsigargin to completely inhibit BIBP3226 mediated responses, in the presence or absence of extracellular calcium indeed indicated that BIBP3226 mobilizes intracellular Ins(1,2,3)P3 sensitive calcium stores. In agreement, BIBP3226 was found to activate phospholipase C since the responses were completely inhibited by U73122. Furthermore, when measured in the presence of 10 mM LiCl, BIBP3226 caused an increased accumulation of inositol phosphates. This effect of BIBP3226 is likely to be mediated by activation of an until now unknown receptor or cellular target that is endogeneously expressed in CHO-K1 cells.
Collapse
Affiliation(s)
- P M Vanderheyden
- Department of Protein Chemistry, Free University of Brussels (VUB), Sint-Genesius Rode, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The existence of neurogenic mediator candidates apart from noradrenaline and acetylcholine involved in the control of vascular tone has attracted enormous attention during the past few decades. One such mediator is neuropeptide Y (NPY), which is co-localized with noradrenaline in sympathetic perivascular nerves. Stimulation of sympathetic nerves in vitro and in vivo causes non-adrenergic vasoconstriction which can be blocked by experimental manipulations that inhibit NPY mechanisms. Thus, the vasopressor response to stimulation of sympathetic nerves can be attenuated by chemical or surgical sympathectomy, treatment with reserpine or other pharmacological agents, and tachyphylaxis to NPY or by NPY antagonists. The NPY field was long plagued by a lack of specific antagonists, but with the recently developed, selective, non-peptide and stable NPY antagonists it has now become possible to study subtypes of this receptor family. For instance, it has become clear that the NPY Y1 receptor mediates most of the direct peripheral effects of NPY on vascular tone. These antagonists promise to stimulate NPY research and will likely unravel the true significance of NPY in cardiovascular control under physiological conditions as well as in pathophysiological states.
Collapse
Affiliation(s)
- A Franco-Cereceda
- Department of Thoracic Surgery, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|
11
|
Barrios VE, Nelson AG, Toombs CF. BIBP3226 inhibits neuropeptide Y and pancreatic polypeptide potentiated neurogenic vasoconstriction. Life Sci 1998; 62:525-32. [PMID: 9464464 DOI: 10.1016/s0024-3205(97)01148-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuropeptide Y (NPY) potentiates the contractile response of the rat caudal artery to adrenergic nerve stimulation in-vitro. The NPY Y1 selective antagonist BIBP3226 ((R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-argininami de), inhibited the vascular effects of NPY in rat caudal artery preparations in-vitro (IC50 =126 nM). BIBP3226 also inhibited the effects of the selective Y1 agonist [Leu31,Pro34]NPY and completely abolished the effects of avian pancreatic polypeptide that was shown to be capable of potentiating neurogenic vasoconstriction in this preparation. These effects were reversible and are most likely mediated by the Y1 receptor subtype since we failed to observe any functional evidence of a Y2 receptor subtype in rat caudal artery. The caudal artery provides a useful functional assay for pharmacological analysis of NPY and NPY antagonists.
Collapse
Affiliation(s)
- V E Barrios
- Department of Pharmacology, Amgen Inc., Thousand Oaks, California 91320, USA
| | | | | |
Collapse
|
12
|
Duckles SP, Adner M, Edvinsson L, Krause DN. Neuropeptide Y Y1 receptor blockade does not alter adrenergic nerve responses of the rat tail artery. Eur J Pharmacol 1997; 340:75-9. [PMID: 9527509 DOI: 10.1016/s0014-2999(97)01403-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using the selective neuropeptide Y Y1 receptor antagonist, BIBP3226 [(N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-D-argininamide], the role of endogenous neuropeptide Y in mediating vasoconstrictor responses to adrenergic nerve stimulation was investigated by recording isometric force from isolated rat tail artery segments. BIBP3226 had no effect on contractile responses to adrenergic nerve stimulation (10 pulses; 0.5-2 Hz), but it completely blocked the enhancement of contraction produced by exogenous neuropeptide Y. When frequency and train length of the transmural nerve stimulation were increased (100 pulses; 1-16 Hz), contractile responses were still unaffected by BIBP3226. A peptidase inhibitor mixture known to increase responses to exogenous neuropeptide Y was added; however, BIBP3226 still did not influence contractile responses to adrenergic nerve stimulation. Thus, contractile responses to adrenergic nerve stimulation in the rat tail artery do not appear to involve the release and postjunctional action of endogenous neuropeptide Y; however, exogenous neuropeptide Y does potentiate these responses by acting on Y1 receptors.
Collapse
Affiliation(s)
- S P Duckles
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697, USA.
| | | | | | | |
Collapse
|