1
|
Hogea A, Shah S, Jones F, Carver CM, Hao H, Liang C, Huang D, Du X, Gamper N. Junctophilin-4 facilitates inflammatory signalling at plasma membrane-endoplasmic reticulum junctions in sensory neurons. J Physiol 2021; 599:2103-2123. [PMID: 33569781 DOI: 10.1113/jp281331] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Rat somatosensory neurons express a junctional protein, junctophilin-4 (JPH4) JPH4 is necessary for the formation of store operated Ca2+ entry (SOCE) complex at the junctions between plasma membrane and endoplasmic reticulum in these neurons. Knockdown of JPH4 impairs endoplasmic reticulum Ca2+ store refill and junctional Ca2+ signalling in sensory neurons. In vivo knockdown of JPH4 in the dorsal root ganglion (DRG) sensory neurons significantly attenuated experimentally induced inflammatory pain in rats. Junctional nanodomain Ca2+ signalling maintained by JPH4 is an important contributor to the inflammatory pain mechanisms. ABSTRACT Junctions of endoplasmic reticulum and plasma membrane (ER-PM junctions) form signalling nanodomains in eukaryotic cells. ER-PM junctions are present in peripheral sensory neurons and are important for the fidelity of G protein coupled receptor (GPCR) signalling. Yet little is known about the assembly, maintenance and physiological role of these junctions in somatosensory transduction. Using fluorescence imaging, proximity ligation, super-resolution microscopy, in vitro and in vivo gene knockdown we demonstrate that a member of the junctophilin protein family, junctophilin-4 (JPH4), is necessary for the formation of store operated Ca2+ entry (SOCE) complex at the ER-PM junctions in rat somatosensory neurons. Thus we show that JPH4 localises to the ER-PM junctional areas and co-clusters with SOCE proteins STIM1 and Orai1 upon ER Ca2+ store depletion. Knockdown of JPH4 impairs SOCE and ER Ca2+ store refill in sensory neurons. Furthermore, we demonstrate a key role of the JPH4 and junctional nanodomain Ca2+ signalling in the pain-like response induced by the inflammatory mediator bradykinin. Indeed, an in vivo knockdown of JPH4 in the dorsal root ganglion (DRG) sensory neurons significantly shortened the duration of nocifensive behaviour induced by hindpaw injection of bradykinin in rats. Since the ER supplies Ca2+ for the excitatory action of multiple inflammatory mediators, we suggest that junctional nanodomain Ca2+ signalling maintained by JPH4 is an important contributor to the inflammatory pain mechanisms.
Collapse
Affiliation(s)
- Alexandra Hogea
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Shihab Shah
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frederick Jones
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Ce Liang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Dongyang Huang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
A Robust Bioassay of the Human Bradykinin B 2 Receptor that Extends Molecular and Cellular Studies: The Isolated Umbilical Vein. Pharmaceuticals (Basel) 2021; 14:ph14030177. [PMID: 33668382 PMCID: PMC7996148 DOI: 10.3390/ph14030177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Bradykinin (BK) has various physiological and pathological roles. Medicinal chemistry efforts targeted toward the widely expressed BK B2 receptor (B2R), a G-protein-coupled receptor, were primarily aimed at developing antagonists. The only B2R antagonist in clinical use is the peptide icatibant, approved to abort attacks of hereditary angioedema. However, the anti-inflammatory applications of B2R antagonists are potentially wider. Furthermore, the B2R antagonists notoriously exhibit species-specific pharmacological profiles. Classical smooth muscle contractility assays are exploited over a time scale of several hours and support determining potency, competitiveness, residual agonist activity, specificity, and reversibility of pharmacological agents. The contractility assay based on the isolated human umbilical vein, expressing B2R at physiological density, was introduced when investigating the first non-peptide B2R antagonist (WIN 64338). Small ligand molecules characterized using the assay include the exquisitely potent competitive antagonist, Pharvaris Compound 3 or the partial agonist Fujisawa Compound 47a. The umbilical vein assay is also useful to verify pharmacologic properties of special peptide B2R ligands, such as the carboxypeptidase-activated latent agonists and fluorescent probes. Furthermore, the proposed agonist effect of tissue kallikrein on the B2R has been disproved using the vein. This assay stands in between cellular and molecular pharmacology and in vivo studies.
Collapse
|
3
|
Rassias G, Leonardi S, Rigopoulou D, Vachlioti E, Afratis K, Piperigkou Z, Koutsakis C, Karamanos NK, Gavras H, Papaioannou D. Potent antiproliferative activity of bradykinin B2 receptor selective agonist FR-190997 and analogue structures thereof: A paradox resolved? Eur J Med Chem 2020; 210:112948. [PMID: 33139111 DOI: 10.1016/j.ejmech.2020.112948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Βradykinin stimulation of B2 receptor is known to activate the oncogenic ERK pathway and overexpression of bradykinin receptors B1 and B2 has been reported to occur in glioma, colorectal and cervical cancers. B1R and B2R antagonists have been shown to reverse tumor proliferation and invasion. Paradoxically, B1R and B2R agonism has also been reported to elicit antiproliferative benefits. In order to complement the data accumulated to date with the natural substrate bradykinin and peptidic B2R antagonists, we decided to examine for the first time the response elicited by B2R stimulation in breast cancer lines with a non-peptidic small molecule B2R agonist. We synthesized and assessed the highly selective and potent B2R partial agonist FR-190997 in MCF-7 and MDA-MBA-231 breast cancer lines and found it possessed significant antiproliferative activity (IC50 2.14 and 0.08 μΜ, respectively). The modular nature of FR-190997 allowed us to conduct a focused SAR study and discover compound 10 which exhibits subnanomolar antiproliferative activity (IC 50 0.06 nΜ) in the TNBC MDA-MBA-231 cell line. This performance surpasses, in most cases by several orders of magnitude, those of established anticancer agents and FDA-approved breast cancer drugs. In line with the established literature we suggest that this remarkable activity precipitates from a dual mode of action involving agonist-induced receptor internalization/degradation combined with sequestration of functional intracellular B2 receptors and inhibition of the associated endosomal signaling. The latter mode may be realized by appropriate ligands regardless of B2R agonist/antagonist designation which only relates to membrane residing GCPRs. Under this prism the controversy over the antiproliferative effects of B2 agonists and antagonists is potentially neutralized.
Collapse
Affiliation(s)
- Gerasimos Rassias
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece.
| | - Sofia Leonardi
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Dionisia Rigopoulou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Eleanna Vachlioti
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Konstantinos Afratis
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Haralambos Gavras
- Hypertension and Atherosclerosis Section, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
4
|
Lesage A, Gibson C, Marceau F, Ambrosi HD, Saupe J, Katzer W, Loenders B, Charest-Morin X, Knolle J. In Vitro Pharmacological Profile of a New Small Molecule Bradykinin B 2 Receptor Antagonist. Front Pharmacol 2020; 11:916. [PMID: 32636746 PMCID: PMC7316994 DOI: 10.3389/fphar.2020.00916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
We here report the discovery and early characterization of Compound 3, a representative of a novel class of small molecule bradykinin (BK) B2 receptor antagonists, and its superior profile to the prior art B2 receptor antagonists Compound 1 and Compound 2. Compound 3, Compound 2, and Compound 1 are highly potent antagonists of the human recombinant B2 receptor (Kb values 0.24, 0.95, and 1.24 nM, respectively, calcium mobilization assay). Compound 3 is more potent than the prior art compounds and icatibant in this assay (Kb icatibant 2.81 nM). The compounds also potently inhibit BK-induced contraction of endogenous B2 receptors in a human isolated umbilical vein bioassay. The potencies of Compound 3, Compound 2, Compound 1, and icatibant are (pA2 values) 9.67, 9.02, 8.58, and 8.06 (i.e. 0.21, 0.95, 2.63, and 8.71 nM), respectively. Compound 3 and Compound 2 were further characterized. They inhibit BK-induced c-Fos signaling and internalization of recombinant human B2 receptors in HEK293 cells, and do not antagonize the venous effects mediated by other G protein-coupled receptors in the umbilical vein model, including the bradykinin B1 receptor. Antagonist potency of Compound 3 at cloned cynomolgus monkey, dog, rat, and mouse B2 receptors revealed species selectivity, with a high antagonist potency for human and monkey B2 receptors, but several hundred-fold lower potency for the other B2 receptors. The in vitro off-target profile of Compound 3 demonstrates a high degree of selectivity over a wide range of molecular targets, including the bradykinin B1 receptor. Compound 3 showed a lower intrinsic clearance in the microsomal stability assay than the prior art compounds. With an efflux ratio of 1.0 in the Caco-2 permeability assay Compound 3 is predicted to be not a substrate of efflux pumps. In conclusion, we discovered a novel chemical class of highly selective and very potent B2 receptor antagonists, as exemplified by Compound 3. The compound showed excellent absorption in the Caco-2 assay, predictive of good oral bioavailability, and favourable metabolic stability in liver microsomes. Compound 3 has provided a significant stepping stone towards the discovery of the orally bioavailable B2 antagonist PHA-022121, currently in phase 1 clinical development.
Collapse
Affiliation(s)
- Anne Lesage
- Pharvaris Netherlands B.V., Leiden, Netherlands
| | | | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - Jörn Saupe
- AnalytiCon Discovery GmbH, Potsdam, Germany
| | | | | | - Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC, Canada
| | | |
Collapse
|
5
|
Marceau F, Bachelard H, Bouthillier J, Fortin JP, Morissette G, Bawolak MT, Charest-Morin X, Gera L. Bradykinin receptors: Agonists, antagonists, expression, signaling, and adaptation to sustained stimulation. Int Immunopharmacol 2020; 82:106305. [PMID: 32106060 DOI: 10.1016/j.intimp.2020.106305] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/10/2020] [Indexed: 01/23/2023]
Abstract
Bradykinin-related peptides, the kinins, are blood-derived peptides that stimulate 2 G protein-coupled receptors, the B1 and B2 receptors (B1R, B2R). The pharmacologic and molecular identities of these 2 receptor subtypes will be succinctly reviewed herein, with emphasis on drug development, receptor expression, signaling, and adaptation to persistent stimulation. Peptide and non-peptide antagonists and fluorescent ligands have been produced for each receptor. The B2R is widely and constitutively expressed in mammalian tissues, whereas the B1R is mostly inducible under the effect of cytokines during infection and immunopathology. The B2R is temporarily desensitized by a cycle of phosphorylation/endocytosis followed by recycling, whereas the nonphosphorylable B1R is relatively resistant to desensitization and translocated to caveolae on activation. Both receptor subtypes, mainly coupled to protein G Gq, phospholipase C and calcium signaling, mediate the vascular aspects of inflammation (vasodilation, edema formation). On this basis, icatibant, a peptide antagonist of the B2R, is approved in the management of hereditary angioedema attacks. This disease is the therapeutic showcase of the kallikrein-kinin system, with an orally bioavailable B2R antagonist under development, as well as other agents that inhibit the kinin forming protease, plasma kallikrein. Other clinical applications are still elusive despite the maturity of the medicinal chemistry efforts applied to kinin receptors.
Collapse
Affiliation(s)
- François Marceau
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada.
| | - Hélène Bachelard
- Division of Endocrinology and Nephrology, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Johanne Bouthillier
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Fortin
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Guillaume Morissette
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Marie-Thérèse Bawolak
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Xavier Charest-Morin
- Division of Infectious Disease and Immunity, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Lajos Gera
- Department of Biochemistry, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
6
|
Kempe S, Fois G, Brunner C, Hoffmann TK, Hahn J, Greve J. Bradykinin signaling regulates solute permeability and cellular junction organization in lymphatic endothelial cells. Microcirculation 2019; 27:e12592. [PMID: 31550055 DOI: 10.1111/micc.12592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Determine the effect of bradykinin on solute permeability and cellular junctional proteins in human dermis microvascular endothelial cells. METHODS Cells were characterized by immunofluorescence and fluorescence-activated cell sorting. Macromolecular transport of dextran and albumin was monitored. Junctional protein expression and phosphorylation were determined by immunoblot analyses. Intracellular calcium and cAMP levels were evaluated. Target gene expression at mRNA and protein levels was determined. RESULTS Human dermis microvascular endothelial cells comprised 97% lymphatic endothelial cells. Bradykinin increased the permeability to dextran in a concentration-dependent manner, while reduced the permeability to albumin. Bradykinin treatment down-regulated VE-cadherin expression and affected its phosphorylation status at Tyr731. It also down-regulated claudin-5 expression at the transcriptional level through bradykinin-2-receptor signaling. An increase in the intracellular calcium levels and a reduction in the cAMP concentration were associated effects. Finally, bradykinin induced the up-regulation of vascular endothelial growth factor-C protein which was found increased in BK-induced human dermis microvascular endothelial cells culture supernates. CONCLUSIONS Human dermis microvascular endothelial cells represent a model of lymphatic endothelial cells, in which bradykinin-2-receptor is expressed. Bradykinin-induced bradykinin-2-receptor signaling through intracellular calcium mobilization and reduction in cAMP levels, triggered changes in solute permeability and cellular junction expression. It further up-regulated vascular endothelial growth factors-C protein expression, which is a key modulator of lymphatic vessels function and lymphangiogenesis.
Collapse
Affiliation(s)
- Sybille Kempe
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Janina Hahn
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jens Greve
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Charest-Morin X, Hébert J, Rivard GÉ, Bonnefoy A, Wagner E, Marceau F. Comparing Pathways of Bradykinin Formation in Whole Blood From Healthy Volunteers and Patients With Hereditary Angioedema Due to C1 Inhibitor Deficiency. Front Immunol 2018; 9:2183. [PMID: 30333824 PMCID: PMC6176197 DOI: 10.3389/fimmu.2018.02183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple pathways have been proposed to generate bradykinin (BK)-related peptides from blood. We applied various forms of activation to fresh blood obtained from 10 healthy subjects or 10 patients with hereditary angioedema (HAE-1 or −2 only) to investigate kinin formation. An enzyme immunoassay for BK was applied to extracts of citrated blood incubated at 37°C under gentle agitation for 0–2 h in the presence of activators and/or inhibitory agents. Biologically active kinins in extracts were corroborated by c-Fos accumulation in HEK 293a cells that express either recombinant human B2 or B1 receptors (B2R, B1R). Biological evidence of HAE diagnostic and blood cell activation was also obtained. The angiotensin converting enzyme inhibitor enalaprilat, without any effect per se, increased immunoreactive BK (iBK) concentration under active stimulation of blood. Tissue kallikrein (KLK-1) and Kontact-APTT, a particulate material that activates the contact system, rapidly (5 min) and intensely (>100 ng/mL) induced similar iBK generation in the blood of control or HAE subjects. Tissue plasminogen activator (tPA) slowly (≥1 h) induced iBK generation in control blood, but more rapidly and intensely so in that of HAE patients. Effects of biotechnological inhibitors indicate that tPA recruits factor XIIa (FXIIa) and plasma kallikrein to generate iBK. KLK-1, independent of the contact system, is the only stimulus leading to an inconsistent B1R stimulation. Stimulating neutrophils or platelets did not generate iBK. In the HAE patients observed during remission, iBK formation capability coupled to B2R stimulation appears largely intact. However, a selective hypersensitivity to tPA in the blood of HAE patients suggests a role of plasmin-activated FXIIa in the development of attacks. Proposed pathways of kinin formation dependent on blood cell activation were not corroborated.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jacques Hébert
- Service d'allergie, CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - Arnaud Bonnefoy
- Division of Hematology/Oncology, CHU Sainte-Justine, Montréal, QC, Canada
| | - Eric Wagner
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Marceau F, Bawolak MT, Fortin JP, Morissette G, Roy C, Bachelard H, Gera L, Charest-Morin X. Bifunctional ligands of the bradykinin B 2 and B 1 receptors: An exercise in peptide hormone plasticity. Peptides 2018; 105:37-50. [PMID: 29802875 DOI: 10.1016/j.peptides.2018.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/24/2022]
Abstract
Kinins are the small and fragile hydrophilic peptides related to bradykinin (BK) and derived from circulating kininogens via the action of kallikreins. Kinins bind to the preformed and widely distributed B2 receptor (B2R) and to the inducible B1 receptor (B1R). B2Rs and B1Rs are related G protein coupled receptors that possess natural agonist ligands of nanomolar affinity (BK and Lys BK for B2Rs, Lys-des-Arg9-BK for B1R). Decades of structure-activity exploration have resulted in the production of peptide analogs that are antagonists, one of which is clinically used (the B2R antagonist icatibant), and also non-peptide ligands for both receptor subtypes. The modification of kinin receptor ligands has made them resistant to extracellular or endosomal peptidases and/or produced bifunctional ligands, defined as agonist or antagonist peptide ligands conjugated with a chemical fluorophore (emitting in the whole spectrum, from the infrared to the ultraviolet), a drug-like moiety, an epitope, an isotope chelator/carrier, a cleavable sequence (thus forming a pro-drug) and even a fused protein. Dual molecular targets for specific modified peptides may be a source of side effects or of medically exploitable benefits. Biotechnological protein ligands for either receptor subtype have been produced: they are enhanced green fluorescent protein or the engineered peroxidase APEX2 fused to an agonist kinin sequence at their C-terminal terminus. Antibodies endowed with pharmacological actions (agonist, antagonist) at B2R have been reported, though not monoclonal antibodies. These findings define classes of alternative ligands of the kinin receptor of potential therapeutic and diagnostic value.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Roy
- CHU de Québec - Université Laval, Québec, QC, G1 V 4G2, Canada
| | | | - Lajos Gera
- Department of Biochemistry, University of Colorado Denver, Aurora, CO, 80045, USA
| | | |
Collapse
|
9
|
Charest-Morin X, Lodge R, Marceau F. Bifunctional fusion proteins containing the sequence of the bradykinin homologue maximakinin: activities at the rat bradykinin B2 receptor. Can J Physiol Pharmacol 2018; 96:459-470. [DOI: 10.1139/cjpp-2017-0692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To support bradykinin (BK) B2 receptor (B2R) detection and therapeutic stimulation, we developed and characterized fusion proteins consisting of the BK homolog maximakinin (MK), or variants, positioned at the C-terminus of functional proteins (enhanced green fluorescent protein (EGFP), the peroxidase APEX2, or human serum albumin (HSA)). EGFP-MK loses its reactivity with anti-BK antibodies and molecular mass as it progresses in the endosomal tract of cells expressing rat B2Rs (immunoblots, epifluorescence microscopy). APEX2-(NG)15-MK is a bona fide agonist of the rat, but not of the human B2R (calcium and c-Fos signaling) and is compatible with the cytochemistry reagent TrueBlue (microscopy), a luminol-based reagent, or 3,3′,5,5′-tetramethylbenzidine (luminescence or colourimetric B2R detection, cell well plate format). APEX2-(NG)15-MK is a non-isotopic ligand suitable for drug discovery via binding competition. Affinity-purified secreted forms of HSA fused with peptides possessing the C-terminal MK or BK sequence failed to stimulate the rat B2R in the concentration range of 50–600 nmol/L. However, the non-secreted construction myc-HSA-MK is a B2R agonist, indicating that protein denaturation made the C-terminal sequence available for receptor binding. Fusion protein ligands of the B2R are stable but subjected to slow intracellular inactivation, strong species specificity, and possible steric hindrance between the receptor and large proteins.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Robert Lodge
- Human Retrovirology Laboratory, Montreal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
10
|
Bisha M, Dao VTV, Gholamreza-Fahimi E, Vogt M, van Zandvoort M, Weber S, Bas M, Khosravani F, Kojda G, Suvorava T. The role of bradykinin receptor type 2 in spontaneous extravasation in mice skin: implications for non-allergic angio-oedema. Br J Pharmacol 2018; 175:1607-1620. [PMID: 29465763 DOI: 10.1111/bph.14166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-allergic angio-oedema is a life-threatening disease mediated by activation of bradykinin type 2 receptors (B2 receptors). The aim of this study was to investigate whether activation of B2 receptors by endogenous bradykinin contributes to physiological extravasation. This may shed new light on the assumption that treatment with an angiotensin converting enzyme inhibitor (ACEi) results in an alteration in the vascular barrier function predisposing to non-allergic angio-oedema. EXPERIMENTAL APPROACH We generated a new transgenic mouse model characterized by endothelium-specific overexpression of the B2 receptor (B2tg ) and established a non-invasive two-photon laser microscopy approach to measure the kinetics of spontaneous extravasation in vivo. The B2tg mice showed normal morphology and litter size as compared with their transgene-negative littermates (B2n ). KEY RESULTS Overexpression of B2 receptors was functional in conductance vessels and resistance vessels as evidenced by B2 receptor-mediated aortic dilation to bradykinin in presence of non-specific COX inhibitor diclofenac and by significant hypotension in B2tg respectively. Measurement of dermal extravasation by Miles assay showed that bradykinin induced extravasation was significantly increased in B2tg as compared with B2n . However, neither endothelial overexpression of B2 receptors nor treatment with the ACEi moexipril or B2 antagonist icatibant had any effect on spontaneous extravasation measured by two-photon laser microscopy. CONCLUSIONS AND IMPLICATIONS Activation of B2 receptors does not appear to be involved in spontaneous extravasation. Therefore, the assumption that treatment with an ACEi results in an alteration in the physiological vascular barrier function predisposing to non-allergic angio-oedema is not supported by our findings.
Collapse
Affiliation(s)
- Marion Bisha
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Vu Thao-Vi Dao
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ehsan Gholamreza-Fahimi
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Vogt
- Interdisciplinary Centre for Clinical Research, Rheinisch-Westfälische Technische Hochschule Aachen, University Hospital, Aachen, Germany
| | - Marc van Zandvoort
- Interdisciplinary Centre for Clinical Research, Rheinisch-Westfälische Technische Hochschule Aachen, University Hospital, Aachen, Germany.,Department of Genetics and Cell Biology, Sector Molecular Cell Biology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Sarah Weber
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Murat Bas
- Department of Otorhinolaryngology, Technical University of Munich, Munich, Germany
| | - Farbod Khosravani
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Georg Kojda
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
11
|
Jean M, Gera L, Charest-Morin X, Marceau F, Bachelard H. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases. Front Pharmacol 2016; 6:306. [PMID: 26793104 PMCID: PMC4709452 DOI: 10.3389/fphar.2015.00306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer's inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be extracted from prodrug peptides that behave as peptidase-activated B2R agonists.
Collapse
Affiliation(s)
- Mélissa Jean
- Axe Endocrinologie et Néphrologie, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Québec QC, Canada
| | - Lajos Gera
- Department of Biochemistry, University of Colorado Denver, Denver CO, USA
| | - Xavier Charest-Morin
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Québec QC, Canada
| | - François Marceau
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Québec QC, Canada
| | - Hélène Bachelard
- Axe Endocrinologie et Néphrologie, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Québec QC, Canada
| |
Collapse
|
12
|
Khosravani F, Suvorava T, Dao VTV, Brockmann N, Kocgirli O, Herbst FF, Valcaccia S, Kassack MU, Bas M, Kojda G. Stability of murine bradykinin type 2 receptor despite treatment with NO, bradykinin, icatibant, or C1-INH. Allergy 2015; 70:285-94. [PMID: 25477154 DOI: 10.1111/all.12556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Little is known about factors which trigger and/or contribute to hereditary angioedema or ACE-inhibitor-mediated angioedema including variations in bradykinin type 2 receptor (B2R) expression and activity. METHODS Protein and mRNA expression of B2R and the increase of intracellular calcium (iCa) in response to bradykinin were monitored in porcine and murine endothelial cells in response to NO donors or bradykinin. B2R protein expression was evaluated in skin, heart, and lung of (i) mice with endothelial-specific overexpression of eNOS (eNOS(tg) ), (ii) in eNOS(-/-) mice and (iii) in C57BL/6 mice treated with the NO donor pentaerythritol tetranitrate (PETN), the NOS inhibitor l-nitroarginine (L-NA), plasma pool C1-INH, and the B2R antagonist icatibant. Aortic reactivity to bradykinin was investigated including eNOS(-/-) mice. RESULTS B2R protein and mRNA expression remained unchanged in cells subjected to L-NA, NO donors, and bradykinin in a time- and concentration-dependent manner. Likewise, increases of iCa in murine brain endothelial cells remained unchanged. B2R protein levels were similar in eNOS(tg) and eNOS(-/-) as compared to transgene-negative littermates. Likewise, treatment of C57BL/6 mice with PETN, L-NA, C1-INH or icatibant did not change B2R protein expression. In aortic rings of C57BL/6 mice, bradykinin induced B2R-dependent constrictions which were attenuated by endothelial NO and abolished by diclofenac indicating the functional importance of B2R-induced activation of endothelial NO synthase and cyclooxygenase. CONCLUSION These data suggest that alterations of B2R protein expression induced by NO, bradykinin, C1-INH, or icatibant unlikely contribute to bradykinin-induced angioedema. This finding does not rule out a role for NO in bradykinin-induced extravasation and/or angioedema.
Collapse
Affiliation(s)
- F. Khosravani
- Institute of Pharmacology and Clinical Pharmacology; Heinrich-Heine-University; Düsseldorf Germany
| | - T. Suvorava
- Institute of Pharmacology and Clinical Pharmacology; Heinrich-Heine-University; Düsseldorf Germany
| | - V. T.-V. Dao
- Institute of Pharmacology and Clinical Pharmacology; Heinrich-Heine-University; Düsseldorf Germany
| | - N. Brockmann
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| | - O. Kocgirli
- Institute of Pharmacology and Clinical Pharmacology; Heinrich-Heine-University; Düsseldorf Germany
| | - F. F. Herbst
- Institute of Pharmacology and Clinical Pharmacology; Heinrich-Heine-University; Düsseldorf Germany
| | - S. Valcaccia
- Institute of Pharmacology and Clinical Pharmacology; Heinrich-Heine-University; Düsseldorf Germany
| | - M. U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| | - M. Bas
- Otorhinolaryngology Department; University Hospital Rechts der Isar; Munich Technical University; Munich Germany
| | - G. Kojda
- Institute of Pharmacology and Clinical Pharmacology; Heinrich-Heine-University; Düsseldorf Germany
| |
Collapse
|
13
|
Charest-Morin X, Raghavan A, Charles ML, Kolodka T, Bouthillier J, Jean M, Robbins MS, Marceau F. Pharmacological effects of recombinant human tissue kallikrein on bradykinin B2 receptors. Pharmacol Res Perspect 2015; 3:e00119. [PMID: 26038695 PMCID: PMC4448978 DOI: 10.1002/prp2.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022] Open
Abstract
Tissue kallikrein (KLK-1), a serine protease, initiates the release of bradykinin (BK)-related peptides from low-molecular weight kininogen. KLK-1 and the BK B2 receptor (B2R) mediate beneficial effects on the progression of type 2 diabetes and renal disease, but the precise role of KLK-1 independent of its kinin-forming activity remains unclear. We used DM199, a recombinant form of human KLK-1, along with the isolated human umbilical vein, a robust bioassay of the B2R, to address the previous claims that KLK-1 directly binds to and activates the human B2R, with possible receptor cleavage. DM199 (1–10 nmol/L) contracted the isolated vein via the B2R, but in a tachyphylactic, kinin-dependent manner, without desensitization of the tissue to exogenously added BK. In binding experiments with recombinant N-terminally tagged myc-B2Rs expressed in HEK 293a cells, DM199 displaced [3H]BK binding from the rabbit myc-B2R, but not from the human or rat myc-B2Rs. No evidence of myc-B2R degradation by immunoblot analysis was apparent following treatment of these 3 myc-B2R constructs with DM199 (30 min, ≤10 nmol/L). In HEK 293 cells stably expressing rabbit B2R-GFP, DM199 (11–108 pmol/L) elicited signaling-dependent endocytosis and reexpression, while a higher concentration (1.1 nmol/L) induced a partially irreversible endocytosis of the construct (microscopy), paralleled by the appearance of free GFP in cells (immunoblotting, indicative of incomplete receptor down-regulation). The pharmacology of DM199 at relevant concentrations (<10 nmol/L) is essentially based on the activity of locally generated kinins. Binding to and mild down-regulation of the B2R is possibly a species-dependent idiosyncratic response to DM199.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Arvind Raghavan
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Matthew L Charles
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Tadeusz Kolodka
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - Johanne Bouthillier
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Mélissa Jean
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| | - Mark S Robbins
- DiaMedica Inc. One Carlson Parkway, Suite 124, Minneapolis, Minnesota, 55447
| | - François Marceau
- Centre de recherche en rhumatologie et immunologie, CHU de Québec Québec City, Québec, Canada, G1V 4G2
| |
Collapse
|
14
|
Charest-Morin X, Roy C, Fortin EJ, Bouthillier J, Marceau F. Pharmacological evidence of bradykinin regeneration from extended sequences that behave as peptidase-activated B2 receptor agonists. Front Pharmacol 2014; 5:32. [PMID: 24639651 PMCID: PMC3945637 DOI: 10.3389/fphar.2014.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/17/2014] [Indexed: 12/19/2022] Open
Abstract
While bradykinin (BK) is known to be degraded by angiotensin converting enzyme (ACE), we have recently discovered that Met-Lys-BK-Ser-Ser is paradoxically activated by ACE. We designed and evaluated additional "prodrug" peptides extended around the BK sequence as potential ligands that could be locally activated by vascular or blood plasma peptidases. BK regeneration was estimated using the contractility of the human umbilical vein as model of vascular functions mediated by endogenous B2 receptors (B2Rs) and the endocytosis of the fusion protein B2R-green fluorescent protein (B2R-GFP) expressed in Human Embryonic Kidney 293 cells. Of three BK sequences extended by a C-terminal dipeptide, BK-His-Leu had the most desirable profile, exhibiting little direct affinity for the receptor but a significant one for ACE (as shown by competition of [(3)H]BK binding to B2R-GFP or of [(3)H]enalaprilat to recombinant ACE, respectively). The potency of the contractile effect of this analog on the vein was reduced 18-fold by the ACE inhibitor enalaprilat, pharmacologically evidencing BK regeneration in situ. BK-Arg, a potential substrate of arginine carboxypeptidases, had a low affinity for B2Rs and its potency as a contractile agent was reduced 15-fold by tissue treatment with an inhibitor of these enzymes, Plummer's inhibitor. B2R-GFP internalization in response to 100 nM of the extended peptides recapitulated these findings, as enalaprilat selectively inhibited the effect of BK-His-Leu and Plummer's inhibitor, that of BK-Arg. The two peptidase inhibitors did not affect BK-induced effects in either assay. The novel C-terminally extended BKs had no or very little affinity for the kinin B1 receptor (competition of [(3)H]Lys-des-Arg(9)-BK binding). The feasibility of peptidase-activated B2R agonists is illustrated by C-terminal extensions of the BK sequence.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | - Caroline Roy
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | - Emile-Jacques Fortin
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | - Johanne Bouthillier
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | - François Marceau
- Department of Microbiology and Infectious Disease and Immunology, Université Laval and Centre de Recherche en Rhumatologie et Immunologie-Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| |
Collapse
|
15
|
Gera L, Roy C, Charest-Morin X, Marceau F. Vasopeptidase-activated latent ligands of the histamine receptor-1. Int Immunopharmacol 2013; 17:677-83. [DOI: 10.1016/j.intimp.2013.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/19/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
|
16
|
Charest-Morin X, Fortin S, Lodge R, Roy C, Gera L, Gaudreault RC, Marceau F. Inhibitory effects of cytoskeleton disrupting drugs and GDP-locked Rab mutants on bradykinin B₂ receptor cycling. Pharmacol Res 2013; 71:44-52. [PMID: 23454239 DOI: 10.1016/j.phrs.2013.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/25/2022]
Abstract
The bradykinin (BK) B₂ receptor (B₂R) is G protein coupled and phosphorylated upon agonist stimulation; its endocytosis and recycling are documented. We assessed the effect of drugs that affect the cytoskeleton on B2R cycling. These drugs were targeted to tubulin (paclitaxel, or the novel combretastatin A-4 mimetic 3,4,5-trimethoxyphenyl-4-(2-oxoimidazolidin-1-yl)benzenesulfonate [IMZ-602]) and actin (cytochalasin D). Tubulin ligands did not alter agonist-induced receptor endocytosis, as shown using antibodies reactive with myc-tagged B₂Rs (microscopy, cytofluorometry), but rather reduced the progression of the ligand-receptor-β-arrestin complex from the cell periphery to the interior. The 3 fluorescent probes of this complex (B2R-green fluorescent protein [B2R-GFP], the fluorescent agonist fluorescein-5-thiocarbamoyl-D-Arg-[Hyp³, Igl⁵, Oic⁷, Igl⁸]-BK and β-arrestin2-GFP) were condensed in punctuate structures that remained close to the cell surface in the presence of IMZ-602. Cytochalasin D selectively inhibited the recycling of endocytosed B₂R-GFP (B₂R-GFP imaging, [³H]BK binding). Dominant negative (GDP-locked)-Rab5 and -Rab11 reproduced the effects of inhibitors of tubulin and actin, respectively, on the cycling of B₂R-GFP. GDP-locked-Rab4 also inhibited B₂R-GFP recycling to the cell surface. Consistent with the displacement of cargo along specific cytoskeletal elements, Rab5-associated progression of the endocytosed BK B₂R follows microtubules toward their (-) end, while its recycling progresses along actin fibers to the cell surface. However, tubulin ligands do not suppress the tested desensitization or resensitization mechanisms of the B₂R.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Faussner A, Schüssler S, Feierler J, Bermudez M, Pfeifer J, Schnatbaum K, Tradler T, Jochum M, Wolber G, Gibson C. Binding characteristics of [3H]-JSM10292: a new cell membrane-permeant non-peptide bradykinin B2 receptor antagonist. Br J Pharmacol 2013; 167:839-53. [PMID: 22646218 DOI: 10.1111/j.1476-5381.2012.02054.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE A (3) H-labelled derivative of the novel small-molecule bradykinin (BK) B(2) receptor antagonist JSM10292 was used to directly study its binding properties to human and animal B(2) receptors in intact cells and to closely define its binding site. EXPERIMENTAL APPROACH Equilibrium binding, dissociation and competition studies with various B(2) receptor ligands and [(3) H]-JSM10292 were performed at 4°C and 37°C. The experiments were carried out using HEK293 cells stably (over)expressing wild-type and mutant B(2) receptors of human and animal origin. KEY RESULTS [(3) H]-JSM10292 bound to B(2) receptors at 4°C and at 37°C with the same high affinity. Its dissociation strongly depended on the temperature and increased when unlabelled B(2) receptor agonists or antagonists were added. [(3) H]-JSM10292 is cell membrane-permeant and thus also bound to intracellular, active B(2) receptors, as indicated by the different 'nonspecific' binding in the presence of unlabelled JSM10292 or of membrane-impermeant BK. Equilibrium binding curves with [(3) H]-JSM10292 and competition experiments with unlabelled JSM10292 and [(3) H]-BK showed a different affinity profile for the wild-type B(2) receptor in different species (man, cynomolgus, rabbit, mouse, rat, dog, pig, guinea pig). Characterization of B(2) receptor mutants and species orthologues combined with homology modelling, using the CXCR4 as template, suggests that the binding site of JSM10292 is different from that of BK but overlaps with that of MEN16132, another small non-peptide B(2) receptor ligand. CONCLUSIONS AND IMPLICATIONS [(3) H]-JSM10292 is a novel, cell membrane-permeant, high-affinity B(2) receptor antagonist that allows direct in detail studies of active, surface and intracellularly located wild-type and mutant B(2) receptors.
Collapse
Affiliation(s)
- A Faussner
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstrasse 8a and 9, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mohan ML, Vasudevan NT, Gupta MK, Martelli EE, Naga Prasad SV. G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr Mol Pharmacol 2012:CMP-EPUB-20120530-2. [PMID: 22697395 PMCID: PMC4607669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 06/01/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven transmembrane receptors that are pivotal regulators of cellular responses including vision, cardiac contractility, olfaction, and platelet activation. GPCRs have been a major target for drug discovery due to their role in regulating a broad range of physiological and pathological responses. GPCRs mediate these responses through a cyclical process of receptor activation (initiation of downstream signals), desensitization (inactivation that results in diminution of downstream signals), and resensitization (receptor reactivation for next wave of activation). Although these steps may be of equal importance in regulating receptor function, significant advances have been made in understanding activation and desensitization with limited effort towards resensitization. Inadequate importance has been given to resensitization due to the understanding that resensitization is a homeostasis maintaining process and is not acutely regulated. Evidence indicates that resensitization is a critical step in regulating GPCR function and may contribute towards receptor signaling and cellular responses. In light of these observations, it is imperative to discuss resensitization as a dynamic and mechanistic regulator of GPCR function. In this review we discuss components regulating GPCR function like activation, desensitization, and internalization with special emphasis on resensitization. Although we have used β-adrenergic receptor as a proto-type GPCR to discuss mechanisms regulating receptor function, other GPCRs are also described to put forth a view point on the universality of such mechanisms.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195.
| | | | | | | | | |
Collapse
|
19
|
Gera L, Roy C, Bawolak MT, Charest-Morin X, Marceau F. N-terminal extended conjugates of the agonists and antagonists of both bradykinin receptor subtypes: structure-activity relationship, cell imaging using ligands conjugated with fluorophores and prospect for functionally active cargoes. Peptides 2012; 34:433-46. [PMID: 22349904 DOI: 10.1016/j.peptides.2012.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022]
Abstract
Peptide agonists and antagonists of both bradykinin (BK) B(1) and B(2) receptors (B(1)R, B(2)R) are known to tolerate to a certain level N-terminal sequence extensions. Using this strategy, we produced and characterized the full set of fluorescent ligands by extending both agonists and antagonist peptides at both receptor subtypes with 5(6)-carboxyfluorescein (CF) and the ε-aminocaproyl (ε-ACA) optional spacer. Alternatively, kinin receptor ligands were extended with another carboxylic acid cargo (chlorambucil, biotinyl, pentafluorocinnamoyl, AlexaFluor-350 (AF350), ferrocenoyl, cetirizine) or with fluorescein isothiocyanate. N-terminal extension always reduced receptor affinity, more importantly for bulkier substituents and more so for the agonist version compared to the antagonist. This loss was generally alleviated by the presence of the spacer and modulated by the species of origin for the receptor. We report and review the pharmacological properties of these N-terminally extended peptides and the use of fluorophore-conjugated ligands in imaging of cell receptors and of angiotensin converting enzyme (ACE) in intact cells. Antagonists (B(1)R: B-10376: CF-ε-ACA-Lys-Lys-[Hyp(3), CpG(5), D-Tic(7), CpG(8)]des-Arg(9)-BK; B(2)R: B-10380: CF-ε-ACA-D-Arg-[Hyp(3), Igl(5), D-Igl(7), Oic(8)]-BK and fluorescein-5-thiocarbamoyl (FTC)-B-9430) label the plasma membrane of cells expressing the cognate receptors. The B(2)R agonists CF-ε-ACA-BK, AF350-ε-ACA-BK and FTC-B-9972 are found in endosomes and model the endosomal degradation of BK in a complementary manner. The uneven surface fluorescence associated to the B(1)R agonist B-10378 (CF-ε-ACA-Lys-des-Arg(9)-BK) is compatible with a particular form of agonist-induced receptor translocation. CF-ε-ACA-BK binds to the carboxydipeptidase ACE with an affinity identical to that of BK. Metal- or drug-containing cargoes further show the prospect of ligands that confer special signaling to kinin receptors.
Collapse
Affiliation(s)
- Lajos Gera
- Department of Biochemistry, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
20
|
Prolonged signalling and trafficking of the bradykinin B2 receptor stimulated with the amphibian peptide maximakinin: Insight into the endosomal inactivation of kinins. Pharmacol Res 2012; 65:247-53. [DOI: 10.1016/j.phrs.2011.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
|
21
|
Bawolak MT, Lodge R, Morissette G, Marceau F. Bradykinin B2 receptor-mediated transport into intact cells: Anti-receptor antibody-based cargoes. Eur J Pharmacol 2011; 668:107-14. [DOI: 10.1016/j.ejphar.2011.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/09/2011] [Accepted: 06/23/2011] [Indexed: 12/26/2022]
|
22
|
Gera L, Bawolak MT, Roy C, Lodge R, Marceau F. Design of Fluorescent Bradykinin Analogs: Application to Imaging of B2 Receptor-Mediated Agonist Endocytosis and Trafficking and Angiotensin-Converting Enzyme. J Pharmacol Exp Ther 2011; 337:33-41. [DOI: 10.1124/jpet.110.177147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
23
|
Vascular smooth muscle contractility assays for inflammatory and immunological mediators. Int Immunopharmacol 2010; 10:1344-53. [PMID: 20831918 DOI: 10.1016/j.intimp.2010.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 01/04/2023]
Abstract
The blood vessels are one of the important target tissues for the mediators of inflammation and allergy; further cytokines affect them in a number of ways. We review the use of the isolated blood vessel mounted in organ baths as an important source of pharmacological information. While its use in the bioassay of vasoactive substances tends to be replaced with modern analytical techniques, contractility assays are effective to evaluate novel synthetic drugs, generating robust potency and selectivity data about agonists, partial agonists and competitive or insurmountable antagonists. For instance, the human umbilical vein has been used extensively to characterize ligands of the bradykinin B(2) receptors. Isolated vascular segments are live tissues that are intensely reactive, notably with the regulated expression of gene products relevant for inflammation (e.g., the kinin B(1) receptor and inducible nitric oxide synthase). Further, isolated vessels can be adapted as assays of unconventional proteins (cytokines such as interleukin-1, proteases of physiopathological importance, complement-derived anaphylatoxins and recombinant hemoglobin) and to the gene knockout technology. The well known cross-talks between different cell types, e.g., endothelium-muscle and nerve terminal-muscle, can be extended (smooth muscle cell interaction with resident or infiltrating leukocytes and tumor cells). Drug metabolism and distribution problems can be modeled in a useful manner using the organ bath technology, which, for all these reasons, opens a window on an intermediate level of complexity relative to cellular and molecular pharmacology on one hand, and in vivo studies on the other.
Collapse
|
24
|
Koumbadinga GA, Bawolak MT, Marceau E, Adam A, Gera L, Marceau F. A ligand-based approach to investigate the expression and function of angiotensin converting enzyme in intact human umbilical vein endothelial cells. Peptides 2010; 31:1546-54. [PMID: 20452384 DOI: 10.1016/j.peptides.2010.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 12/20/2022]
Abstract
Angiotensin converting enzyme (ACE) is a drug target and an effective bradykinin (BK)-inactivating ectopeptidase. We exploited a recently described [(3)H]enalaprilat binding assay to quantify the full dynamic range of ACE expression in intact human umbilical vein endothelial cells (HUVECs) stimulated with known or novel modulators of ACE expression. Further, the affinities for ACE of a set of physiological substrates were determined using the same assay. BK has the highest affinity (K(i) 525 nM) among known substrates to displace [(3)H]enalaprilat binding from ACE. Tumor necrosis factor (TNF)-alpha repressed the expression of ACE in HUVECs while phorbol 12-myristate 13-acetate (PMA) upregulated it in 24h (approximately 12-fold dynamic range by [(3)H]enalaprilat binding, corroborated by ACE immunoblotting). Intermediate levels of ACE expression were seen in cells stimulated with both PMA and a cytokine. In contrast, high glucose, insulin or EGF failed to affect ACE expression. The effect of TNF-alpha was abated by etanercept, the IKK2 inhibitor TPCA-1, or a p38 inhibitor while that of PMA was reduced by inhibitors of PKC isoforms sensitive to phorbol esters and calcium. The short-term PKC- and MEK1-dependent increase of c-Fos expression was best correlated to PMA-induced ACE upregulation. The [(3)H]enalaprilat binding assay applied to HUVECs supports that ACE is a particularly active kininase and that endothelial ACE expression is dynamically and specifically regulated. This has potential importance in inflammatory diseases and diabetes.
Collapse
Affiliation(s)
- Gérémy Abdull Koumbadinga
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|